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Chapter 1

Introduction

X-rays were discovered by W. Röntgen in November 1895 [Röntgen, 1896]. Some peculiar proper-
ties of the new radiation, like the high penetrating power and its dependence on atomic number
and density, were immediately evident, and led to the first medical applications of radiography
within a few months.
Less that twenty years later, the first diffraction experiments were done (Friedrich, Knip-
ping and Laue in 1912 [Friedrich et al., 1912], W.H. Bragg and W.H. Bragg in 1913
[Bragg and Bragg, 1913]). Again in 1913, H.G.J. Moseley [Moseley, 1913] began to investigate
the relation existing between the X-ray wavelengths and the energies of the levels of the just pro-
posed Bohr atom [Bohr, 1913]. Since then, X-rays have become an invaluable tool for investigating
microscopic properties of matter (structural, electronic, dynamical).
The advent of Synchrotron Radiation sources has led to an impressive progress in all X-ray
techniques. The fine structures of the X-ray absorption coefficient (XAFS) were known since
1920 [Fricke, 1920, Kievit and Lindsay, 1930]; however, only in the seventies, thanks to the
availability of synchrotron sources and to the development of a suitable interpretation scheme
[Sayers et al., 1971a, Sayers et al., 1971b, Stern, 1974], become it possible to exploit them to get
quantitative information on both the local geometric and electronic structure of matter.
A detailed history of the first development of XAFS has been written by R. Stumm von Bordwehr
[Stumm von Bordwehr, 1989].

1.1 Interaction of X-rays with matter

The flux Φ of an X-ray beam is the number of photons crossing a unit section of the beam in the
unit time. Upon traversing a sample of thickness x and cross sectional area larger than that of the
beam (Fig. 1.1, left) the flux is reduced according to the exponential law

Φout = Φin exp[−µx] , (1.1)

where µ is the linear attenuation coefficient of the sample. The linear attenuation coefficient
µ depends on the energy of the X-rays and on the composition and density of the sample.
The contributions of single atomic species are tabulated as mass absorption coefficients µ/ρ
[Thomson et al., 2009, Hubbell and Seltzer, 1996]

µ

ρ
=

σa Na
A

, (1.2)

where ρ is the density, σa is the atomic attenuation cross section, Na is the Avogadro number and
A is the atomic mass.

Three different mechanisms contribute to the attenuation of an X-ray beam (Fig. 1.1, right):

1. The dominant interaction for relatively low photon energies is photo-electric absorption:
one photon is absorbed from the beam because of its interaction with an atom; the photon

1
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Figure 1.1: Left: an X-ray beam crossing a sample of thickness x. Right: atomic cross-sections
for the different mechanisms of X-ray attenuation in Germanium: continuous line = photoelectric
absorption, dashed line = unmodified scattering (Thomson), dotted line = modified scattering
(Compton), dash-dotted lines = pair production.

energy is absorbed by the atom, which can be excited, with promotion of one or more electrons
to higher bound energy levels, or ionized, with ejection of one or more electrons (this last
phenomenon is called photo-ionization).

2. The second interaction, weaker than photo-absorption at low energies, is scattering: a
photon is deflected from the original trajectory by the collision with an atom. The scattering
of one photon from one electron can be

- modified or Compton scattering, when the photon wavelength is modified by effect of the
scattering process: the positive variation of the wavelength is ∆λ = λc(1− cos θ), where
θ is the scattering angle and λc = 0.002426 Å is the Compton wavelength; according
to quantum mechanics, the scattering from a completely free electron is always modified;

- unmodified scattering, when the photon wavelength is unmodified by the scattering pro-
cess, ∆λ = λ′−λ = 0; as a consequence E′ = E; the unmodified scattering corresponds
to the classical Thomson theory of the scattering of X-rays from free electrons.

For electrons bound in atoms, the statistical balance between modified and unmodified
scattering depends on wether the energy lost by a photon undergoing Compton scattering,
∆Ecom ' h̄ωin ∆λ/λin, is larger than the electron binding energy or not.

When considering the scattering of X-rays from an aggregate of atoms, one speaks of

- elastic scattering if the photon energy is conserved, h̄ωout = h̄ωin;

- inelastic scattering if the photon energy is not conserved: inelastic scattering can be due
not only to the Compton effect at the single electron level, but also to the interaction
of the photon with collective excitations, of both electronic and vibrational nature.

3. The dominant interaction at high energies is pair production: the photon annihilates,
giving rise to a pair e+e−. This process requires a photon energy larger than about 1
MeV (twice the electron rest mass), and cannot take place in vacuum. To guarantee the
conservation of linear momentum, the photon must interact with an external field (nuclear
or electronic).

The two interactions possible below 1 MeV, photoelectric absorption and scattering, give origin to
three basic groups of experimental techniques [Als-Nielsen and McMorrow, 2011]:
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Figure 1.2: Left: X-ray mass absorption coefficients of Nd, Tb, Yb in the energy range fro 1 to
100 keV. Right: Binding energy of electrons in core levels K, L3 e M5 as a function of the atomic
number Z.

1. Spectroscopy is due to the absorption mechanism, and gives mainly information on the
electronic structure of matter. One speaks of X-ray absorption or emission spectrosopy,
according to whether the absorption or the emission of X-rays is studied as a function of
energy. In photoelectron spectroscopy, the electrons emitted from the sample upon absorption
of X-ray photons are collected and analyzed.

2. Elastic scattering gives information on the atomic-scale geometrical structure of condensed
systems (crystalline and non-crystalline solids, as well as liquids); elastic scattering from
crystalline solids is often conventionaly referred to as diffraction. Inelastic scattering gives
information on the distribution of electron momenta in atoms (via Compton scattering) as
well as on atomic collective excitations.

3. Imaging gives macroscopic pictures of a sample, based on the different degree of attenuation
of X-rays by different parts of the sample; it includes medical and industrial radiography and
X-ray microscopy. Both absorption and scattering contribute to the attenuation responsible
for imaging.

1.2 X-ray Absorption spectroscopy

We focus now our attention on X-ray energies ranging from about 1 keV to about 100 keV,
corresponding to wavelengths from about 0.12 to about 12 Å, respectively. (The relation between
energy h̄ω, in keV, and wavelength λ, in Ångström, is h̄ω = 12.398/λ).

In this energy range, the dominant attenuation mechanism is photoelectric absorption. We will
then identify the linear absorption coefficient with the linear attenuation coefficient µ(ω).

Besides, in this energy range, the behaviour of the photo-electric absorption coefficient is very
simple and qualitatively very similar for different atomic species; these properties are at best
evidenced by log-log plots, such as in Fig. 1.1, right, and in Fig. 1.2, left. When the energy of the
absorbed X-ray photons increases, the absorption coefficient µ(ω) progressively decreases (harder
X-rays are more penetrating); the absorption depends on the atomic species too (heavier atoms
are more absorbing). The smooth energy dependence of the photo-electric absorption coefficient
is interrupted by sharp discontinuities, the absorption edges.
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Table 1.1: High-energy absorption edges (in order of increasing photo-electron energy) and config-
urations of the electronic shells involved.

Edge: M5 M4 M3 M2 M1 L3 L2 L1 K
Initial configuration: 3d10 3d10 3p6 3p6 3s2 2p6 2p6 2s2 1s2

Final configuration: 3d9 3d9 3p5 3p5 3s1 2p5 2p5 2s1 1s1

Final term: 2D5/2
2D3/2

2P3/2
2P1/2

2S1/2
2P3/2

2P1/2
2S1/2

2S1/2

1.2.1 Absorption edges

The absorption edges (Fig. 1.1, right, and Fig. 1.2, left) originate when the photon energy becomes
high enough to extract an electron from a deeper level.
For historical reasons, the X-ray absorption edges are labelled by the consecutive alphabetical
letters K, L, M ..., which correspond to the principal quantum numbers 1, 2, 3, ..., repectively
(Fig. 1.2. The highest-energy absorption edge, the K edge, corresponds to the extraction of an
electron from the deepest level, the 1s level.
The next higher-energy edges are the three L edges: L1 corresponds to the extraction of an electron
from a 2s level, the L2 and L3 edges correspond to the extraction of an electron from a 2p level.
The distinction between the L2 and L3 edges is due to the different alignment of the atomic orbital
and spin momenta, which gives rise to different spin-orbit contributions to the energy, as will be
explained in § 2.2 and is summarized in Table 1.1 (which includes also the M edges for atoms with
initial complete d shell).
The energy of each family of absorption edges increases monotonically with the atomic number Z,
as depicted in Fig. 1.2, right panel. For example, the K-edge energy increases from 13.6 eV for
Hydrogen (well below the X-rays region) to 115.606 keV for Uranium.
In the X-ray energy region (between 1 and 100 keV), the absorption coefficient between two con-
secutive edges depends on the photon energy and on the atomic number approximately as

µ(ω) ∝ Z4/(h̄ω)3 . (1.3)

Note: For historical reasons, the absorption edges should be labelled by Roman numerals, e.g. L|,
L|| and L||| [Stumm von Bordwehr, 1989], since the Arabic numerals had been used at the
beginnings of X-ray spectroscopy with a reverse meaning, the highest and lowest-energy L
edges being named L3 and L1, respectively. In the present work we adhere to the modern
literature and use Arabic numerals as substitutes of roman numbers.

1.2.2 Threshold energy and binding energy

The edge energy is generally defined as the threshold for ionisation of a given core level, and
thus corresponds to the binding energy of the core level. Since the binding energies increase
monotonically with the atomic number Z (Fig. 1.2, right), every edge energy corresponds to a well
defined atomic species. This behaviour is at the origin of the selectivity of atomic species of X-ray
spectroscopy techniques.

Isolated atoms

Let us first consider an isolated atom. After the absorption of an X-ray photon, an isolated atom
can be, depending on the X-ray energy,

a) excited, if the photon energy is lower than the binding energy and corresponds to the energy
difference between a core level and an upper unoccupied bound level; the electron of the core
level is transferred to the bound unoccupied level;

b) ionized, if the photon energy is larger than the binding energy, so that the electron (hence
called photo-electron) is ejected from the atom.
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The binding energy of an electron level is the minimum energy necessary to extract the electron
from the atom (ionisation energy).
The simplicity of the behaviour of the X-ray absorption coefficient and the similarity for different
atomic species, as compared with the absorption coefficients in the optical region, is due to the fact
that the binding energies of core levels are much higher than the differences in energy between the
bound unoccupied atomic levels (Rydberg levels). The absorption spectra for X-rays are dominated
by the core level excitation, with very little influence of the outer level structure. We see below,
however, that the distribution of the outer levels can give rise to a fine structure of the absorption
coefficient, localised near the edge, so that the accurate evaluation of the threshold energy can be
far from trivial.

Molecules and condensed systems

For molecules and condensed systems, the photo-ionisation process is more complicated than for
isolated atoms. For molecules, the photoelectron can suffer complex interactions with the surround-
ing atoms before escaping and the evaluation of the threshold energy can be more complicated than
for atoms. In condensed systems, the photo-electron does not escape at all (with the exception of
the events of photo-ionisation near the surface, which give rise to photo-emission spectroscopy).
The binding energy is defined as the energy difference between the core level and the Fermi level
for metals, the core level and the top of valence band for semiconductors.

Tables of binding energies

The currently available tables give the electron binding energies relative to the vacuum level (ion-
isation energies) for gases, relative to the Fermi level for metals and relative to the top of the
valence band for semiconductors.
The binding energies of the L and K levels are listed in Table 1.2 for selected elements. The spacing
between the L edges increases when the atomic number Z increases. In particular, the difference
between the energies of the L2 and L3 edges id due to the spin orbit effect (see Chapter 2 for more
details); the difference increases when the atomic number Z increases (Fig. 1.3).

Table 1.2: Binding energies (in eV) for the K and L edges of selected elements.

Z L3 L2 L1 K
20 Ca 346.2 349.7 438.4 4 038.5
30 Zn 1 021.8 1 044.9 1 196.2 9 659.0
40 Zr 2 223. 2 307. 2 532. 17 998.0
50 Sn 3 929. 4 156. 4 465. 29 200.
60 Nd 6 208. 6 722. 7 126. 43 569.
70 Yb 8 944. 9 978. 10 486. 61 332.

1.2.3 Fine structure

The smooth behaviour of the absorption coefficient depicted in Fig. 1.2 (left) is only an approximate
behaviour. In correspondence of an edge, the absorption coefficient actually exhibits fine structure,
the so-called X-ray Absorption Fine Structure (XAFS).

Isolated atoms

For isolated atoms (noble gases, metallic vapors) the XAFS is limited to a few eV around the edge,
and reflects the transitions of the core electron to unoccupied bound levels (Rydberg levels).

The left panel of Fig. 1.4 refers to a very restricted energy region around the K edge of Argon. The
transitions to Rydberg levels give rise to lorentzian-shaped structures (dotted peaks in the figure),
whose width is due to the energy uncertainty of the excited core state, and is of the order of the eV,
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Figure 1.3: Spin-orbit splitting of the L2 and L3 edges as a function of the atomic number Z.
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Figure 1.4: Fine structures at the K edges of Argon (left, continuous line) from ref. [Parrat, 1939]
and Krypton (right).

much larger than the typical width for optical transitions. The ionisation threshold corresponds
to the upper limit of the Rydberg series; the step-like behaviour of the threshold is transformed
into an arctangent curve by effect of the excited core state width. The value Eb = 3205.9 eV was
determined by best fitting the theoretical calculations to the experimental spectrum.

The right panel of Fig. 1.4 refers to an extended energy region around above the K edge of
Krypton. The fine structure due to the transition to Rydberg levels reduces to the small peaks
at the edge (within the circle), as effect of the excited core state width, which increases with the
atomic number, and is thus larger than for Argon. The behaviour of the absorption coefficient
above the edge is perfectly smooth, as expected for isolated atoms.

Molecules and condensed systems

In molecular gases and condensed systems, the XAFS, strongly influenced by the presence of the
atoms surrounding the absorber one, can extend up to and beyond one thousand eV above the
edge.

The left panel of Fig. 1.5 refers to the K edge edge of molecolar N2. In addition to the transitions to
atomic Rydberg levels in the region between 405 and 410 eV (whose amplitude has been enlarged
10 times), which converge to the ionisation threshold, other phenomena contribute to the XAFS,
such as transitions to vibrationally excited states (pre-edge structures between 400 and 402 eV),
double excitations (around 415 eV) and the so-called shape resonances (bump at about 420 eV).

The right panel of Fig. 1.5 refers to the K edge of crystalline germanium. Here the fine structure
can be observed up to at least 1000 eV above the edge
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Nomenclature

XAFS is customarily divided into two regions.

1. The structure within 30÷50 eV above the edge is called XANES (X-ray Absorption Near
Edge Structure) or NEXAFS (Near Edge X-ray Absorption Fine Structure). From the
XANES, information can be obtained on the local electronic as well as geometric struc-
ture. Sometimes, the features within a few eV around the edge are distinguished as pre-edge
structure and edge structure.

2. The fine structure extending from the XANES region up to typically one thousand eV is
called EXAFS (Extended X-ray Absorption Fine Structure). EXAFS carries information
on the local geometric structure surrounding a given atomic species. The interpretation of
EXAFS is nowadays quite well established, and easier than the interpretation of XANES.

Although the fine structures at the X-ray absorption edges had been detected since 1918-1919,
and their first interpretation dates back to the thirties, it is only with the availability of high
intensity synchrotron radiation beams at the end of the sixties and the development of a simple
interpretation procedure for EXAFS at the beginning of the seventies that XAFS has become a
widespread technique.

1.3 Interpretation of XAFS: XANES and EXAFS

An experimental X-ray absorption coefficient contains the contributions due to the excitation of
different electronic shells. Let us consider, for example, the left panel of Fig. 1.2. For photon
energies of 20 keV, electrons belonging to the 2s, 2p, 3s, 3p, 3d... levels can be excited, but not 1s
electrons. For photon energies of 80 eV, the 1s electrons can be excited too.
For an effective interpretation of XAFS, it is convenient to consider the contribution to the absorp-
tion coefficient of only one core level, for example the 1s level (Fig. 1.4). The contribution from
the 1s electron is zero below the K edge energy. The procedure for singling out the contribution of
a given core electronic level from an experimental spectrum is depicted in the following chapters.
The basic behaviour of the absorption coefficient and of its fine structure at a given absorption
edge can generally be interpreted in terms of a one electron process; non-negligible contributions
can, however, come also from many-electron excitations.

The photoelectric absorption of X-rays can be satisfactorily accounted for by a mixed approach,
where the atom is described in quantum mechanical terms, and the electromagnetic field is de-
scribed within the classical approximation. The interaction between an atom and the electromag-
netic field is treated within the framework of the time-dependent perturbation theory, which to
first order leads to the so-called “golden rule”.
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1.3.1 Final one-electron states and local structure

According to the golden rule, the absorption coefficient is proportional to the square of the matrix
element of the interaction Hamiltonian connecting the atomic stationary state before the interaction
(initial state) and the atomic stationary state after the interaction (final state). Since the initial
state is the atomic ground state, independent of the photon energy, the fine structure of the
absorption coefficient can be attributed only to the final state. Let us here qualitatively consider
the final states as a function of the photon energy. For simplicity, only one-electron transitions are
considered.

Isolated atoms

For an isolated atom, when the photon energy is lower than the photo-ionisation energy, the final
one-electron states are the discrete Rydberg levels. The absorption coefficient is different from zero
only when the photon energy corresponds to an allowed transition from core to Rydberg levels.
For an isolated atom, when the photon energy is higher than the photo-ionisation energy, the final
states are a continuum of free-electon states, and the absorption coefficient has no fine structure.
For isolated atoms, the study of the X-ray absorption coefficient has little practical use.

Molecules and condensed systems

By far more important is the study of XAFS when the absorbing atom is embedded in a molecule
or in a condensed system.
The discrete spectrum below the absorption edge can be now enriched by new final-state possibil-
ities, due for example to vibrational properties of molecules, exciton levels in semiconductors, and
so on.
Also for photon energies higher than the photo-ionisatione energy is the final state influenced by
the environment of the absorbing atom. As a consequence, the XAFS reflects the modifications
of the electronic structure induced by the local environment, which is in turn connected to the
local geometric structure. Calculating the final state for the photo-electron within some 20 to 30
eV above the absorption edge is generally far from trivial. Two main approaches, in principle
equivalent, are possible, one based on the molecular orbital theory, the other based on the theory
of electron multiple scattering. Both approaches allow us to establish a connection between XAFS
and local structure.
The most relevant advantage of the scattering approach is that, for photo-electron energies higher
than say 20 to 30 eV, single scattering events are predominant in determining the final state, and
multiple scattering events are generally negligible. The treatment of single scattering is relatively
simple, and leads to the possibility of interpreting the XAFS in terms of an analytical expression
depending on a few structural parameters.
The distinction of the two regions, XANES and EXAFS, in the absorption spectra can thus be
explained in terms of the different possible approaches. In the EXAFS region the XAFS can be
interpreted in terms of single scattering by a relatively easy formalism, which is considered in the
following chapters; a phenomenological introduction to EXAFS is given immediately below. In the
XANES region the interpretation of XAFS requires taking into account multiple scattering effects,
or sometimes, alternatively, a molecular orbital approach.

Introductions to XAFS spectroscopy at different levels of difficulty and with different balance
between theoretical and experimental issues are available in a number of excellent papers
and books [Als-Nielsen and McMorrow, 2011, Brown and Doniach, 1980, Lee et al., 1981,
Hayes and Boyce, 1982, Borovskii et al., 1986, Teo, 1986, Koningsberger and Prins, 1988,
Stöhr, 1996, Rehr and Albers, 2000, Bunker, 2010].

1.3.2 A phenomenological introduction to EXAFS

A simple phenomenological picture is often used to explain the origin of EXAFS (Fig. 1.6) within
the framework of the single scattering approach. When an X-ray photon of high enough energy is
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absorbed by an atom, a core electron is ejected from the atom (ionization process). The kinetic
energy of the photo-electron is the difference between the photon energy and the core binding
energy. The outgoing photo-electron is described by a wave-function, approximated by a spherical
wave in Fig. 1.6, whose wavelength decreases when the photon energy increases. If the absorber
atom is not isolated, the photo-electron can be back-scattered by neighboring atoms, giving rise
to an incoming spherical wave. The phase relationship between outgoing and incoming waves
depends on the photo-electron wavelength and on the inter-atomic distance. The final photo-
electron stationary state is thus the superposition of the outgoing spherical wave and the incoming
back-scattered wave.
The variation of phase relationship as a function of photon energy influences the final state ampli-
tude at the core site, giving rise to an interference phenomenon which modulates the absorption
coefficient. The frequency of EXAFS oscillations depends on the distance between absorber and
back-scatterer atoms. Their amplitude is proportional to the number of back-scatterer atoms.

X-ray 

!"

#" #"

(a) (b) (c) 

Figure 1.6: Schematic explanation of the EXAFS phenomenon: absorption of an X-ray photon by
atom A (left), emission of the photo-electron wave (center), back-scattering of the photo-electron
by atom B (right).

1.4 More on EXAFS

Two main peculiarities characterize EXAFS as a structural probe:

1. the selectivity of atomic species, which is achieved by tuning the X-ray energy to the corre-
sponding absorption edge;

2. the insensitivity to long-range order, due to both the spherical nature of the photoelectron
wave and the short mean free path of the photo-electron, typically limited to about 10 Å.

1.4.1 The EXAFS function

The EXAFS oscillations are generally expressed by the normalised adimensional function

χ(k) =
µ− µ0

µ0
. (1.4)

An example of EXAFS function is given in Fig. 1.7 (right). In (1.4),

a) k is the wavenumber of the photoelectron, defined as

k =

√
(2m/h̄2) (h̄ω − Eb) , (1.5)

where h̄ω is the photon energy andEb is the core electron binding energy;

b) µ is the measured absorption coefficient (red line in Fig. 1.7, left),

c) µ0 is the absorption coefficient of an isolated atom (blue line in Fig. 1.7, left).
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Figure 1.7: Left: experimental absorption coefficient µx at the K edge of Germanium, mea-
sured at T = 10 K and plotted in arbitrary units as a function of the photon energy hν = h̄ω.
Right: corresponding k-weighted EXAFS function k χ(k) plotted as a function of the photo-electron
wavenumber k.

1.4.2 Basic information from EXAFS

The basic information that can be obtained from the analysis of EXAFS spectra concerns a few
coordination shells surrounding the absorbing atom (typically within about 10 Å). The EXAFS
function shown in Fig. 1.7 (right) is the superposition of the contributions of several coordination
shells.
The contribution of each coordination shell is a sinusoidal-like function, such as those depicted
in Fig. 1.8. For each coordination shells one can in principle obtain at least three important
parameters:

1. The average inter-atomic distance 〈r〉, which is proportional to the frequency of the EXAFS
oscillations (Fig. 1.8, left).

2. The coordination number N , which is proportional to the amplitude of the EXAFS signal
(Fig. 1.8, centre).

3. The degree of local disorder, of both thermal and structural origin, measured by a Debye-
Waller factor exp(−2kσ2), which is responsible of the damping of the EXAFS signal (Fig. 1.8,
right).

0 5 10 15
k (Å-1)

N = 4

N = 2

0 5 10 15
k (Å-1)

!
2 = 0.01 Å2

!
2 = 0.005 Å2! 

" k( )

0 5 10 15
k (Å-1)

< r > = 2 Å

< r > = 4 Å

Figure 1.8: Basic information from EXAFS of a given coordination shell: the frequency is propor-
tional to the inter-atomic distance (left), the amplitude is proportional to the coordination number
(centre), the damping depends on the degree of thermal and structural disorder (right).

To get the values of the above parameters, 〈r〉, N and σ2, from experimental spectra is far from
immediate. The interaction of the photo-electron with both the emitting and the back-scattering
atoms, as well as the non-negligible many-body effects have to be properly taken into account.
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This task is nowadays accomplished with a good degree of accuracy by easily available theoretical
computer codes, often supported by friendly data analysis codes.

The quantity and quality of information that can be obtained from an EXAFS spectrum depends
on the quality of experimental data and on the number of available oscillations, say on the length
of the signal. To allow an accurate quantitative analysis, the signal should extend to at least
k ' 15 Å−1, corresponding to photon energies extending at least 900 eV above the edge.
This is in principle always possible for EXAFS measured at the K edges, unless the available
spectrum is upper limited by the edge of another element present in the sample. The situation is
different for L edges. EXAFS at the L||| edge can be severely limited by the presence of the L||
edge; EXAFS at the L| edge can be contaminated by the residual EXAFS at the L|| edge. These
limitations are particularly strong for light elements, where the L edges are quite close in energy,
and progressively relax for heavier elements (see Table 1.2).

1.4.3 Typical EXAFS applications

EXAFS is a very appealing local structural probe in some particular cases.

Local structure in non-crystalline materials. EXAFS gives complementary information
with respect to elastic scattering of X-rays or neutrons. EXAFS is particularly useful for many-
atomic materials, like semiconductor amorphous alloys or oxide glasses, thanks to the possibility
of selecting the atomic species. (The interpretation of elastic scattering patterns for many-atomic
non-crystalline materials is instead quite complicated). A peculiar advantage of EXAFS is the pos-
sibility of directly comparing the spectra of one given material in both crystalline and amorphous
states, due to the insensitivity of EXAFS to long range order.

Local environment of atoms in eterogeneous matrices. This is the typical case of heteroge-
neous catalysts, active sites in biomolecules, impurities in semiconductors, luminescent rare-earth
atoms in crystals and glasses. The active site is here represented by atoms or small clusters
randomly dispersed in a matrix of different atomic species, also often disordered.

Systems with local properties different from average properties. In some crystalline sys-
tems such as solid ternary random solutions AxB1−xC, the distances between nearest-neighbours
atoms are different according to the different species constituting the pair: AB,BC,AC. When the
concentration x is varied, Bragg diffraction, sensitive only to long range order, measures the vari-
ation of the average interatomic distance, while EXAFS, selective of atomic species and sensitive
to short range order, is able to discriminate the different behaviour of each atomic pair.

Local dynamics in crystalline solids. By performing temperature dependent EXAFS mea-
surements, one can get original information on the local vibrational dynamics. In the case of
crystalline solids, the sensitivity to the correlation of vibrational motion makes EXAFS a comple-
mentary technique to diffraction. EXAFS measures the true bond expansion of interatomic bonds
and the mean square relative displacements of atomic pairs, while diffraction measures the apparent
bond thermal expansions and the absolute mean square displacements of atoms. The joint use of
EXAFS and diffraction has been recently exploited for the study of the local origin of negative
thermal expansion in some crystalline solids.
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Chapter 2

Photoelectric absorption of X-rays

This Chapter is dedicated to a study of the process of photo-absorption of X-rays by isolated
atoms. The aim is to find a convenient expression of the absorption coefficient experimentally
measured as a function of X-ray photons energy in terms of the initial and final states of the
system atom-radiation, through a series of reasonable approximations. The effect of the atomic
environment surrounding the absorbing atom, which gives rise to XAFS, is considered in the
subsequent Chapter 3.

For photon energies between 1 and 30 keV, the leading interaction with matter is photo-electric
absorption (Fig. 1.1); the total absorption coefficient µ introduced in Eq. (1.1) corresponds thus
with a good approximation to the photo-electric absorption coefficient. From now on, we refer to
µ as “absorption coefficient”.

In Section 2.1 some useful phenomenological definitions are presented.

In Section 2.2 we seek for a general expression connecting the experimentally measured absorption
coefficient µ(ω), or equivalently the absorption cross section σa(ω), to the initial stationary quan-
tum state of an atom (typically the ground state) and its possible final stationary states after the
absorption of radiation (excited or ionised states).

In Section 2.3 a first important approximation is introduced, the time-dependent perturbation
theory, which leads to the famous “Golden rule”.

In Section 2.4, various further approximations are introduced in order to simplify the calculation
of the absorption coefficient in most of the cases of real interest.

Section 2.5 is dedicated to an introduction to the processes of de-excitation of an atom, which
follow the excitation due to the absorption of electromagnetic radiation.

2.1 Phenomenological considerations

Before going into the mathematical details of the interaction of X-rays with atoms, it is convenient
to carefully introduce the physical quantities which enter in the phenomenological definition of the
experimentally measured absorption coefficient.

2.1.1 Energy flux and photon flux

To measure the absorption coefficient, the intensity of the X-ray beam impinging on the matter
sample and outgoing from it has to be conveniently measured. We compare here the two alternative
possibilities, based on the complementary wave and particle approaches, respectively.

In spectroscopy experiments, one typically deals with monochromatic beams; actually, real beams
are never perfectly monochromatic, the frequency being confined within a narrow interval ∆ν
around a nominal value ν0. In the following, we will generally consider the behaviour of single-
frequency plane electromagnetic waves; this shouldn’t be considered a limitation, since real beams
can be considered as a convenient superposition of different plane waves.

13
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Furthermore, in the following we will substitute the frequency ν (measured in s−1) by the angular
frequency ω = 2πν (measured in rad s−1). For short, the angular frequency ω will be simply
referred to as frequency.
Electromagnetic waves consist in coupled electric and magnetic fields ~E and ~B perpendicular to
the direction of propagation, with ~E ⊥ ~B and B = E/c (SI units). For monochromatic plane
waves,

E = E0 cos(~k · ~r − ωt) , k = ω/c . (2.1)

The wave point of view

The intensity of the X-ray beam can be expressed in terms of its energy density u (energy per unit
volume, J m−3). The energy density stored at a given time in a given point of an electromagnetic
wave can be expressed as a function of the electric and magnetic fields as [Feynman et al., 1977]

u = ε0E
2/2 + ε0c

2B2/2 = ε0E
2 (2.2)

(since B = E/c). In (2.2), ε0 is the vacuum permittivity.
For a sinusoidal electromagnetic wave (2.1), the average energy density 〈u〉 is

〈u〉 = ε0〈E2〉 = ε0E
2
0/2 . (2.3)

For a number of applications, it is convenient to express the electric and magnetic fields ~E and ~B
in terms of the scalar and vector potentials U and ~A (see Appendix A and [Feynman et al., 1977]),
according to the general relations:

~E = −~∇U − ∂ ~A/∂t , ~B = ~∇× ~A . (2.4)

Different choices of the potentials are possible which give the same electric and magnetic fields.
We refer here to the choice corresponding to the Coulomb gauge, characterised by ~∇ · ~A = 0.
In addition, for an electromagnetic wave in vacuum we can neglect the static effects of electric
charges, so that U = 0 (radiation gauge). This choice is justified by the fact that, as we will see
below, the quantum treatment of the interaction between radiation and matter is better done if
the electromagnetic waves are described in terms of the vector potential ~A within the radiation
gauge.
In the radiation gauge, the relation between the electric field and the vector potential is simply
~E = −∂ ~A/∂t. Besides, for a sinusoidal plane wave 2.3, also the vector potential has a sinusoidal
behaviour,

A = A0 sin(~k · ~r − ωt) , A0 = −E0/ω . (2.5)

The average energy density 2.3 of a monochromatic electromagnetic plane wave of angular fre-
quency ω can thus be expressed in terms of the amplitude of the vector potential as

〈u〉 = ε0ω
2A2

0/2 . (2.6)

In the wave picture, the flux Φ of an X-ray beam is measured by the energy crossing the unit
section of the beam in the unit time (SI units J m−2 s−1):

Φ = 〈u〉 c , (2.7)

where c is the speed of light.

The absorption coefficient µ measures the progressive reduction of the average energy density 〈u〉
due to the photoelectric absorption by matter:

µ(ω) = − 1

〈u〉
d〈u〉
dx

. (2.8)

By separating the variables in (2.8) and integrating over the sample thickness x, one obtains

ln〈u〉out − ln〈u〉in = −µx (2.9)
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and, taking into account (2.7),

µ(ω) =
1

x
ln

Φin

Φout
say Φout = Φin exp[−µx] . (2.10)

Experimentally, µ is obtained by measuring the beam intensities Φin and Φout immediately before
and after the matter sample of thickness x.
The absorption coefficient µ(ω) depends on the frequency ω of the X-rays, as well as on the atomic
species and the density of the sample. Its dimension is an inverse length.

The particle point of view

In the absorption and emission of electromagnetic radiation by matter, energy is exchanged by
quanta, say photons of energy h̄ω. When studying X-ray absorption processes, it is generally more
convenient to express the flux of the X-ray beam in terms of the number of photons of a given
energy crossing the unit area in the unit time. Inserting (2.6) into (2.7), and taking into account
that the photon energy is h̄ω, the flux measured in terms of photons is

Φ =
ε0ω

2A2
0c/2

h̄ω
=

ε0ωA
2
0c

2h̄
(2.11)

and the absorption coefficient is again expressed by (2.10).

Note 1: The fluxes Φ in (2.7) and (2.11) correspond to the same physical phenomenon but are
measured in different units, J m−2s−1 the first one, m−2s−1 the second one.

Note 2: In principle, the quantisation in terms of photons only describes the exchange of energy
between radiation and matter. Considering the X-ray beam as a particle beam requires some
clarification. Actually, a perfectly monochromatic plane wave has no spatial localisation, and
is incompatible with a particle picture. However, as already observed, X-ray beams are never
perfectly monochromatic. Relative frequency spreads ∆ω/ω, mainly determined by the band-
pass of crystal monochromators (Chapter 5), are typically of the order of 10−4. The energy
uncertainty corresponds to a momentum uncertainty, which reduces the position uncertainty
and allows the description of the beam in terms of a superposition of localised wave-packets,
say of photons.
For example, for E=30 keV, an energy uncertainty ∆E=3 eV corresponds to a position un-
certainty along the beam direction ∆z ' 650 Å.

2.1.2 The absorption coefficient

Atomic absorption cross section

For a monatomic sample, the macroscopic linear absorption coefficient µ(ω) is connected to the
atomic photo-absorption cross section σa(ω) through the relation

µ(ω) =
Na ρ

A
σa(ω) = nσa(ω) , (2.12)

where Na is the Avogadro number, ρ is the mass density, A is here the atomic mass and n is the
atomic number density (number of atoms per unit volume). The cross section σa has the dimension
of an area.

The mass absorption coefficient

For each atomic species, one can find tabulated [Hubbell and Seltzer, 1996, Thomson et al., 2009,
NIST, 2004] the mass absorption coefficient µ/ρ as a function of the X-rays energy h̄ω or of the
wavelength λ,

µ

ρ
=

σa Na
A

. (2.13)
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Figure 2.1: Mass absorption coefficient µ/ρ for 60-Nd plotted with logarithmic scales (left) and
with linear scales (right).

Once the mass absorption coefficient (µ/ρ) is known, the flux attenuation law (1.1) for a given
sample of density ρ can be evaluated by [Bertin, 1975]

Φout = Φin exp

[
−
(
µ

ρ

)
ρ x

]
. (2.14)

Example: Let us consider an X-ray beam of wavelength λ = 1 Å (energy 12.4 keV) impinging
on a sample of 32-Ge. From the absorption tables one can find that, for λ = 1 Å, µ/ρ =
162.75 cm2/g. Since ρ = 5.46 g/cm3 and n = 4.41 × 1022 cm−3, the atomic absorption cross
section is σa ' 2× 10−4 Å2.

The mass absorption coefficient for X-rays, (µ/ρ), is an atomic property of each element, largely
independent of the state of aggregation [Bertin, 1975]. This is due to the fact that the photo-
absorption of X-ray involves the electronic core levels, which are not affected by the state of
aggregation.
This is generally not the case for lower energy electromagnetic radiation, whose absorption involves
external energy levels, which in turn depend on the aggregation state.

Chemical compounds

For a chemical compound PxQy... the total mass absorption coefficient can be decomposed into
the weighted sum of the contributions of each atomic species,(

µ

ρ

)
tot

= x

(
µ

ρ

)
P

AP
M

+ y

(
µ

ρ

)
Q

AQ
M

+ ... (2.15)

where M is the molecular mass of the compound, Ai are the atomic masses of the components.
The additive rule (2.15), valid for X-rays, cannot be applied to the absorption of lower energy
electromagnetic radiation (infrared, optical and ultraviolet).

Empirical behaviour of the mass absorption coefficient

In the energy interval between two contiguous absorption edges, the absorption coefficient decreases
when the photon energy h̄ω increases (Fig. 2.1).
The photoelectric behaviour is generally well described by the empirical Victoreen law:

µ/ρ = C λ3 − Dλ4 (2.16)
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Figure 2.2: Jump ratio r = µsup/µinf (left) and relative contribution to the absorption, (µsup −
µinf)/µsup = 1− 1/r (right).

where the parameters C and D depend on the atomic number Z and, for the same atomic species,
can slightly differ for the intervals between different edges.

An alternative approximation for the photoelectric absorption is the Bragg-Pierce law

µ/ρ = K ′ Zm λ
n , (2.17)

where K ′ is different for different elements and for intervals between different edges, m ' 4 and
n ' 3.

The energy of the absorption edges increases when the atomic number Z increases (Fig. 1.2, right).

Jump ratios

At an absorption edge, the absorption coefficient abruptly jumps from a lower value µinf to a higher
value µsup. The difference δµ = µsup − µinf represents the absolute contribution to the absorption
due to the excitation of an electron from a core level. The jump difference δ depends on Z and for
a given element is larger for the L edges than for the K edge (Fig. 2.1, right).

The relative contribution to the absorption is expressed by (µsup − µinf)/µsup = 1 − 1/r, where
r = µsup/µinf is the so-called jump ratio. The jump ratios r depend on the atomic number Z. The
relative contribution to photoelectric absorption for a given element is larger for the K edge than
for the L3 edge (Fig. 2.2, right) [Bertin, 1975].

Half-thickness

A useful measure of the attenuation of an X-ray beam in a specific medium is the half-value
thickness or half-thickness, say the sample thickness required to reduce by one-half the incident
flux [Bertin, 1975], so that Φout = Φin/2.

From (2.14) one easily finds that the half-thickess is

x1/2 =
ln 2

µ
=

0.693

(µ/ρ) ρ
. (2.18)

The half-thicknesses of some substances at selected X-ray energies are listed in Table 2.1.

2.2 Interaction of an atom with the electromagnetic field

The photo-electric absorption of radiation by matter is a genuine quantum phenomenon and nec-
essarily requires a quantum approach.
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Table 2.1: Half-thickness (cm) for selected substances at selected X-ray wavelengths.

h̄ω (keV) Air Mylar Be Al Cu Pb

0.0012 1.39 1.85 2.7 8.96 11.34 density (g/cm3)

5 14.05 0.018 0.0085 0.001 0.0005 8.3e-5
20 727.33 0.860 1.6641 0.075 0.0023 0.0007
50 2719.8 2.468 2.4105 0.697 0.0296 0.0076

2.2.1 The physical systems

For a general treatment of the interaction of electromagnetic radiation with matter, we should
consider a quantum system composed of two subsystems: the atom and the electromagnetic field.
The interaction process corresponds to a transition from an initial stationary state of the full
system (matter + field) to a final stationary state of the full system (matter + field). During the
transition, different events can take place, corresponding to the absorption, emission or scattering
of electromagnetic radiation. In any case, the initial and final states of the full system have the
same energy.
We are interested here in an absorption event, where a photon of the electromagnetic field dis-
appears and its energy h̄ω is employed to excite or ionise the atom. The absorption of X-rays
typically concerns many-electron atoms, for which the binding energies of the innermost electrons
are comparable with the energies of X-ray photons.
To describe the photo-absorption process, the quantum treatment of the electromagnetic field is
not strictly necessary. One can rely on a semi-classical approach, were the atom is treated as a
quantum system and the electromagnetic field is treated classically.
It is worth noting that a semi-classical approach cannot instead fully account for the reverse process,
say the process of photo-emission: the semiclassical approach accounts only for the stimulated
emission of electromagnetic radiation, the explanation of spontaneous emission requires a full
quantum approach [Bransden and Joachain, 2003].

In the following, we shortly recall the description of the separate sub-systems: atom (§ 2.2.2) and
electromagnetic field (§ 2.2.3); for the electromagnetic field, we consider both the classical and
quantum descriptions. The interaction between atom and field is finally considered in § 2.2.4.

2.2.2 Quantum description of an isolated atom

For an N-electron isolated atom or ion, in the absence of the electromagnetic field, the time-
independent hamiltonian is

H0 =

N∑
j=1

P 2
j

2m
+ V , (2.19)

where the sum is over all the N electrons; ~Pj is the generalised momentum of electron j, canonically
conjugated to its position ~rj ; for the isolated atom, the generalised momentum of each electron
~Pj is equal to the mechanical momentum m~vj . The potential energy V is the sum of a number of
terms of different importance (Coulomb interactions, spin-orbit interactions, spin-spin interactions
and so on).
By solving the time-independent Schrödinger equation

H0 |Ψs〉 = Es |Ψs〉 (2.20)

one obtains the stationary eigenstates |Ψs〉 of the many-electron atom and the corresponding
energies Es. The stationary state of the lowest energy is the ground state.

Note: By Es and |Ψs〉 we refer here synthetically to both discrete atomic states, where all electrons
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are bound, and continuum atomic states, where at least one electron is free.

The apparent simplicity of the Dirac notation of (2.20), where the atomic state is synthetically
represented by a state vector |Ψ〉 defined in an abstract Hilbert space, should not mislead.

Independent electrons approximation

Actually, the solution of (2.20) is possible only at the expenses of a number of approximations.
Its meaning is better grasped in the coordinate representation, where the state of the atom is
represented by a wavefunction.
If only Coulomb interactions are considered, the Hamiltonian of eq. 2.19 can be written explicitly
as

H0 =
∑
j

P 2
j

2m
−

N∑
i=1

Ze2

4πε0 rj
+

N∑
j=1

j−1∑
i=1

e2

4πε0 rji
, (2.21)

where N = Z for a neutral atom.
The second sum in (2.21) is the central potential energy due to the attractive interaction of the
electrons with the nucleus. The third sum is the non-central potential energy due to the repulsion
between each pair of electrons.
The solution of (2.20) is generally performed within the independent electrons approximation,
where each electron moves within an effective central potential which takes into account the at-
traction of the nucleus and the average effect of the mutual interactions between the electrons.
Within this approximation, the total wavefunction Ψ of the atom can be factorised as the product
of the independent spin-orbitals of the single electrons. This leads to the well known shell and
subshell electrons configurations: 1s2, 2s2, 2p6, 3s2, and so on.
To take into account the Pauli exclusion principle, each N-electron atomic eigenfunction Ψs is
represented, in the coordinate representation, as a Slater determinant, say an antisymmetric sum
of N ! products of N individual spin-orbitals. The effective potential energy and the single electron
spin-orbitals can be determined by variational methods, such as the Hartree-Fock-Slater one.
For more details, see Chapter 8 of [Leighton, 1959], Chapter 4 of [Alonso and Finn, 1969] or Chap-
ter 8 of [Bransden and Joachain, 2003].

Transitions between stationary states

The most general quantum state of the isolated atom is a linear combination of stationary eigen-
states,

|Φ(t)〉 =
∑
s

bs e
−iEst/h̄ |Ψs〉 (2.22)

where the time-dependence of each stationary state |Ψs〉 is the trivial one exp(−iEst/h̄).

In the following we will be mainly concerned with initial and final states corresponding to simple
stationary states,

|Φi(t)〉 = e−iEi/h̄|Ψi〉 ; |Φf (t)〉 = e−iEf/h̄ |Ψf 〉 . (2.23)

The interaction with the electromagnetic field induces a transition from an initial stationary state
to a final stationary state; as we will see, to describe the time dependence of |Φ(t)〉 one requires
that also the coefficients bs in (2.22) be time-dependent: bi(t) and bf (t).

Atomic energy levels and X-ray absorption edges

Within the effective central potential approximation considered above, the electrons belonging to
the same subshell (same principal and orbital quantum numbers, n and `, respectively) share the
same energy.
The central potential approximation cannot however completely account for the effect of electrons
repulsion. If the residual repulsive interaction, as well as other minor contributions to the potential
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energy, such as the spin-orbit interaction, are taken into account, the energy levels of the electrons
are shifted with respect to the values of the central potential approximation.

If the non-central contribution to the reciprocal electrostatic repulsion is considered, only the
atomic angular momentum ~L =

∑ ~̀
j and atomic spin momentum ~S =

∑
~sj are conserved, not

the momenta of single electrons. In addition, different reciprocal orientations of ~L and ~S give rise
to different values of the total atomic angular momentum ~J = ~L + ~S and different contribution
to the total atomic energy due to spin-orbit effects. That’s why the the spectroscopic terms that
label the atomic energy levels depend on the values of L, S and J .

For a completely filled subshell, one has L = 0, S = 0, J = 0, and the spectroscopic term is 1S0,
where the letter S corresponds to L = 0, the apex 1 indicates the singlet for S = 0 and the index
0 stays for J = 0.

An incompletely filled subshell (such as 2p4 or 3d6) can contribute in different ways to the total
atomic energy, according to the different possible values of L, S and J . These differences are
reflected in the corresponding spectroscopic terms.

These considerations are here relevant for understanding some peculiarities of the X-ray absorption
edges, such as the energy difference between the L2 and L3 edges. Let us consider the photo-
ionisation of different deep core electrons of a many-electron atom, induced by X-ray absorption.
In the initial atomic state the deep subshells (1s2, 2s2, 2p6, ...) are completely filled; to each
subshell it thus corresponds a term 1S0. In the final state one of the deep subshells is laking
one electron (1s1 or 2s1 or 2p5 ...) and the assignment of the corresponding term requires some
attention.

Let us focus on the most common situations, say the K and L edges (see also Chapter 4 of
[Alonso and Finn, 1969]).

a) K and L1 edges. For both edges, an electron is extracted from a completely filled ns2 shell
(where n=1 and n=2 for the K and L1 edges, respectively) corresponding to L=0, S=0, J=0,
say to a term 1S0.
After the X-ray absorption, the final state of the ionised shell, ns1, corresponds to L=0,
S=1/2, J=1/2, say to a term 2S1/2.

b) L2 and L3 edges. For both edges, the initial state of the completely filled shell 2p6 corre-
sponds to L=0, S=0, J=0, say to a term 1S0.
After the X-ray absorption, the final state of the ionised subshell 2p5 corresponds to two
possible alternatives, say L=1, S=1/2, J=1/2 (term 2P1/2) or L=1, S=1/2, J=3/2 (term
2P3/2). The two alternatives differ by the different value of the total momentum J = L+ S,
which in turn depends on the different relative orientations of L and S.
One can show that the configuration 2s5 corresponding to the term 2P1/2 has a lower energy
with respect to the same configuration corresponding to the term 2P3/2. As a consequence,
in the first case the photoelectron has an higher energy (L2 edge) than in the second case
(L3 edge). Besides, since for J=1/2 one has two possible projections MJ=±1/2, while for
J=3/2 one has four possible projections MJ=±3/2,±1/2, the intensity of the L2 edge is half
the intensity of the L3 edge.

2.2.3 The electromagnetic field

Radiation gauge

As already noticed and as will be clearer below, the most convenient quantum approach to the
interaction of radiation and matter requires that the electromagnetic field is described in terms of
the vector potential ~A within the framework of the radiation gauge (~∇· ~A = 0 and U = 0), so that

~E = −(∂ ~A/∂t) , ~B = ~∇× ~A . (2.24)

For details, see Appendix A and [Bransden and Joachain, 2003, Cohen-Tannoudji et al., 2004,
Chen and Kotlarchyk, 2007].
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Classical description of the electromagnetic field

Let us consider here the classical description of the electromagnetic field, which is sufficient for the
semi-classical approach to the matter-radiation interaction.
For the simplest case of a monochromatic plane wave, the vector potential at position ~r and time
t is given by

~A (~r, t) = A0 ε̂ cos(~k · ~r − ωt) (2.25)

= (A0/2) ε̂
[
ei(
~k·~r−ωt) + e−i(

~k·~r−ωt)
]
, (2.26)

where ~k is the wavevector, ω = kc is the (angular) frequency and ε̂ is the polarisation unit vector,

perpendicular to ~k. A0 is the amplitude of the oscillating wave (measured in Ns/C), whose square
is proportional to the energy flux (Sec. 2.1).

Note 1: The vector potential ~A(~r, t) can be expressed in an alternative form, which facilitates the
transition to the quantum description considered below (see §A.4):

~A (~r, t) = Aω ε̂
[
α ei

~k·~r + α∗ e−i
~k·~r
]

(2.27)

where Aω only depends on the frequency ω

Aω =

√
h̄

2ε0(2π)3ω
(2.28)

(the quantity h̄ is inserted to facilitate the transition to the quantum approach), and the
amplitude of oscillations is now taken into account by the normal coordinates

α = α0e
−iωt , α∗ = α∗0e

−iωt (2.29)

which incorporate the time dependence.

Note 2: The most general expression of the vector potential at position ~r and time t is given, ac-
cording to the Fourier analysis, as a superposition of plane waves (2.26) of different wavevectors
~k and polarisations ε̂. For more details, see Appendix A.

Quantum description of the electromagnetic field

A full quantum approach to the interaction of radiation with matter requires a quantum description
also for the the electromagnetic field.

The transition from the classical to the quantum description of the electromagnetic field can be
obtained according to the standard treatment of the harmonic oscillator in terms of annihilation
and creation operators [Cohen-Tannoudji et al., 1973].

For a monochromatic wave (2.26), the transition from the classical to the quantum approach
is obtained by substituting the classical normal variables α and α∗ (2.29) of (2.27) with the
annihilation and creation operators a and a† (see §A.5) [Cohen-Tannoudji et al., 2004]
Accordingly, the vector potential operator becomes a linear combination of creation and annihila-
tion operators. For a monochromatic plane wave,

~A (~r, t) = ε̂

√
h̄

2ε0(2π)3ω

[
a ei(

~k·~r) + a† e−i(
~k·~r)
]

(2.30)

From the creation and annihilation operators one obtains the number operator
[Cohen-Tannoudji et al., 1973]

n̂ = a†a . (2.31)
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The Hamiltonian operator for the electromagnetic wave can be expressed in terms of the number
operator, according to the well known expression for the harmonic oscillator

Hwave = h̄ω

[
a†a+

1

2

]
= h̄ω

[
n̂+

1

2

]
(2.32)

whose eigenvalues are

En = h̄ω

[
n+

1

2

]
. (2.33)

The stationary eigenstates of the Hamiltonian Hwave are

|n 〉 (2.34)

corresponding to a well defined number n of photons within the plane wave. A general quantum
state of the electromagnetic wave is a linear superposition of stationary eigenstates.

A stationary eigenstate of the system atom+wave is the product of the atomic state and the field
state:

|Ψat〉 |n 〉 (2.35)

The vector potential operator acts on the eigenstates of the monochromatic electromagnetic wave
according to the effects of the creation, annihilation and number operators, which are

a† |n〉 =
√
n+ 1 |n+ 1〉 (2.36)

a |n〉 =
√
n |n− 1〉 (2.37)

n̂ |n〉 = n |n〉 (2.38)

Note 3: Also in the quantum approach, as in the classical one, the most general expression of the
electromagnetic field is given, according to the Fourier analysis, by a superposition of plane
waves. For more details, see Appendix A.

2.2.4 The radiation-matter interaction

Let us now consider the effect of the interaction between the atom and the electromagnetic field,
which leads to the photo-absorption process.
Let us suppose that the atom is initially in its stationary ground state |Ψi〉 of energy Ei. When
interacting with the electromagnetic field, the atom can absorb an X-ray photon of energy h̄ω and
undergo a transition to one of the possible final stationary states |Ψf 〉 of energy Ef = Ei + h̄ω.
The photon energy h̄ω is used to promote one or more atomic electrons to unoccupied discrete
levels (excitation) or to the continuum of free states (ionization).
For the interpretation of EXAFS oscillations, we are interested in the process by which a single
core electron (typically belonging to the K or to an L shell) is ejected from the atom, so that the
final stationary state |Ψf 〉 is represented by the atom with a core hole (absence of an electron in a
core level) and a free photo-electron. Other possible processes leading to different final stationary
states |Ψf 〉 with the same energy Ef (e.g. when two or more electrons are excited by the same
photon) contribute to the damping of the EXAFS oscillations and have to be conveniently taken
into account (see Chapter 3).

In the semiclassical approach the quantum treatment is limited to the atom, and the process of
photo-absorption can be schematised as

|Ψi〉
h̄ω−→ |Ψf 〉 . (2.39)

In the full quantum treatment, also the electromagnetic field is quantised, and the process of
absorption of a single photon can be schematised as

|Ψi〉 |n〉 −→ |Ψf 〉 |n− 1〉 . (2.40)
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Time evolution of quantum states

A quantum system evolves in time according to the time-dependent Schrödinger equation

ih̄
∂

∂t
|Φ(t)〉 = H |Φ(t)〉 , (2.41)

where H is the Hamiltonian operator and |Φ(t)〉 is the quantum state (2.22) of the atom in the
semiclassical approximation or of the system atom+field in the full quantum approach.
Our next step is to introduce a convenient Hamiltonian operator H, suitable to describe the
interaction between the atom and the electromagnetic field.

The full Hamiltonian operator

When the atom is embedded in the electromagnetic field, the Hamiltonian operator of the isolated
atom (2.19) has to be modified. If the radiation gauge is used (~∇· ~A = 0, U = 0) and the relativistic
interaction of the electron spin with the magnetic field is neglected, the Hamiltonian becomes (see
Appendix A and [Cohen-Tannoudji et al., 2004])

H =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2}
+ V (~r1 . . . ~rN ) , (2.42)

where ~Pj is the generalised momentum of the j-th electron (which in the coordinate representation

becomes −ih̄~∇j), −e = q is the negative electric charge of the electron and ~A is the vector potential.

It is worth remembering that the generalised momentum ~Pj depends on the gauge choice of the
electromagnetic potentials and doesn’t correspond to the mechanical momentum; actually, the
mechanical momentum corresponds to the quantity in square brackets in (2.42), say m~vj = ~Pj+e ~A.

If the electron spin ~S is considered too, the total Hamiltonian becomes

Ĥ =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2
+

e

m
~Sj · ~B(~rj)

}
+ V (~r1 . . . ~rN ) , (2.43)

where ~B is the magnetic induction field. In the following, we neglect the interaction of the electron
spin with magnetic fields and the terms ~S · ~B are no more considered.

Note: In principle, a full Hamiltonian should contain also a term describing solely the electro-
magnetic field [Zangwill, 2012]. However, this term has no relevance for the interaction of
radiation with matter here considered and has been thus omitted.

Interaction hamiltonian

Once the square of the binomial term [~Pj + e ~A(~rj)]
2 in (2.42) has been expanded, the Hamiltonian

can be decomposed into the sum of two terms, the unperturbed hamiltonian H0, which has the
same expression as (2.19) for the isolated atom, and the interaction hamiltonian HI :

H = H0 +HI . (2.44)

The second term HI of (2.44) describes the interaction between the electromagnetic field and the
electrons and is the sum of two terms:

HI = HI1 +HI2 =
e

m

∑
j

~A(~rj , t) · ~Pj +
e2

2m

∑
j

A2(~rj , t) . (2.45)

The radiation gauge guarantees that, since ~P commutes with ~A, the commutativity of the classical
product ~P · ~A is preserved: in radiation gauge, ~P · ~A = ~A · ~P (for details, see Appendix A).

The two terms in (2.45) have different magnitudes and describe different phenomena:
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1. The first term HI1 is linear in ~A. It describes phenomena where one photon is annihilated
(absorption) or created (emission). One says that this term is ‘first-order in the interaction”,
since it involves the first power of the vector potential.

2. The second term HI2 is quadratic in ~A. It describes phenomena where two photons are
involved, e.g. scattering phenomena or two-photons absorption or emission. It is generally
weaker than the first term, and is said to be “second-order in the interaction”, since it involves
the second power of the vector potential. As a matter of fact, one experimentally finds that
for X-ray energies below 100 keV the cross section for scattering (two-photons process) is
much smaller than the cross section for absorption (see Fig. 1.1, right).

In the following, we consider only the first term HI1 of (2.45).

Semiclassical and full quantum approaches

The vector potential operator ~A appearing in the interaction Hamiltonian HI of (2.45) is expressed
by (2.26) in the semiclassical approach and by (2.30) in the full quantum approach, respectively.

In the semiclassical approach, the ~A operator (2.26) only acts on the atomic state vector |Φ〉.
In the full quantum approach, the ~A operator (2.30) acts on the product state |Φ〉 |n〉. The vector

potential ~A acts on the field state |n〉 through the creation and destruction operators, a and a†,
respectively. For the absorption processes here considered, only the term containing the destruction
operator a† has to be retained, which leads to the transition |n〉 → |n− 1〉.
In the following, we only consider the semiclassical approach of the atom-radiation interaction.

2.2.5 Transition rates

In principle, the time-dependent Schrödinger equation (2.41) can describe the time evolution of
a quantum system. However, its solution is in general a prohibitive task, and this is particularly
true in the present case of interaction of an atom with the electromagnetic radiation. In the semi-
classical approach, the many-electron atomic state |Φ(t)〉 is a time-dependent linear combination
of stationary states |Ψs〉 and the electromagnetic field can in principle affect the state of each
electron.

Actually, in order to interpret the atomic absorption cross section σa(h̄ω) introduced in (2.12), we
don’t need to know the very details of the time evolution of the atomic state Φ(t)〉. It is sufficient
to evaluate the probabilites that, as effect of the interaction with the electromagnetic field, the
atom evolves from the initial stationary ground state |Ψi〉 to well defined final stationary states
|Ψf 〉.
The probability of the transition i→ f per unit time is called transition rate wfi.

The atomic absorption cross section σa(h̄ω) is equal to the sum of the transition rates wfi from the
initial stationary ground state |Ψi〉 to each one of the possible final stationary states |Ψf 〉, divided
by the beam flux (2.11):

σa(ω) =
2h̄

ε0ωA2
0c

∑
f
wfi . (2.46)

Even the evaluation of the transition rates wfi is however far from trivial, and has to be performed
through a sequence of suitable approximations, which form the subject of the two subsequent
sections.

2.3 Time-dependent perturbation theory

The first approximation for the calculation of the transition rates wfi is based on the time-
dependent perturbation theory.
It is assumed that the interaction of a given photon with the atom is limited to a finite time
interval, so that the interaction is switched on at a time ti and switched off at a time tf . The
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Hamiltonian H(t) is thus time-dependent. A further time dependence of the Hamiltonian is due

to the oscillatory behaviour of the electromagnetic field, described by the vector potential ~A(t)
according to (2.26).

Excellent introductions to the time-dependent perturbation theory and to its applications to
different topics (scattering from a constant potential, matter-radiation interaction, etc.) can
be found in a number of Quantum Mechanics textbooks, e.g. [Cohen-Tannoudji et al., 1973,
Merzbacher, 1970]. A review can be found also in Appendix B of the present book. In the
following, we give a synthetic account, focused on the semiclassical approach.

Transition probabilities

Basically, in order to account for the interaction of the atom with the electromagnetic field during
the time interval ti → tf , the constant coefficients bs, which appear in the expression (2.22) of the
atomic state |Φ(t)〉 as a linear combination of stationary states |ψs〉, have to be substituted by
time-dependent coefficients bs(t):

|Φ(t)〉 =
∑
s

bs(t) e
−iEst/h̄ |Ψs〉 . (2.47)

The probability of finding the atom in a given stationary state |Ψs〉 at time t is thus
|bs(t) exp(−iEst/h̄)|2 = |bs(t)|2. The time dependence of the probability |bs(t)|2 guarantees the
possibility of modifying the linear combination of stationary states (2.47) and in particular the
possibility of a transition from an initial stationary state |Ψi〉 to a final stationary state |Ψf 〉.
When the atom is in the initial stationary state |Ψi〉, the coefficients b are bi(ti) = 1 and bf (ti) = 0.
When the atom is in the final stationary state |Ψf 〉, the coefficients b are bi(tf ) = 0 and bf (tf ) = 1.

In order to evaluate a transition rate wfi we should first be able to evaluate the time-dependent
probability Pfi(t) = |cfi(t)|2 of transition from an initial stationary state |Ψi〉 to a final stationary
state |Ψf 〉; the quantity cfi(t) is the transition amplitude.
In the perturbative approach, the probability of transition Pfi(t) is expressed as a sum of contri-
butions of increasing degree of approximation and of decreasing importance.

For the X-ray absorption processes here considered, the interaction is sufficiently weak that the
perturbative expansion can be limited to the first order term. One finds (see Appendix B for
details) that the general expression of the transition probability Pfi(t) limited to the first-order
term is

P(1)
fi (t) = |c(1)

fi (t)|2 =
1

h̄2

∣∣∣∣∫ tf

ti

dt eiEf t/h̄ 〈Ψf |Hint |Ψi〉 e−iEit/h̄
∣∣∣∣2

=
1

h̄2

∣∣∣∣∫ tf

ti

dt 〈Ψf |Hint |Ψi〉 eiωfit
∣∣∣∣2 (2.48)

where the interaction Hamiltonian Hint has to be here identified with the time-dependent first term
HI1(~r, t) of (2.45), ωfi = (Ef − Ei)/h̄ is the Bohr frequency connecting the two atomic energy
levels, and the integral is evaluated between the initial and final times of the interaction. For an
absorption process, where Ef > Ei, the Bohr frequency is positive, ωfi = (Ef − Ei)/h̄ > 0.

Let us now insert the explicit expression of the vector potential

~A(~r, t) = A0ε̂ sin(ωt− ~k · ~r) =
1

2i
A0 ε̂

[
eiωte−i

~k·~r + e−iωtei
~k·~r
]
, (2.49)

in the interaction Hamiltonian HI1 of (2.45). One can show (see Appendix B for details) that, for
the absorption process, the transition probability to first order in the perturbative expansion is

Pfi(T, ω) =
|Wfi|2

4h̄2

∣∣∣∣1− ei(ωfi−ω)T

ωfi − ω

∣∣∣∣2 =
|Wfi|2

4h̄2

{
sin[(ωfi − ω)T ]/2

(ωfi − ω)/2

}2

, (2.50)
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Figure 2.3: Plot of the absorption probability Pif (T, ω) as a function of the electromagnetic field
frequency ω for a given interaction time T . ωfi = (Ef − Ei)/h̄ is the Bohr frequency connecting
the final and initial atomic energy levels.

where T = tf − ti is the time duration of the interaction, ω is the radiation frequency and

Wfi =
eA0

m

〈
Ψf

∣∣∣∑
j
ei
~k·~r ε̂ · ~Pj

∣∣∣Ψi

〉
. (2.51)

The first-order probability Pfi(T, ω) of (2.50) thus depends on two factors:

a) the time-independent matrix element Wfi which only depends on the spatial dependence of

the vector potential ~A,

b) a time-dependent factor (in curly brackets in 2.50), which depends on the frequency ω of the
perturbation, on the Bohr frequency ωfi and on the duration T of the interaction.

Resonance condition

The time-dependent factor in curly brackets in (2.50) is a typical diffraction function.
The behavior of the transition probability (2.50) is represented in Fig. 2.3 as a function of the
electromagnetic field frequency ω for a given value of the interaction time T .
The main properties of the transition probability Pfi(t, ω) represented in Fig. 2.3 are:

a) The function has a peak centred on ω = ωfi (resonance condition), say for h̄ω = Ef − Ei
(energy conservation), and progressively weaker oscillations when the difference between ω
and ωfi increases.

b) The peak width is inversely proportional to the interaction time, ∆ω = 2π/T ; the violation
of the energy conservation, leading to finite probability for ω 6= ωfi, is possible for short
times, according to the time-energy uncertainty principle, ∆E∆T ≥ h̄. For T → ∞, the
peak width tends to zero: energy is conserved.

c) The peak height is proportional to the square of the time T . The transition probability
Pfi(T, ω) = (|Wfi|2/2h̄2)T 2 increases indefinitely with the square of the interaction time,
so that the transition probability per unit time wfi = dPfi/dt linearly increases with the
interaction time.

To summarise, when the interaction time T increases, the peak of the absorption probability
progressively narrows around the value ω = ωfi, and its value Pfi(T, ωfi) = (|Wfi|2/2h̄2)T 2

increases with the square of time T .
This means that, for sharply defined discrete initial and final atomic states and for a purely
monochromatic radiation, the transition rate wfi = dPfi/dT is proprtional to T , say it increases
indefinitely with time. This un-physical result depends on the inadequacy of the first-order approxi-
mation when long interaction times are considered. Taking into account higher order perturbation
terms, or using other kinds of approximation, one can show that the system oscillates in time
between the initial and final states [Cohen-Tannoudji et al., 1973].
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Actually, in the realistic cases here considered, we are concerned nor with sharply defined final
states nor with perfectly monochromatic radiation, so that the expression (2.50) for the transition
probability has to be conveniently modified, as we see in the following.

The Golden Rule

In EXAFS spectroscopy, we are concerned with the transition from an initial atomic discrete
stationary state |Ψi〉 to a final stationary state |Ψf 〉 belonging to a continuous distribution of
energy values, since the energy of the free photo-electron is not quantised. The discrete value ωfi
of Eq. (2.50) and Fig. 2.3 becomes now a continuous distribution of values.
Since the final state of energy Ef = h̄ωf belongs to a continuum, we can only evaluate the
probability that after the interaction time T the system is in a final state whose energy belongs to
an interval ∆Ef centered on Ef , so that (2.50) becomes

δPfi(T,Ef ) =
1

4h̄2

∫
∆Ef

|W̃fi(E)|2 ρ(E)

{
sin[(ω̃ − ω)T ]/2

(ω̃ − ω)/2

}2

dE , (2.52)

where ρ(E) is the density of final states, ω̃ = (E − Ei)/h̄ and

W̃fi(E) =
eA0

m

〈
Ψf (E)

∣∣∣∑
j
ei
~k·~r ε̂ · ~Pj

∣∣∣Ψi

〉
. (2.53)

Exploiting the properties of the delta function, the resonant factor in curly brackets can be trans-
formed {

sin[(ω̃ − ω)T ]/2

(ω̃ − ω)/2

}2

−−−−→
T→∞

2πT δ(ω̃ − ω) = 2πT δ(E − Ei − h̄ω) , (2.54)

so that, after calculating the integral, one finds finally

δPfi(T,Ef ) =
π

2h̄
T |Wfi|2 ρ(Ef ) , (2.55)

where Ef = Ei + h̄ω. The probability (2.55) increases proportionally to the time T .
The transition rate is now independent of time

wfi =
d

dT
δPfi =

π

2h̄
|Wfi|2 ρ(Ef ) (2.56)

where ρ(Ef ) is the density of final states in correspondence with the energy value E = Ef .
Equation (2.56) was called Golden rule by Enrico Fermi, in view of its widespread applications.

In the case of interest here, say of the photo-electric absorption, the Golden rule (2.56) becomes

wfi =
πe2A2

0

2h̄m2

∣∣∣ 〈Ψf |
∑

j
ei
~k·~rj ε̂ · ~Pj |Ψi 〉

∣∣∣2 ρ(Ef ) . (2.57)

The Golden Rule allows one to reduce a complicated process of time-dependent dynamical inter-
action to the calculation of a matrix element between the two initial and final stationary states
of the atom. One can notice that, in the expression of the interaction Hamiltonian in (2.57), the
time dependence of the vector potential has disappeared.

Note 1: As already noted, the initial and final stationary states |Ψi〉 and |Ψf 〉 of the atom are
generally approximated by Slater determinants of one-electron spin-orbitals, calculated with
different one-electron self-consistent potentials.

Note 2: The Golden rule is an approximate expression, valid for relatively weak interaction. Actu-
ally, the linear dependence on time of the probability (2.55) implies that, for sufficiently long
time, the probability becomes un-realistically larger than one. The weaker the interaction,
the longer the time necessary to attain large probability values. For a strong interaction, it
would be necessary to add higher-order terms to the perturbation expansion.

Note 3: The derivation of the Golden rule presented above is based on the consideration of transi-
tions to electronic continuum states. Actually, even the excited discrete states are not sharply
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defined in energy; nor is the incoming radiation strictly monochromatic. In all cases thus a
density of states ρ(E) should be considered, leading to a large validity of the Golden rule.

In spite of the strong simplification of the perturbative approach, the calculation of the matrix
element in (2.57) is still very complicated, since the absorption process involves in principle all the
electrons within the atom (many-body problem). Further approximations are considered in the
next Section 2.4.

In addition, as it was anticipated in Chapter 1, for a non-isolated atom the final states |Ψf 〉 are
influenced by the atomic environment; understanding and quantitatively expressing this influence
is necessary in order to get structural information from EXAFS. This problem is considered in
detail in Chapter 3.
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Figure 2.4: Left: Photo-ionisation cross sections for Cu calculated by Yeh [Yeh, 1993]; the black
line is the total cross section; the contributions of the different initial levels are in colour (the
calculations don’t include the 1s level, K edge at 8979 eV). Right: Mass absorption coefficient
of Nd; the dashed area represents the contribution due to the absorption of photons of energy
sufficient to extract the 1s electrons. Notice the logarithmic scales in both plots.

2.4 Further approximations

The total absorption cross section σa (2.46), which is obtained from experimental measurements,
is the sum of the contributions of transitions from the atomic ground state |Ψi〉 to all possible
stationary final states |Ψf 〉 compatible with the conservation of energy.

The final goal of this book is the interpretation of the fine structure at a given absorption edge,
for example the K edge, which corresponds to the extraction of an electron from the 1s2 shell (see
Fig. 1.4, right, or Fig. 1.5).

We can thus perform a first sorting of the final states |Ψf 〉 by considering only the final states
presenting a core hole in the electronic shell from which the photoelectron is extracted, say the
final states pertaining to the corresponding absorption edge (§ 1.2, table 1.1).

A comparison of the contributions of the final states corresponding to different absorption edges
to the total absorption cross section of copper, calculated for photon energies in the range from 0
to 1500 eV, is shown in Fig. 2.4, left.

Experimentally, one measures the total absorption coefficient, say the total absorption cross section.
The contribution of a given absorption edge, e.g. the K edge, to the total absorption coefficient
(dashed area in Fig. 2.4, right) can be singled out through a relatively simple procedure which will
be explained in § 6.1 as the first step of the analysis of EXAFS signals.
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Even if we confine ourselves to the contribution of a given absorption edge, say to the emission of
the photo-electron from a given atomic level, different final states |Ψf 〉 are still possible. Actually,
the energy h̄ω of the absorbed photon can be all transferred to one electron, e.g. a 1s electron,
giving rise to the final state of interest for the EXAFS interpretation, but it can also be partly
employed for the excitation or ionisation of the other electrons, giving rise to other final states.

Let us now introduce some further approximations, which facilitate the interpretation of the EX-
AFS signal.

2.4.1 One electron approximation

As it was anticipated in Chapter 1, the EXAFS oscillations are due to the coherent superposition
of the outgoing and incoming spherical waves of one photo-electron.
The experimental absorption coefficient corresponding to a given absorption edge contains the
contributions of the transitions to different final states, say the contributions of different excitation
channels. For a given photon energy h̄ω, the different excitation channels are characterised by the
emission of photoelectrons with different energies.
We need thus distinguish the excitation channel that gives rise to the intense coherent EXAFS
signal experimentally observable from all the other channels, whose contributions to EXAFS are
incoherent (Fig. 2.5).

Figure 2.5: Schematic representation of an elastic transition (left panel) and of two possible inelastic
transitions (right panel).

Elastic and inelastic transitions

The excitation channel giving rise to an intense coherent EXAFS signal corresponds to the so
called elastic (or fully relaxed) transitions [Brown and Doniach, 1980], where

a) one core electron is ejected from the atom as a photo-electron; as a consequence, a hole is left
in the corresponding core shell (the so called core hole); for example an electron is ejected
from the 1s2 shell, leaving an incomplete shell 1s1;

b) the remaining N −1 passive electrons of the atom simply relax their orbitals around the core
hole, say in the potential energy modified by the absence of a 1s electron.

In the other excitation channels, called inelastic channels, the relaxation of the N − 1 passive
electrons is accompanied by their excitation (in competition with the core electron excitation); one
distinguishes two kind of excitation processes of the passive electrons:

- shake-up processes in the case of bound excited states,

- shake-off processes in the case of continuum excited states.

In the inelastic channels, the X-ray photon energy is distributed over all the excited electrons in
different possible ways, so that the photoelectron has a distribution of different energies. The
possible EXAFS signals of photo-electrons of different energies sum up incoherently and give rise
to a damping of the experimentally observed oscillations. We will consider in Chapter 3 how to
cope with this problem in the interpretation of the EXAFS signal.
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By taking into account the distinction between elastic and inelastic channels, the total atomic
absorption cross section corresponding to a given edge can be decomposed as

σa(ω) = σel(ω) + σinel(ω) , (2.58)

or, in terms of transition rates, ∑
f
wfi = wel +

∑
winel , (2.59)

Elastic cross section

Let us focus our attention on the elastic channel, which gives rise to coherent EXAFS oscillations.
The atomic cross section for elastic absorption can be expressed, from (2.46) and (2.57), as

σel(ω) =
2h̄

ε0ωA2
0c

wel =
πe2

ε0ωcm2

∣∣∣ 〈ΨN−1
f,r ψf | ei

~k·~r ε̂ · ~P |ΨN−1
i ψi 〉

∣∣∣2 ρ(εf ) . (2.60)

In is important to stress the following points regarding the interpretation of (2.60):

a) the interaction Hamiltonian HI1 of (2.45) is considered to operate now only on the core

electron (one-electron approximation), of which ~r and ~P are the vector position and the
generalised momentum, respectively;

b) in the expression |ΨN−1
i ψi 〉 of the initial stationary atomic state, the contribution ψi of the

core electron, on which the interaction Hamiltonian acts, has been formally separated from
the contribution ΨN−1

i of the other (passive) electrons;

c) in the expression |ΨN−1
f,r ψf 〉 of the final state, the contribution ψf of the photo-electron has

been formally separated from the contribution ΨN−1
f,r of the passive electrons relaxed around

the core hole;

d) the photo-electron energy εf belongs to a continuum of values; according to the Golden rule,
ρ(εf ) represents the density of final states in correspondence of the value εf ;

e) the conservation of energy requires that

ENi + h̄ω = EN−1
f,r + εf , (2.61)

where ENi is the total energy of the atom in the initial stationary state, h̄ω is the photon
energy, EN−1

f,r is the total energy of the system of N − 1 passive electrons relaxed around the
core hole in the final stationary state and εf is the photo-electron energy.

Note: In principle, both atomic states |ΨN−1
i ψi 〉 and |ΨN−1

f,r ψf | have to be globally considered, say
they cannot be factorised as the product of the core electron state and the passive electron
state. This is due to the fact that the photo-electron can interact with the passive electrons.
In the coordinate representation, this amounts to say that the initial and final wave functions
cannot be factorised as the product of the core electron wave-functions and the passive elec-
trons wave-functions.
This factorisation is made possible by a further approximation, the sudden approximation,
that is considered below.

2.4.2 Sudden approximation

When the photo-electron energy is relatively high, its interaction with the passive electrons of the
absorbing atoms can be neglected (sudden approximation). Within the sudden approximation, the
atomic wave-functions can be factorised in the contributions ψi and ψf of the active electron and
ΨN−1
i and ΨN−1

f,r of the passive electrons [Stern, 1988], so that the elastic cross section can be
written as:

σel(ω) =
πe2

ε0ωcm2

∣∣∣ 〈ψf | ei~k·~r ε̂ · ~P |ψi 〉 ∣∣∣2 S2
0 ρ(εf ) (2.62)



2. Photoelectric absorption of X-rays 31

where the factor

S2
0 =

∣∣∣ 〈ΨN−1
f,r |Ψ

N−1
i 〉

∣∣∣2 (2.63)

is the square of the superposition integral of the passive electrons wavefunctions. The value of S2
0

is generally included between 0.7 and 0.9.

The sudden approximation is generally good already a few eV above the edge, typically in the
EXAFS region. It is then possible to calculate EXAFS by considering only the final state of the
photo-electron.

It is the one-electron final state |ψf 〉 that contains the information on the local structure around
the absorbing atom.

In virtue of a sum rule for the photo-electric absorption, the total absorption cross section σa(ω)
of Eq. (2.58) corresponds to the one-electron elastic absorption cross section of Eq. (2.62) in the
hypothesis that passive electrons undergo no relaxation, i.e. S2

0 = 1. The actual value of the
superposition integral S2

0 < 1 measures then the fraction of total absorption due to the elastic
transitions.

Note: |ψi〉 and |ψf 〉 are eigenstates of the effective one-electron initial and final state Hamiltonians,
respectively; they are thus calculated with different self-consistent potentials [Rehr & Albers].

2.4.3 Electric dipole approximation

Let us now focus the attention on the interaction Hamiltonian of (2.62). The exponential exp(i~k·~r),
which describes the spatial sinusoidal behaviour of the electromagnetic wave, can be expanded in
a power series of i~k · ~r

ei
~k·~r = 1 + i~k · ~r − (~k · ~r)2/2 ... (2.64)

The calculation of σel(ω) is greatly simplified when the expansion (2.64) can be reasonably trun-
cated at the first term:

ei
~k·~r ' 1 . (2.65)

The substitution (2.65) represents the electric dipole approximation, which amounts to neglect the
spatial dependence of the vector potential. (The reason of the name “electric dipole” is made clear
below).

The electric dipole approximation is reasonable when |~k · ~rj |2 � 1 [Stern, 1988], say when the
wavelength of the electromagnetic field λ = 2π/k is much larger than the size of the interacting
material system, so that the system sees a substantially uniform field.

Actually, the X-ray wavelengths are typically comparable with the atomic dimensions. However,
in the one-electron approximation, the electromagnetic field interacts only with a core electron,
whose orbital extension can be significantly smaller than the X-ray wavelength.

To give some quantitative hints, the radii of the 1s, 2s, 2p orbitals are shown in Fig. 2.66, left, while
in the right panel the products kr and (kr)2 are shown for the K edge X-rays.

In the electric dipole approximation, the expression of the elastic cross section (2.62) is simplified
into

σel(ω) =
πe2

ε0ωcm2

∣∣∣ 〈ψf | ε̂ · ~P |ψi 〉 ∣∣∣2 S2
0 ρ(εf ) (2.66)

In (2.66), the dipole operator appears in the so-called dipole-velocity form (or momentum form)

ε̂ · ~P . In the coordinate representation, (2.66) becomes

σel(ω) =
πe2h̄2

ε0ωcm2

∣∣∣∣ ∫ d3r ψ∗f (~r) ε̂ · ~∇ψi(~r)
∣∣∣∣2 S2

0 ρ(εf ) (2.67)
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Alternative expressions of the dipole operator

It is convenient to express the dipole operator in an alternative form with respect to (2.66). In the
alternative form the dipole operator is expressed in terms of the position operator of the electron
~r instead of the momentum operator ~P .
Starting point is the commutator relation

[~r,H0] =
ih̄

m
~P , (2.68)

where H0 is the unperturbed Hamiltonian of the atom. A demonstration of this relation can be
found in Section B.5 of Appendix B.
Exploiting the commutation relation, one can perform the following substitutions:

〈ψf | ~P |ψi〉 =
m

ih̄
〈ψf |~rH0 −H0~r |ψi〉

= im
Ef − Ei

h̄
〈ψf |~r |ψi〉

= imω 〈ψf |~r |ψi〉 , (2.69)

where ω is the Bohr angular frequency connecting the initial and final electron states, corresponding
to the angular frequency of the absorbed photon. In (2.69), the dipole operator appears in the
so-called dipole-length form (or position form).
Substituting the matrix element of (2.69) in (2.66), one obtains the alternative expression of the
absorption cross section

σel(ω) =
πe2ω

ε0c
| 〈ψf | ε̂ · ~r |ψi 〉 |2 S2

0 ρ(εf ) . (2.70)

In the coordinate representation, (B.87) becomes

σel(ω) =
πe2ω

ε0c

∣∣∣∣ ∫ d3r ψ∗f (~r) ε̂ · ~r ψi(~r)
∣∣∣∣2 S2

0 ρ(εf ) (2.71)

The presence of the product e~r is at the origin of the name “electric dipole” for the approximation.

Validity of the dipole approximation

The electric dipole approximation is reasonable when ~k ·~r � 1, say when kr � 1 or λ� 2πr. [But

according to Stern (~k · ~r)2 � 1 [Stern, 1988]. Verify !!]
The size of the 1s orbitals depends on the atomic number Z; the dependence calculated by the
Hartree-Fock approximation is shown in Fig. 2.6 (left) for the 1s, 2s, 2p orbitals. For the 1s orbitals,
r ' a0/Z, where a0 = 0.53 Å (Bohr radius).
The K-edge X-ray energy (in keV) depends on Z approximately as E ' 1.98− 0.219Z + 0.015Z2,
and kr ' 0.5Er.
The approximate dependence of kr and (kr)2 onZ shown in Fig. 2.6 (right).
Quadrupole corrections are of the order (Zα)2, where α ' 1/137 [Rehr & Albers].

Selection rules

Within the dipole approximation, the angular momentum selection rules hold:

∆` = ±1, ∆s = 0, ∆j = ±1, 0, ∆m = 0. (2.72)

For one-electron transitions, the selection rule ∆l = ±1 implies that:

a) if the initial core state has s symmetry (`=0, edges K and L1), the final state has p symmetry
(`=1);

b) if the initial core state has p symmetry, (`=1, edges L2 and L3), the final state can be of
both s or d symmetry (`=0 or `=2, respectively).
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Figure 2.6: Left: radii of the maximum charge density for the 1s, 2s, 2p orbitals calculated by the
Hartree-Fock approximation as a function of Z. Right: dependence of kR = λR/2π and (kR)2 on
Z for X-rays corresponding to K edges.

2.4.4 EXAFS and density of final states

In most SRO theories of EXAFS, the density of final states ρ(εf ) is assumed to be that of a free
electron of energy h̄2k2/2m = εf − ε0. The value ε0 is the effective average potential energy felt
by an excited electron, and is also called “inner potential”.
The justification for assuming a free electron density of states is that above in the EXAFS re-
gion (above about 30 eV) the band effects on the density of states are negligible (Stern 1974
[Stern, 1974]).

2.4.5 Direction of emission of photoelectrons

A give photoelectron energy εf corresponds to a continuum of possible directions of the linear
momentum. The emission of the photoelectron is however not isotropic; there is a well defined
correlation between the direction of photoelectron emission and the direction of the electric field
polarisation ε̂.
Let θ be the angle between the direction of emission and the polarisation ε̂ of the electric field.
The emission is connected to the angle θ by the relation

N(θ) ∝ 1 +
β

2
(3 cos2 θ − 1) , (2.73)

where β is an asymmetry parameter that depends on the orbital from which the electron is emitted
(Fig. 2.7). The asymmetry parameter β is determined by the relative amplitudes of the up (` →
`+ 1) and down (`→ `− 1) channels in the matrix element.
For the emission from 1s levels (K edges) the asymmetry parameter is constant, β = 2.

2.5 De-excitation of an atom

An atom, excited or ionized by absorption of an X-ray photon, contains a core hole. This configu-
ration, in spite of corresponding to a stationary state of the unperturbed Hamiltonian, is unstable,
and the atom spontaneously tends to relax, filling the core hole with an electron from an upper
level and thereby reducing its energy.

2.5.1 De-ecxitation mechanisms

Two types of de-excitation mechanisms are possible (Fig. 2.8):

1. radiative de-excitation (with emission of fluorescence radiation),

2. non-radiative de-excitation (with emission of Auger effect electrons).
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Figure 2.8: An atom excited by absorption of an X-ray (central panel) can be de-excited by two
mechanisms: fluorescence (left panel) or Auger (right panel).
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Radiative de-excitation: characteristic lines

The core-hole is filled by an electron coming from an upper level. In the radiative de-excitation,
the energy made available by this process is emitted as an X-ray photon (fluorescence photon).
The energy of a fluorescence photon is the difference of the energies of the two levels involved in the
electronic transition. Since the energy levels are characteristic of each atomic species, fluorescence
X-rays are emitted at well defined energies, which univocally identify the atomic species. They are
called characteristic emission lines.

Non-radiative de-excitation: Auger electrons

The core-hole is again filled by an electron coming from an upper level. In non-radiative de-
excitation, the energy made available by this process is used to expel an electron from an upper
level of the atom. It is a two electrons process. The emitted electron is called Auger electron. Also
Auger electrons have well defined energies, which univocally identify the atomic species.

Non radiative de-excitation transitions arise from the electrostatic interaction between two elec-
trons in an atom initially singly ionised in a core shell.

One can further distinguish the non-radiative effects:

- if the filling electron comes from an upper shell (as is always the case for a core hole of the
K shell) one properly speaks of Auger effect

- if the filling electron comes from an upper sub-shell of the same shell of the core hole, one
speaks of Coster-Kronig effect

Fluorescence yield

The two de-excitation mechanisms (radiative and non-radiative) are in competition. Their relative
influence is measured by the fluorescence yield

ηs = Xs/(Xs +As) (2.74)

where s labels a given absorption edge (K, L1, ...), Xs and As are the emission probabilities of a flu-
orescence photon and an Auger electron, respectively. The fluorescence yield depends on the atomic
number (Fig. 2.9, left). The probability of Auger electron production increases when the differ-
ence between the energy of the levels decreases, say when Z decreases [de Groot and Kotani, 2008],
according to the approximate law (§8.3 of [Chen and Kotlarchyk, 1997])

ηs =
1

1 + αZ−4
, (2.75)

where
α ' 1.12× 106 for the K-shell fluorescent yield
α ' 6.4× 107 for the averageL-shells fluorescent yield.
A review of calculations and measurements can be found in [Bambynek et al., 1972].

2.5.2 Core-hole lifetime

The total de-excitation probability per unit time determines the core-hole lifetime. The deeper the
core hole and the larger the atomic number Z, the larger is the number of upper levels from which
an electron can drop to fill the core hole and consequently the shorter is the core-hole lifetime τh.
Typical values of τh for X-ray excitations are 10−15÷10−16 seconds.
The core-hole lifetime τh represents an upper limit to the time allowed to the photo-electron for
probing the local structure surrounding the absorber atom.
Because of the time-energy uncertainty relation, the core-hole lifetime is associated with an energy
width of the excited state Γh ' h̄/τh. The width Γh contributes to the resolution of x-ray absorption
experimental spectra. For a given edge, the larger the atomic number Z, the lower is the lifetime
τh and the larger the energy width Γh (Fig. 2.9, right).
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Figure 2.9: Average fluorescence yield η (Eq. 2.74) for the K, L and M edges (left) and width Γh
of the K and L3 excited states (right) as a function of the atomic number Z.

2.5.3 Photo-absorption measurement

The intensity of the fluorescence and of the Auger emission are strictly connected (even if gener-
ally not proportional) to the absorption coefficient: the stronger the absorption, the stronger the
fluorescence and Auger emissions.
The measurement of the fluorescence or Auger intensities as a function of the energy of the X-ray
beam impinging on the sample can be used to evaluate the absorption coefficient, alternatively to
the direct measurement of the attenuated beam past the sample.



Chapter 3

Origin of EXAFS

In Section 2.4 of Chapter 2, we have seen that, within a set of reasonable approximation (one-
electron, electric dipole, sudden), the absorption cross section in the EXAFS energy region can be
expressed as

σel(ω) =
πe2ω

ε0c
| 〈ψf | η̂ · ~r |ψi 〉 |2 S2

0 ρ(εf ) . (3.1)

In the EXAFS region, the density of final states ρ(εf ) varies slowly and monotonously. EXAFS
oscillations are thus described by the matrix element |〈ψf |η̂ · ~r|ψi〉|2. The structural information
is contained in the one-electron final state |ψf 〉.
In the following, we want to find the relation between local structure and EXAFS oscillations. For
concreteness, we consider the contribution of a K edge to the absorption coefficient.

We start by supposing that S2
0 = 1, say that intrinsic inelastic transitions are negligible; their

contribution will be taken into account later on.

3.1 The atomic absorption coefficient

For an isolated atom, the final state |ψ0
f 〉 is represented by a photoelectron which moves away from

the atom as an outgoing wave, and eq. (3.1) becomes

σ0(ω) ∝
∣∣ 〈ψ0

f | η̂ · ~r |ψi 〉
∣∣2 . (3.2)

The correspnding atomic absorption coefficient is

µ0 = nσ0 ∝
∣∣ 〈ψ0

f | η̂ · ~r |ψi 〉
∣∣2 , (3.3)

where n is the atomic number density (number of atoms per unit volume).

In the energy region between two consecutive absorption edges, the atomic absorption coefficient
decreases monotonically as a function of the photon energy h̄ω (Fig. 3.1); this trend is generally
expressed as a function of the photon wavelength λ by the Victoreen empirical law

µ0/ρ = C λ3 − Dλ4 , (3.4)

where C and D are two constants.

Values of the mass attenuation coefficients µ0/ρ for elements and selected compounds are
available in the web site of NIST [NIST, 2004]. Efforts to improve the experimental accu-
racy of mass attenuation coefficients are made by several researchers [Chantler et al., 2001,
Padežnik Gomiľsek et al., 2011, Chantler et al., 2012]. A tutorial calculation of the attenuation
coefficient of hydrogen can be found in Section 7.1 of [Als-Nielsen and McMorrow, 2011].

37
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Figure 3.1: The outgoing photo-electron (left) and the atomic absorption coefficient of an isolated
atom (right).

3.1.1 The photo-electron wave-number

The dynamical properties of the photo-electron are characterised the wavelength λ or by the
wave-number k = 2π/λ (don’t confuse with the analogous quantities of X-ray photons). The
photoelectron wave-number k is connected to the photo-electron energy εf and to the photon
energy h̄ω by

k =

√
(2m/h̄2) εf =

√
(2m/h̄2) (h̄ω − Eb) (3.5)

where Eb is the core electron binding energy.
Numerically, if k is measured in Å−1 and ε in eV,

k = 0.51233
√
ε .

The energy εf = h̄ω − Eb and the corresponding wave-number k refer to a photo-electron that is
completely free, say at a relatively large distance from the initial core orbital.
Photo-electron wave-number k (left) and wavelength λ (right) are shown in Fig. 3.2 as a function of
the photo-electron energy εf . Note the little variation of λ for energies εf larger than 200-300 eV.
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Figure 3.2: Photo-electron wave-number k (left) and wavelength λ (right) as a function of the
photo-electron energy εf = h̄ω − Eb.

3.1.2 The free electron propagator

The photo-electron state is characterized by its angular momentum. It is convenient to consider
the photo-electron as a free electron, and taking into account the interaction with the emitting
atom by a suitable k-dependent phaseshift.
In polar coordinates, the Schrödinger equation for the free electron leads to (§6 of Appendix B of
[Messiah, 1970]) [

1

ρ

d2

dρ2
+ 1− `(`+ 1)

ρ2

]
f` = 0,
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where ρ = kr. The spherical Bessel functions j` are special solutions of this equation.

The free electron propagators are the Hankel functions of the first kind h
(+)
` , linear combinations

of the outgoing spherical Bessel functions. Explicit general form:

h
(+)
` =

eiρ

ρ

∑̀
s=0

is−`

2ss!

(`+ s)!

`− s)!
ρ−s

In particular:

h
(+)
0 =

eiρ

ρ
, h

(+)
1 =

eiρ

ρ

[
1

ρ
+

1

ρ2

]
=
eiρ

ρ2

[
1 +

1

ρ

]
.

For a photoelectron ejected from a K shell, ` = 1 and the free photoelectron wavefunction is h
(+)
1

[Stern, 1974, Müller and Schaich, 1983].

For ρ = kr � ` (typically in the EXAFS region), the propagator h
(+)
1 reduces to

[Müller and Schaich, 1983]

h
(+)
1 =

eiρ

ρ2
. (3.6)

3.2 Non-isolated atom: origin of EXAFS

If the absorber atom is non-isolated (molecular gases, condensed systems) the photo-electron can
interact with the surrounding atoms and undergo scattering (Fig. 3.3). In the EXAFS region, the
photo-electron energy is much larger than the electron–atom interaction energy (of the order of
some eV), so that the interaction causes a weak perturbation to the the final state:

|ψf 〉 = |ψ0
f + δψf 〉. (3.7)

and the absorption coefficient becomes

µ(ω) ∝
∣∣ 〈ψ0

f + δψf | η̂ · ~r |ψi 〉
∣∣2 . (3.8)

hν 

µ

  

€ 

ω

Figure 3.3: The outgoing and back-scattered photo-electron (left) and the absorption coefficient
of a non-isolated atom (right).

3.2.1 Basic interference effect

The perturbation |δψf 〉 corresponds phenomenologically to the incoming wave of the backscattered
electron. The final state is modified so that

|ψf |2 = |ψ0
f |2 + 2Re

{
ψ0
f δψf

}
+ |δψf |2. (3.9)

The presence of the perturbation |δψf 〉 modifies the superposition integral of the final state with
the initial core state |ψi〉 in the matrix element with respect to (3.3), so that

µ(ω) ∝
∣∣ 〈ψ0

f | η̂ · ~r |ψi〉
∣∣2 + 2Re

{
〈ψ0
f | η̂ · ~r |ψi〉 〈δψf | η̂ · ~r |ψi〉

}
+ |〈δψf | η̂ · ~r |ψi 〉 |2 . (3.10)

Our problem is now to find an expression for the perturbation |δψf 〉.
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3.2.2 The perturbation δψf for a two-atomic system

A number of different but equivalent derivations of the EXAFS function (3.19) have been pro-
posed [?, Hayes and Boyce, 1982, Stern, 1974, Borovskii et al., 1986]. None of them is however
sufficiently simple for an introductory account.
In the following, we will highlight the basic concepts from a phenomenological point of view,
following the approach of [Brown and Doniach, 1980]. Only ideal systems composed of atoms
frozen at their equilibrium positions are at first considered; thermal disorder is introduced later
on.

The simpler system consists of two atoms, an absorber A and a back-scatterer B; let R be the
distance between the two nuclei (Fig. 3.4). For a given value h̄ω of the energy of the absorbed
photon, the quantum state of the emitted photoelectron is characterised by the wavenumber k,
defined in (3.5). The photo-electron is subjected to the potentials of the emitting atom A and of
the scattering atom B, which are generally approximated by dividing the space into three regions
(Fig. 3.4), corresponding respectively to:

I - a spherically symmetric attractive potential centred on atom A;

II - a constant inner potential, connected to the potentials of regions I and III;

III - a spherically symmetric attractive potential centred on atom B.

A B 

I II III 

Figure 3.4: Absorber atom A and back-scatterer atom B at a distance R. The coloured regions
I and II schematically represent the spherically symmetric potentials created by the two atoms,
the remaining region II represents the inner potential (muffin-tin approximation). The small white
circle at the centre of region I schematically represents the 1s core orbital.

The wavefunction ψi of the initial 1s core state of angular momentum ` = 0 is confined within
the core volume schematically represented by the white circle at the centre of region I in Fig. 3.4.
Also the final state wavefunction ψ0

f for the isolated atom, of angular momentum ` = 1, has to be
known only within the core volume at the centre of region I, in order to evaluate the superposition
integrals of Eq. (3.19).
Actually, the explicit knowledge of ψi and ψ0

f is not necessary to calculate the EXAFS function
(3.19). It is sufficient to understand how the perturbation δψf develops along the photo-electron
path A→ B → A and to evaluate its superposition integral with the initial core state ψi.

The photo-electron emission is more probable in the direction of polarisation of the photon beam;
the angular part of the outgoing wavefunction depends on the dipole term η̂ · ~r. Let us focus our
attention on the radial part of the wavefunction.

At the centre of region I, corresponding to the core orbital, the outgoing photo-electron wavefunc-
tion is ψf (0) = ψ0

f (0), the same as for an isolated atom. At the border of region I, the radial part
of the photo-electron wavefunction can be approximated, for high enough energies (kr � 1), as

ψ0
f (0)

eikr

2kr
eiδ1 , (3.11)

where k is the wavenumber defined in (3.5) and the phase-shift δ1 takes into account the effect of
the potential of region I.
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Let us now consider the interaction between the photo-electron and the atom B in region III. If
the photo-electron has high enough energy, the interaction is important only with the nucleus and
the inner electrons of atom B. We can then restrict the scattering to a spatial region very small
with respect to the interatomic distance R (small atom approximation) and neglect the curvature
of the wave impinging on atom B (plane wave approximation).
Within these approximations, the scattering process is described in terms of a complex amplitude
of back-scattering from atom B in the direction of atom A, t(k, π), which can be expressed as a
function of the partial-wave phase-shifts δ` [Joachain, 1975] as

t(k, π) =
∑∞

`=0
(−1)` (2`+ 1) eiδ` sin δ` (3.12)

At the border of region III, the radial part of the backscattered wave is approximated as[
ψ0
f (0)

eikR

2kR
eiδ1
]

︸ ︷︷ ︸
wave impinging on B

t(k, π)

[
eikr

′

kr′

]
︸ ︷︷ ︸

scattered by B

(3.13)

where r′ is the distance from atom B.

At the absorber core site (centre of region I), the final backscattered wave function is obtained by
substituting r′ = R in (3.13) and adding a further phase-shift δ1 to account for the potential of
region I.

The final wavefunction at the core site can be conveniently expressed as

δf (0) = ψ0
f (0)

1

2
eiδ1

eikR

kR
t(k, π)

eikR

kR
eiδ1 , (3.14)

In Eq. (3.14) both outgoing and scattered wave-functions contain k at the denominator, according
to [Stern, 1988], corresponding to a total factor 1/k2.
In most treatments, however, a factor 1/k is present in the EXAFS formula, the other 1/k factor
being included into the scattering amplitude fB(k, π) = (1/k) t(k, π). Such a convention is used in
the following, so that

δf (0) = ψ0
f (0)

1

2k
eiδ1︸︷︷︸
inter.

eikR

R︸ ︷︷ ︸
propag.

fB(k, π)︸ ︷︷ ︸
inter.

eikR

R︸ ︷︷ ︸
propag.

eiδ1︸︷︷︸
inter.

, (3.15)

Eq. (3.15) contains two types of factors:

a) factors describing the interaction of the photoelectron with atoms A and B, such as eiδ1 and
fB(k, π);

b) factors describing the propagation of the photoelectron from atom A to atom B and from
atom B to atom A, such as eikR/R.

Such a basic structure is shared by more sophisticated approaches, which can take into account
also multiple scattering (MS) events.

3.2.3 The absorption coefficient

Revriting (3.15)

δf (0) = ψ0
f (0)

1

2k
ei2δ1

ei2kR

R2
fB(k, π) (3.16)

and inserting in (3.10), one can better understand the meaning of the different terms.

1. The first term of (3.10) corresponds to the atomic absorption coefficient of an isolated atom
(3.3).
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2. The second term of (3.10) side accounts for the interference between the outgoing and in-
coming waves and is responsible for the EXAFS oscillations.

3. The third term of (3.10) has a smooth k-dependence and doesn’t contribute to EXAFS
oscillations; being second-order in the perturbation δψf , it gives a small contribution to the
atomic absorption coefficient µ0.

The third term of (3.10) represents a small correction to µ0, which is taken into account when the
EXAFS function is determined from experimental data (see below).

3.3 The EXAFS function

The EXAFS function is defined as the difference between the actual absorption coefficient µ and
the atomic absorption coefficient µ0, normalized to µ0 (Fig. 3.5):

χ(k) =
µ− µ0

µ0
(3.17)

and is generally expressed as a function of the wave-number k (3.5) rather than of the energy.
The amplitude of the EXAFS oscillations ranges typically between 1 and 10 % of the absorption
coefficient.
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Figure 3.5: Left: experimental absorption coefficient µx as a function of photon energy. Right:
corresponding normalised EXAFS function (3.17).

Note 1: What one actually measures is the product µx, where x is the sample thickness, and the
corresponding product µ0x. The (generally unknown) sample thickness x is anyway cancelled
in (3.17).

Note 2: In the derivation of (3.17) from experimental data, µ0 contains the small contribution of
the third term of (3.10). The coefficient µ0 is estimated from experimental data by evaluating
the average behaviour of the actual absorption coefficient µ (see Chapter on data analysis).
It doesn’t thus correspond to the true atomic coefficient and contains also the smooth contri-
bution of the third term in (3.10).

3.3.1 EXAFS for a two-atomic system

Inserting the absorption coefficients (3.3) and (3.10) in the EXAFS function (3.17) and considering
the third term of (3.10) embedded in ν0, one obtains

χ(k) =
2Re

{
〈ψ0
f | η̂ · ~r |ψi〉 〈δψ0

f | η̂ · ~r |ψi〉
}

∣∣∣ 〈ψ0
f | η̂ · ~r |ψi 〉

∣∣∣2 (3.18)
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In the coordinate representation, the EXAFS function can be expressed in terms of wave-function
integrals as

χ(k) =
2Re

∫
d~r
[
ψ0∗
f (~r) η̂ · ~r ψi(~r)

] [
δψ∗f (~r) η̂ · ~r ψi(~r)

]
∫
d~r
∣∣∣ψ0∗
f (~r) η̂ · ~r ψi(~r)

∣∣∣2 (3.19)

The integral in the numerator of Eq. (3.19) is responsible for the interference between the outgoing
and incoming wave-functions.

The leading contribution to all integrals of Eq. (3.19) comes from the limited spatial region of
the core orbital, which represents both the source and detector for the photo-electron probing the
surrounding structure. Only in this limited spatial region is it in principle necessary to know both
ψ0
f and δψf .

The central problem is now to evaluate the perturbation δψf at the core region in terms of the
interatomic distance, in order to connect the EXAFS function to the structural parameters.

If the result expressed by eq. (3.14) is properly inserted into eq. (3.19), one gets

χ(k) = 3(η̂ · R̂)2 1

kR2
Im
{
fB(k, π) e2iδ1 e2ikR

}
. (3.20)

By separating modulus and phase of the complex backscattering amplitude and grouping the phase
terms,

fB(k, π) e2iδ1 = |fB(k, π)| eiφ(k), (3.21)

we can write Eq. (3.20) in real form:

χ(k) = 3(η̂ · R̂)2 1

kR2
|fB(k, π)| sin [2kR+ φ(k)] . (3.22)

Basically, the EXAFS signal has a sinusoidal behaviour, with frequency 2R proportional to the
inter-atomic distance. The phase of the sine function is perturbed by the phase-shift φ(k), while
the amplitude is modulated by |fB(k, π)|.

3.3.2 Backscattering amplitude and phaseshifts

The k dependence of backscattering amplitudes and phaseshifts is different for different atomic
species.
The central atom phaseshift δ always decreases monotonously when the wavevector k increases
(Fig. 3.6, right). The modulus of the backscattering amplitude |f(k, π)| decreases monotonously
for low-Z atomic species; it becomes higher at high k values and progressively more structured
when Z increases (Fig. 3.6, centre). Correspondingly, the backscattering phaseshift exhibits a more
structured behaviour when Z increases (Fig. 3.6, right).
The different behaviour of the backscattering amplitude and phase-shift for different Z values is
currently exploited for distinguishing the atomic species of the scattering atom with reasonable
approximation.
For realistic spherical waves (say if the plane wave approximation is released), phase-
shifts and amplitudes weakly depend also on the interatomic distance: φ(k, r), |f(k, π, r)|
[Rehr and Albers, 2000].

3.3.3 Many-atomic systems

Let us now consider a system composed of more than two atoms. The generalization of (3.20) is
immediate, so long as multiple scattering events can be neglected: the EXAFS function can be
built up as a sum of two-atomic contributions (3.20), with different interatomic distances Rj from
the absorber atom.
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Figure 3.6: Central atom phaseshifts (left), backscattering amplitudes (centre) and backscattering
phaseshifts (right) calculated for selected atomic species by FEFFIT 6.1 within the plane wave
approximation. The total phaseshift φ(k) of (3.21) and (3.22) is the sum of the phaseshifts of the
left and right panels.

Isotropic samples

Very often, EXAFS measurements are performed on isotropic samples, such as polycrystalline pow-
ders, amorphous materials, liquids or gases. In the following, we consider only isotropic samples,
for which the polarization term can be averaged, 〈η̂ · R̂〉 = 1/3 , leading to a simplified treatment
which neglects the angular part of the wavefunctions.

For an isotropic sample, the EXAFS function is

χ(k) =
1

k

∑
j

1

R2
j

Im
{
fj(k, π) e2iδ1 e2ikRj

}
, (3.23)

where Rj is the distance of the j-th atom from the absorber atom.

Coordination shells

In many cases, atoms can be grouped into coordination shells , each one containing Ns atoms of
the same species at the same distance Rs from the absorber atom.

Coordination shells are well defined for perfect crystals when thermal motion is neglected (Fig. 3.7,
left). Thermal motion introduces a spread of interatomic distances within each shell (see below).
In non-crystalline systems generally only a few coordination shells can be distinguished, which are
anyway less sharply defined than in crystals, due to structural disorder (Fig. 3.7, right).

Figure 3.7: For crystals (left) the coordination shells of a given atom are in principle perfectly
defined at any distance. For non-crystalline systems (right) the coordination shells are quite well
defined only at short distances.
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EXAFS for one coordination shell

Let us consider a coordination shell of a perfect crystal, neglecting any thermal disorder. All N
atoms of the shell share the same distance R from the absorbing atom. The final state (3.7) is
transformed into

|ψf 〉 = |ψ0
f + N δψf 〉. (3.24)

The absorption coefficient (3.10) becomes

µ(ω) ∝
∣∣ 〈ψ0

f | η̂ · ~r |ψi〉
∣∣2 + 2N Re

{
〈ψ0
f | η̂ · ~r |ψi〉 〈δψf | η̂ · ~r |ψi〉

}
+ N2 |〈δψf | η̂ · ~r |ψi 〉 |2 .

(3.25)

1. The first term again corresponds to the atomic absorption coefficient of an isolated atom
(3.3).

2. The second term, accounting for the interference between the outgoing and incoming waves
and responsible for the EXAFS oscillations, is N times the term for a single backscatterer
atom.

3. The third term, proportional to N2, doesn’t contribute to EXAFS oscillations and gives a
small contribution to the atomic absorption coefficient µ0.

EXAFS and coordination shells

In general, it is convenient to rewrite (3.20) separating the contributions of the different coordina-
tion shell:

χ(k) =
1

k

∑
s

Ns
R2
s

Im
{
fs(k, π) e2iδ1 e2ikRs

}
. (3.26)

The sum in (3.26) is on the index s, which labels the coordination shells. The parameter Ns is the
coordination number of shell s.
The effects of thermal and structural disorder are considered below.

3.4 Inelastic effects

As it was shown in Chapter 2, the total absorption cross section is the sum of two terms,

σa(ω) = σel(ω) + σinel(ω) . (3.27)

The treatment that leads to (3.26) is based on elastic (fully relaxed) transitions and corresponds to
the first term on the right of (3.27). Let us now study how inelastic phenomena affect the EXAFS
signal. Two types of inelastic effects have to be distinguished:

a) intrinsic effects, which are many-body interactions within the absorber atom and correspond
to σinel in (3.27);

b) extrinsic effects, which are many-body interactions of the photoelectron with electrons not
belonging to the emitting atom.

3.4.1 Intrinsic inelastic effects

In the inelastic excitation channels of the X-ray absorption process, the relaxation of the N − 1
passive electrons is accompanied by their excitation (shake-up and shake-off processes). The X-ray
photon energy is distributed over all the excited electrons, and the photoelectron has a distribution
of possible energies, so that the corresponding EXAFS signals sum up incoherently and give rise
to a damping of the experimentally observed oscillations.

The net effect is a reduction of the coherent EXAFS signal with respect to that calculated for
purely elastic excitations in (3.26). One can show that the fraction of the total cross section (3.27)
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that corresponds to the elastic channel σel is measured by the superposition integral of the passive
electrons wavefunctions

S2
0 =

∣∣∣ 〈ΨN−1
f,r |Ψ

N−1
i 〉

∣∣∣2 . (3.28)

In order to reproduce an experimental signal, the EXAFS function (3.26), based on the elastic
cross section, has to multiplied by the factor S2

0 , which typically amounts to 0.7÷0.9.

3.4.2 Extrinsic inelastic effects

Extrinsic inelastic effects are losses during the photo-electron propagation, due to excitations (plas-
mons, core-hole) and inelastic scattering.

From a phenomenological point of view, the extrinsic inelastic losses are taken into account by a
k-dependent mean free path λe(k) (don’t confuse λ with the photo-electron wavelength).

From a theoretical point of view, the extrinsic inelastic losses are connected to a complex-valued
and energy-dependent self-energy operator Σ(E).
The complex-valued self-energy operator plays, for an excited state, the same role that the real-
valued exchange-correlation potential plays for the ground state.
The real part of Σ(E) gives rise to a shift of the EXAFS oscillations with respect to ground-state
calculations.
The imaginary part of Σ(E) gives rise to the mean free path, λe ' k/|ImΣ(E)|.

3.4.3 Extrinsic inelastic effects: mean free path

Extrinsic inelastic effects are losses of the energy of the photoelectron during its propagation, due
to excitations (core-hole and plasmons) and inelastic scattering by other single electrons.
From a phenomenological point of view, the extrinsic inelastic losses are measured by a k-dependent
mean free path λ(k) (don’t confuse λ with the photo-electron wavelength).

From a theoretical point of view, the extrinsic inelastic losses are connected to a complex-valued
and energy-dependent self-energy operator Σ(E).
The complex-valued self-energy operator plays, for an excited state, the same role that the real-
valued exchange-correlation potential plays for the ground state.
The real part of Σ(E) gives rise to a shift of the EXAFS oscillations with respect to ground-state
calculations.
The imaginary part of Σ(E) gives rise to the mean free path, λe ' k/|ImΣ(E)|.
Two distinct phenomena contribute to the total mean free path λ:

a) the core-hole lifetime τh, which depends on the atomic number Z (the higher Z, the shorter
τh) and establishes the distance λh = vτh the photo-electron can travel before the de-
excitation of the absorber atom;

b) the energy-dependent photo-electron mean-free path λe, determined by the inelastic interac-
tions with single electrons and collective excitations (plasmons).

The smaller of the two contributions determines the actual value of λ, according to:

1

λ
=

1

λh
+

1

λe
. (3.29)

At low energies, in the XANES region, the mean free path is determined by λh, while in the
EXAFS region the contribution of λe is predominant (Fig. 3.8).
The mean free path measures the average distance an excited electron can travel before losing
coherence with its initial state.

The extrinsic inelastic effects are generally taken into account in the EXAFS formula by a phe-
nomenological factor exp[−2Rjλ(k)], where λ ' 5− 15 Å. The mean free path factor progressively
reduces the amplitude of EXAFS oscillations when Rj increases, contributing to making EXAFS
insensitive to long range order.
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Figure 3.8: Mean free path as a function of the wavevector k. The values λe measured for different
elements are included between the two continuos lines. The dashed lines include the λh values for
the K edges of atoms with Z between 30 and 50.

3.4.4 EXAFS formula including inelastic effects

To summarize, the EXAFS equation taking into account inelastic effects is:

χ(k) =
S2

0

k

∑
j

e−2Rj/λ

R2
j

Im
{
fj(k, π) e2iδ1 e2ikRj

}
. (3.30)

If atoms can be grouped into coordination shells, one can rewrite Eq. (3.30) separating the con-
tributions of different coordination shell, as in (3.26):

χ(k) =
S2
o

k

∑
s

Ns Im

{
fs(k, π) e2iδ1

e−2Rs/λ

R2
s

e2ikRs

}
. (3.31)

3.5 Multiple scattering

Up to now, we have considered only single scattering (SS) paths of the photo-electron, consisting
in two “legs”, the first one from the the emitting atom A to the scattering atoms B, the second
one from the scattering atom B back to the emitting atom A (two examples are shown in the rigth
panel of Fig. 3.9).

SS = Single  scattering MS = Multiple  scattering 

Figure 3.9: Left: possible single scattering paths originating from and terminating at a given
central atom (red). Right: possible multiple scattering paths originating from and terminating at
a given central atom (red).

Actually, multiple scattering (MS) paths are possible too, where the photoelectron is scattered
by two or more atoms before coming back to the emitting atom A. Two significant examples are
shown in the right panel of Fig. 3.9): a) a triangular path A → B → C → A and b) a collinear
path A→ B → C → B → A, where the photoelectron is forward scattered by atom B.
Multiple scattering events are very important in the XANES region, due to the relatively low
energy of the photoelectron. They are generally quite weak in the EXAFS region, but not at all
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negligible; particularly strong is the contribution of collinear MS paths, due to the high amplitude
for scattering at 180◦ (forward scattering).

To take into account MS effects, the absorption coefficient is conveniently written as

µ(k) = µ0(k) [1 + χ2(k) + χ3(k) + χ4(k) + · · · ] , (3.32)

where the terms χp of the sum are distinguished by the number p of legs of the scattering paths.
The term χ2(k) ≡ χ(k) corresponds to the single scattering contributions up to now considered.
In the EXAFS region, the series (3.32) is fast convergent. The convergence becomes progressively
slower when the wavevector k decreases, say approaching the XANES region.

It has been demontrated [Rehr and Albers, 2000] that the contribution of MS paths to the EXAFS
signal can be expressed, similar to the SS contribution, as the product of an amplitude factor and
an oscillating factor; for a given path p,

χp(k) = Ap(k, {r}p) sin [kRp + φp(k, {r}p)] , (3.33)

where {r}p represents the set of all vector distances inside the path, Rp is the total path length,
and Ap and φp are effective amplitude and phaseshift functions which depend on the potential
acting on the photo-electron.

3.6 Disorder effects on EXAFS

Equation (3.31) refers to the unphysical situation of a system where the atoms are frozen at their
equilibrium positions.

Thermal disorder

In real systems, atoms are affected by thermal vibrations, whose amplitude increases with temper-
ature but, for quantum reasons, is not negligible even near zero kelvin. The instantaneous positions
of atoms are spread around the equilibrium positions according to statistical distributions (thermal
ellipsoids, left panel of Fig. 3.10).

The period of atomic vibrations ('10−12 s) is much larger than the photo-electron time of flight
(10−16 ÷ 10−15 s). A single photo-electron samples an instantaneous distance between emitting
and backscattering atom (Fig. 3.10, left). An EXAFS spectrum, resulting from the contributions
of a large number of photo-electrons, samples a distribution of instantaneous interatomic distances
r for each coordination shell (Fig. 3.10, right).

A B 

rr 

A 

B 

Figure 3.10: Left: a single photoelectron samples an instantaneous relative distance r between the
thermal ellipsoids of the emitting and the backscattering atoms. Right: and EXAFS spectrum
samples a one-dimensional distribution of instantamneous distances.

The distributions ρ(r) of distances for germanium at different temperatures are shown in Fig. 3.11.
The distribution ρ(r) corresponds to a radial distribution function (RDF). The smooth dashed line
corresponds to 4πr2 ρ0, where ρ0 = 4.42 atoms/Å is the number density of germanium.
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Figure 3.11: Real distributions of distances for germanium at different temperatures. The distribu-
tions of the different coordination shells have been considered as gaussian. The widths have been
estimated from the experimental Debye-Waller factors [Purans et al., 2008, Purans et al., 2009]
for the first three coordination shells at 20 and 300 K and extrapolated for the outer coordination
shells and at 1200 K.

Structural disorder

The distribution of interatomic distances can be further enlarged and modified by the presence of
structural disorder. Some examples of structural disorder are schematically depicted in Fig. 3.12.

a) Distorted coordination shells in crystals are characterised by the presence of two or more
slightly different interatomic distance, which cannot be experimentally discriminated as dif-
ferent coordination shells.

b) In some crystalline systems, the absorber atom can be found in two or more structurally
different sites, which again cannot be discriminated as different coordination shells (sites
disorder).

c) In non-crystalline systems, the nearest-neighbour coordination is very similar to that in the
corresponding crystals, the inter-atomic pair distances are however not exactly equal.

d) In nano-crystals, the distances between nearest-neighbour atoms are different according to
whether the atomic pair is near the surface or at the centre of the cluster; one thus expects a
static distribution of distances, to be convoluted with the distribution due to thermal motion.

A peculiar kind of disorder is compositional disorder, consisting in the presence of atoms of
different species in the same coordination shell.

3.6.1 EXAFS formula for disordered systems

Let us consider here only coordination shells containing one atomic species (say without composi-
tional disorder).
Due to disorder, the contribution to the EXAFS function of a given coordination shell (or more
generally of a given scattering paths) can be expressed in terms a configurational average of the
distance-dependent factors [Freund et al., 1989]:

χs(k) =
S2
o

k
Ns Im

{
fs(k, π) e2iδ1

〈
e−2r/λ

r2
e2ikr

〉
dr

}
. (3.34)

In the case of purely thermal disorder, with no structural contributions, the brackets 〈 〉 in Eq.
(3.34) indicate a canonical average.

Equivalently, the distance between absorber and back-scatterer atoms of a given coordination shell,
instead of having a single value Rs, like in (3.31), varies according to a probability distribution ρ(r),
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Non-crystalline systems!
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+ +

Figure 3.12: Some examples of structural disorder that can contribute to enlarge the distribution
of distances due to thermal disorder.
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Figure 3.13: Comparison between real (continuous lines) and effective (dotted lines) distributions,
Eq. (3.36), for a realistic mean free path λ = 8 Å. (The low-order corresponding cumulants are
listed in Table 3.1). Left. Real gaussian distribution (1/σ

√
2π) exp[(r − R)2/2σ2], with R = 1.3

Å and σ = 0.2 Å; the vertical dashed line indicates the average value of the effective distribution.
Right. Real skewed distribution B exp[−B(r − R)], with R = 1.3 Å and B = 5 Å−1, convoluted
with a gaussian of standard deviation σ = 0.2 Å; the vertical dashed lines indicate the average
values of the two distributions.

normalized to unity, and the EXAFS signal is generated from an average over this distribution.
The EXAFS equation for one coordination shell becomes [Stern et al., 1975]

χs(k) =
S2
o

k
Ns Im

{
fs(k, π) e2iδ1

∫ ∞
0

ρ(r)
e−2r/λ

r2
e2ikr dr

}
. (3.35)

Real and effective distributions

The distribution ρ(r) in Eq. (3.35) is commonly referred to as real distribution and corresponds to
the partial radial distribution function (RDF) around the absorbing atomic species.
It is convenient to group all r-dependent factors into an effective distribution

P (r, λ) = ρ(r)
e−2r/λ

r2
, (3.36)

so that the EXAFS equation can be rewritten as

χs(k) =
S2
o

k
Ns Im

{
fs(k, π) e2iδ1

∫ ∞
0

P (r, λ) e2ikr dr

}
. (3.37)
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Figure 3.14: Top left: real distribution ρ(r) for germanium at 300 K (left). Top right: the
effect of spherical wave attenuation 1/r2. Bottom left: the effect of photoelectron mean free path
exp(−2r/λ) (here λ = 8 Å). Bottom right: effective distribution P (r, λ) = ρ(r) exp(−2r/λ)/r2.
Notice the different vertical scales in the different panels.

The effective distribution, contrary to the real distribution, is not normalised to one; besides, its
shape is different and its average value lower (two tutorial examples are given in Fig. 3.13). The
difference between real and effective distributions is physically due to the progressive attenuation
of the photoelectron spherical wave with distance: the low-r part of the real distribution has a
higher weight than the high-r part.
A realistic example is given in (Fig. 3.14), referred to germanium at 300 K. One can here separately
evaluate the spherical wave effect 1/r2 and the photoelectron mean free path effect exp(−2r/λ) in
generating the effective distribution from the real distribution. Both the reduction of the global
amplitude and the damping of outer shells with respect to the inner shells are stronger for the
spherical wave effect than for the mean free path effect.
Notice that in the example of Fig. 3.13 the distance 1.3 Å is much shorter than the first shell
distance in Ge (Fig. 3.14), and much weaker is the spherical wave attenuation effect.

The inversion problem

The integral in Eq. (3.37) is the Fourier transform of the effective distribution P (r, λ), or, in
the probability language, its characteristic function. The conjugate variable is 2k in the case of
EXAFS. The characteristic function is a complex function of a complex variable; its full knowledge
is equivalent to the knowledge of the distribution P (r, λ).
The fundamental problem of EXAFS analysis is to recover the distribution P (r, λ), and hence ρ(r),
from the experimental spectrum χ(k). No exact solution can be given to this problem, because an
experimental spectrum never corresponds to the full characteristic function, as expressed by Eq.
(3.37), but has a finite extension, within the values kmin and kmax. In particular, for kmin ≤ 2÷ 3
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Å−1 the EXAFS signal generally cannot be utilized, due to: a) difficulty in determining the atomic
absorption coefficient µ0 in the vicinity of the edge, b) effects of the core-hole lifetime on the low-
energy electrons, c) influence of multiple scattering processes.

The problem of recovering ρ(r) from χ(k) is generally solved by hypothesising physically sound
structural models and optimising the parameters of their distributions ρ(r) by best fit of eq. (3.35)
to the experimental EXAFS spectrum [Filipponi, 2001].

For weak disorder, the distributions of distances (both real and effective) can be parameterised in
terms of a few statistical parameters, called cumulants, which are linear combinations of the more
familiar moments. Correspondingly, the EXAFS signal can be expressed in terms of a few leading
cumulants, as is shown below.

3.6.2 Distributions and cumulants

If all the initial moments αn = 〈xn〉 of a probability distribution Φ(r) exist, the characteristic
function can be expanded in Mac Laurin series around k = 0:∫ ∞

−∞
Φ(r) e2ikr dr = α0 〈e2ikr〉 = α0

[
1 +

∞∑
n=1

(2ik)n αn/n!

]
(3.38)

where α0 is the normalisation integral: α0 = 1 for the real distribution ρ(r), while α0 6= 1 for the
effective distribution P (r, λ).
Alternatively, the characteristic function can be expanded as the exponent of a Mac Laurin series
around k = 0. In this case:∫ ∞

−∞
Φ(r) e2ikr dr = exp

[ ∞∑
n=0

(2ik)n Cn/n!

]
(3.39)

The expansion coefficient Cn are called cumulants. The convergence interval of the series in Eq.
(3.39) depends on the peculiarities of the distribution Φ(r).
The lowest-order cumulants can easily be connected to the initial moments αn = 〈rn〉 and to the
central moments µn = 〈(r − 〈r〉)n〉, and have simple interpretations.

a) C0 = lnα0 depends on the normalization of the distribution;

b) C1 = α1 = 〈r〉 is the mean value of the distribution;

c) C2 = µ2 = 〈(r − 〈r〉)2〉 is the variance;

d) C3 = µ3 = 〈(r − 〈r〉)3〉 measures the distribution asymmetry;

e) C4 = µ4 − 3µ2
2 measures the flatness of the distribution.

For a gaussian distribution, the cumulants Cn are zero for n > 2. The cumulants C3, C4 ... then
measure the deviation of a distribution from the gaussian shape.

3.6.3 Cumulant expansion of EXAFS

Let us now consider the cumulant expansion of the characteristic function of the effective distri-
bution P (r, λ): ∫ ∞

−∞
P (r, λ) e2ikr dr = exp

[ ∞∑
n=0

(2ik)n Cn/n!

]
(3.40)

By inserting Eq. (3.40) into Eq. (3.37) and making use of Eq. (3.21), one obtains the EXAFS
formula as a function of cumulants [Bunker, 1983, Crozier et al., 1988]:

χs(k) = (S2
o/k) Ns |fs(k, π)| exp

(
Co − 2k2C2 + 2k4C4/3− 4k6C6/45 ...

)
× sin

[
2kC1 − 4k3C3/3 + 4k5C5/15 ...+ φ(k)

]
. (3.41)
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Table 3.1: Lowest-order cumulants of the real distributions depicted in Fig. 3.13 and of the
corresponding effective distributions. Notice that in going from the real to the effective distributions
the 1st and 3rd cumulants decrease, while the 2nd cumulant increases.

Gaussian Skewed
real effect. real effect.

1st cumulant (Å) 1.30 1.22 1.50 1.38
2nd cumulant (10−2Å2) 4.00 4.25 7.99 6.78
3rd cumulant (10−2Å3) 0 -0.21 15.9 8.19

Odd and even cumulants determine phase and amplitude of the EXAFS signal, respectively.
Equation (3.43) contains the cumulants Ci of the effective distribution P (r, λ), while one is inter-
ested in the cumulants C∗i of the real distribution ρ(r). The effective distribution is not normalized
to one; the normalization factor can be approximated as

exp(Co) = exp(−2C1/λ)/C2
1 . (3.42)

3.7 Parametrization of EXAFS formula

For many applications, the extent of disorder is sufficiently small to allow the expression of the
EXAFS formula in terms of a leading cumulants. In such cases, the EXAFS function for a given
coordination shell (or for a given scattering path) can be expressed as

χs(k) =
S2
o

k
Ns |fs(k, π)| e

−2C1/λ

C2
1

e−2k2C2+2k4C4/3 ··· sin

[
2kC1 −

4k3C3

3
...+ φ(k)

]
, (3.43)

where the parameters Ci are the cumulants of the effective distribution P (r, λ) [Bunker, 1983,
Fornasini et al., 2001].
According to the probability theory, the cumulants characterise the position, width and shape of
a distribution; in particular, C1 is the mean value, C2 is the variance and C3 is a measure of the
asymmetry of the distribution.
It is worth noting that even and odd cumulants determine the amplitude and the phase of the
EXAFS signal, respectively.

Parameters of the real distribution

Actually, one is interested in the cumulants C∗i of the real distribution ρ(r). The first cumulant
C∗1 of the real distribution ρ(r) is significantly larger than the first cumulant C1 of the effective
distribution, as a consequence of the spherical nature of the photo-electron wave and its limited
mean free path [Freund et al., 1989]:

C∗1 ' C1 +
2C2

C1

(
1 +

C1

λ

)
. (3.44)

The difference, of the order of some 10−3 Å, is automatically taken into account by most data anal-
ysis packages. The difference between higher-order cumulants of the two distributions is generally
negligible [Fornasini et al., 2001]..

The lowest-order cumulants of the real distribution have simple interpretations:

1. The first cumulant C∗1 = 〈r〉 is the mean value of the distribution, say the average inter-atomic
distance.

2. The second cumulant C∗2 = σ2 = 〈(r − 〈r〉)2〉 is the variance of the distribution or mean
square relative displacement (MSRD); the exponential exp(−2k2σ2) of (3.43) is referred to
as EXAFS Debye-Waller factor.
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3. The third cumulant C∗3 = µ3 = 〈(r − 〈r〉)3〉 is the mean cubic relative displacement and
measures the distribution asymmetry.

4. The fourth cumulant C∗4 measures the flatness of the distribution, say the symmetric deviation
with respect to a gaussian shape.
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Figure 3.15: Symmetric distribution (left) and asymmetric distribution (right).

In some cases, the cumulant expansion can be truncated at the second order term, and eq. (3.43)
reduces to the so called standard EXAFS formula

χs(k) =
S2
o

k
Ns |fs(k, π)| e

−2C1/λ

C2
1

e−2k2C2 sin [2kC1 + φ(k)] , (3.45)

which amounts to consider a gaussian effective distribution P (r, λ), which corresponds with good
approximation to a gaussian real distribution ρ(r) (Fig. 3.15, left):

ρ(r) = (1/σ
√

2π) exp
[
−(r − 〈r〉)2/2σ2

]
, (3.46)

where C∗1 = 〈r〉 is the average distance and C∗2 = σ2 = 〈(r − 〈r〉)2〉 is the variance. The gaussian
approximation, generally reliable for the second and outer coordination shells, is unfit for the first
coordination shell, where the asymmetry of the pair interaction potential is more influent.

For the first coordination shell it is higly recommended to add the third cumulant C∗3 = 〈(r−〈r〉)3〉
(mean cubic relative displacement) to account for the distribution asymmetry (Fig. 3.15, right):

χs(k) =
S2
o

k
Ns |fs(k, π)| e

−2C1/λ

C2
1

e−2k2C2 sin

[
2kC1 −

4k3C3

3
+ φ(k)

]
. (3.47)

3.8 Summary

Using (3.43), or the more approximate expressions (3.46) or (3.47)), one can get original information
on the local structure from the analysis of EXAFS, provided some “physical” quantities are known:
phaseshifts, backscattering amplitude, inelastic terms.

3.8.1 Structural parameters

An EXAFS experiment samples a one-dimensional distribution of interatomic distances, which
contains the contributions of all single and multiple scattering paths originating and terminat-
ing at the absorbing atom, within the reduced range determined by the spherical nature of the
photoelectron wave and by its mean free path.

The following structural parameters can in principle be obtained for each coordination shell of the
absorbing atom, considering only single scattering contributions to the EXAFS signal.
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a) Coordination number. The amplitude of the EXAFS signal is directly proportional to the
number Ns of atoms within the shell.

b) Average inter-atomic distance. The frequency of the EXAFS signal depends on the first
cumulant C1 of the effective distribution, which is connected by (3.44) to the average inter-
atomic distance 〈r〉.
The argument of the sine function in (3.43) depends also on the third cumulant (and possibly
on higher order odd cumulants); neglecting the third cumulant in the analysis can severely
affect the accuracy of the value 〈r〉 for the first coordination shell.

c) Debye-Waller factor. The second cumulant C2 = σ2 (Debye-Waller exponent) corresponds
to the mean square relative displacement (MSRD) of absorber and back-scatterer atoms.
The Debye-Waller factor exp[−2k2σ2] causes a damping of the EXAFS signal. The value of σ2

increases with increasing temperature. Its temperature dependence gives original information
on the local vibrational dynamics.

d) Third cumulant. The third cumulant measures the asymmetry of the distribution of distances.
It is significant for the first coordination shell, but seems to be negligible for the outer
coordination shells.

3.8.2 Phase-shifts, back-scattering amplitudes and inelastic terms

Two different procedures can be used to insert into Eq. (3.43) the “physical quantities” |f(k, π)|,
φ, S2

0 and λ for each coordination shell.

1. The “physical quantities” are experimentally obtained from the EXAFS of a reference sample
of known structure. The local structure of the reference sample should be as much as possible
similar to that of the unknown sample, in order to guarantee the amplitude and phase-shift
transferability.

2. The “physical quantities” are calculated ab-initio [Rehr and Albers, 2000] by a number of
easily available software packages [XAFS software, , GNXAS, 2015, FEFF, 2012], with a de-
gree of accuracy sufficient for most applications.

3.8.3 Approximations

Let us recall here the main approximations on which Eq. (3.43) is based.

1. Single scattering - Only events are considered in which the photo-electron undergoes a
single scattering (SS). Actually, the photo-electron can undergo also multiple scattering (MS)
processes. The influence of MS is very important in the XANES region (see below, Sec. 6).
In the EXAFS region MS events are less important, although sometimes not negligible.
Anyway, the 1st-shell signal can be safely analysed within the SS approximation, since MS
paths correspond to longer effective distances.

2. Plane wave - The curvature of the spherical wave impinging on the scattering atom is
neglected. The larger are the photo-electron velocity and the inter-atomic distance, the
better is the approximation. The curvature effects are consequently stronger in the lower-k
region of the spectrum and for lighter scattering atoms. Anyway, backscattering amplitude
and phase-shift values calculated within the spherical wave formalism are also available; they
contain a slight dependence on the interatomic distance: |f(k, π, r)|, φ(k, r).

3. Small disorder - Eq. (3.43) can be used only if the cumulant series is fastly enough convergent
within the k range of the EXAFS signal. If this is not the case, one should use Eq. (3.35)
and try to build up physically sound models for ρ(r).
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Chapter 4

Interpretation of EXAFS

In this Chapter, we will thoroughly study the influence of the vibrational properties of molecules
and solids on the EXAFS signal. The importance of this topic is twofold: on the one hand, it
allows one to better understand the meaning of EXAFS parameters and to increase the accuracy
of structural studies, on the other hand, it shows how to obtain from EXAFS original information
on vibrational dynamics and thermal properties.

When only one coordination shell is considered, and the Single-Scattering approximation is valid,
the EXAFS signal can be represented as χ(k) = A(k) sin Φ(k), and the main problem is to re-
cover the real distribution ρ(r) of interatomic distances from the χ(k) function. In case of mod-
erate disorder, the distribution ρ(r) can be parametrised in terms of its leading cumulants C∗i
[Bunker, 1983, Crozier et al., 1988]. The knowledge of the cumulants C∗i as a function of temper-
ature represents a useful source of information.

If the interpretation of thermal effects over an entire EXAFS spectrum is sought, including
Multiple-Scattering (MS) effects, the most general solution is based on the generation of a large
enough number of configurations of the system under study [Benfatto et al., 1989], so as to allow
an accurate simulation of the EXAFS signal. If however a path-by-path procedure can be applied
for treating Multiple Scattering, then one can again express the EXAFS signal for each scattering
path (single or multiple) in the form χ(k) = A(k) sin Φ(k) [Rehr and Albers, 2000]. To each scat-
tering path one can associate a distribution of lengths ρ(r) and, for moderate disorder, use again
the cumulant expansion method.

Some basic concepts of statistical thermodynamics are given in Appendix D.

4.1 Unidimensional model

An EXAFS experiment samples a unidimensional distribution of distances ρ(r) for each scattering
path. The first step for the phenomenological interpretation of EXAFS results is thus based on a
unidimensional model. The unidimensional model is physically sound only for diatomic molecules;
for more complex systems, the unidimensional model of EXAFS has to be further interpreted.

4.1.1 Diatomic molecules

Let us start by considering a system with only one internal degree of freedom, like a two-atomic
molecule, characterized by a reduced mass µ = m1m2/(m1 +m2). The motion of the two-atomic
system can be decomposed into center of mass (CM) motion, rotation around an axis through
the CM and oscillation around the CM. For the analysis of EXAFS spectra only the oscillatory
motion is relevant and will be here considered (although the rotational motion in principle affects
the interatomic potential and the frequency of oscillations).
Let r be the instantaneous inter-atomic distance. The interaction between the two atoms is de-
scribed by a potential energy V (r), with the minimum at r = R0. An exact determination of the

57
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potential energy V (r) can be very difficult, and one often relies on phenomenological models, such
as

a) the Morse potential energy

V (r) = D
[
1− e−β(r−R0)

]2
= D

[
1 + e−2β(r−R0) − e−β(r−R0)2

]
(4.1)

where D is the depth of the potential well and β is a positive constant that controls the
width of the potential well;

b) the Lennard-Jones potential energy

V (r) = 4ε

[
−
(σ
r

)6

+
(σ
r

)12
]

(4.2)

where ε measures the strength of the attraction, σ measures the radius of the repulsive core:
for r = σ one finds φ = 0. At the position R0 of the minimum of the potential energy one
has R0 = 6

√
2σ = 1.122σ and V (R0) = −ε.

It is convenient to introduce the instantaneous displacement x = r−R0 and express the potential
energy as a function of the displacement, V (x). The potential energy can be expanded as a power
series with respect to x,

V (x) = k0 x
2 / 2 + k3 x

3 + k4 x
4 . . . (4.3)

where k0 is the second order or harmonic force constant, while k3, k4, ... are higher order or anhar-
monic force constants. The truncation of the expansion (4.3) at the second order term represents
the harmonic approximation:

V (x) = k0 x
2 / 2 (4.4)

The harmonic system oscillates with frequency

ω = 2πν =
√
k0/µ (4.5)

4.1.2 EXAFS cumulants

A typical EXAFS experiment samples, for a relatively long time, a large number of two-atomic sys-
tems in thermal equilibrium with a reservoir at temperature T . The EXAFS signal is proportional
to the configurational average (provided the scattering amplitude can be considered independent
of r) [Tranquada and Ingalls, 1983, Benfatto et al., 1989]:

χ(k) ∝
〈

exp[−2r/λ(k)]

r2
exp(2ikr)

〉
, (4.6)

Equivalently, the configurational average of the previous equation can be expressed, within the
plane-wave approximation, as the integral [Crozier et al., 1988, Vaccari and Fornasini, 2005]∫ ∞

0

ρ(r)
exp[−2r/λ(k)]

r2
exp(2ikr) dr =

∫ ∞
0

P (r, λ) exp(2ikr) dr (4.7)

where ρ(r) is the real distribution of distances and P (r, λ) = ρ(r) exp(−2r/λ)/r2 is an effective
distribution.

The configurational average can be expanded in a power series of k, the coefficients Cn being the
cumulants of the effective dirtsibution P (r, λ):〈

exp[−2r/λ(k)]

r2
exp(2ikr)

〉
=

∫ ∞
0

P (r, λ) exp(2ikr) dr = exp

[ ∞∑
n=0

(2ik)n

n!
Cn

]
(4.8)
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The EXAFS signal for a coordination shell in the single scattering approximation can
be parametrised in terms of the cumulants of the effective distribution [Bunker, 1983,
Crozier et al., 1988]:

χs(k) = (S2
o/k) Ns |fs(k, π)| exp

(
Co − 2k2C2 + 2k4C4/3− 4k6C6/45 ...

)
× sin

[
2kC1 − 4k3C3/3 + 4k5C5/15 ...+ φ(k)

]
. (4.9)

Odd and even cumulants determine phase and amplitude of the EXAFS signal, respectively. The
first and second cumulants, C1 = 〈r〉 and C2 = σ2 = 〈(r − 〈r〉)2〉 are the average value and the
variance of the effective distribution, respectively. Higher order cumulants quantify the deviation
of the distribution from the gaussian shape; the third cumulant C3 = 〈(r − 〈r〉)3〉 is a measure of
the distribution asymmetry.
We have intriduced above the cumulants Ci of the effective distribution P (r, λ), while one is
interested in the cumulants C∗i of the real distribution ρ(r).
The effective distribution is not normalized to one; the normalization factor can be approximated
as

exp(Co) = exp(−2C1/λ)/C2
1 . (4.10)

Different procedures for connecting the cumulants of the real and of the effective distributions
(C∗n and Cn, respectively) have been proposed, limited to the first cumulant [Freund et al., 1989,
Bunker, 1983] or extended to higher order cumulants [Fornasini et al., 2001]. A relatively good
approximation is obtained by the recursion formula [Vaccari, 2006, Vaccari et al., 2007]

C∗n ∼ Cn + 2Cn+1

(
1/C1 + 1/λ

)
for n = 1, 2, 3, . . . (4.11)

The difference between the first cumulants (n = 1) of the real and effective distributions is sig-
nificant and Eq. (4.11) is included in most data analysis packages. For higher order cumulants
(n ≥ 2), the difference is smaller and is frequently neglected.

Example: Let us give quantitative evaluations for CdTe and Cu. The difference of first cumulants
is 7.2 × 10−3 Å for CdTe at 300 K and 1.2 × 10−3 Å for Cu at 500 K. The relative differ-
ence of second cumulants, evaluated through eq. (4.11) and checked by reconstructing the
distributions and evaluating their cumulants, is 1.6 % for CdTe at 300 K and 3.5 % for Cu at
500 K.

The lowest-order EXAFS cumulants C∗n are related to the initial and central moments of the real
distribution by

C∗1 = 〈r〉 (4.12)

C∗2 = µ2 =
〈
(r − 〈r〉)2

〉
(4.13)

C∗3 = µ3 =
〈
(r − 〈r〉)3

〉
(4.14)

C∗4 = µ4 − 3µ2
2 =

〈
(r − 〈r〉)4

〉
− 3µ2

2 (4.15)

can thus be evaluated as averages over a canonical ensemble.

Different definitions of cumulants

1. In the present approach, the cumulants characterise the shape of the distribution of distances;
in particular, the first EXAFS cumulant is the average value of the distribution ρ(r), C∗1 = 〈r〉.
For nearest-neighbours, C∗1 is the bond-length.
In many cases, one measures the relative values of the first cumulant with respect to a
reference spectrum, for example in temperature-dependent measurements δC∗1 = C∗1 (T ) −
C∗1 (T0).

2. The first cumulant has been alternatively defined as the average difference between the in-
stantaneous distance r and the average distance of a reference spectrum, for example in
[Stern et al., 1992].
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3. Yokoyama, in [Yokoyama et al., 1996], defines the cumulant expansion through

〈exp(2ikr)〉 = exp

[
2ikR0 +

∑
n

(2ik)n

n!
Cn

]
(4.16)

where R0 is the position of the minimum of the potential (“rest position”), assumed to be
temperature independent. Accordingly, the first cumulant is C1 = 〈(r −R0)〉 = 〈x0〉.
With respect to our approach, the distribution is only shifted, the second and higher or-
der cumulants are unchanged [verify!!]. In [Yokoyama et al., 1996] the difference between
cumulants of the effective and real distributions is considered negligible even for the first
cumulant.

4. In [Fujikawa and Miyanaga, 1993], the cumulants Mn are directly defined in eq. (2.10) in
terms of the relative atomic displacements with respect to the rest positions:

〈exp(2ik∆α)〉 = exp

[∑
n

(2ik)n

n!
Mn

]
(4.17)

where (rewritten in our notation)

∆α = R̂0 · (~u0
b − ~u0

a) = ∆u0
‖ , (4.18)

~u0 are the instantaneous atomic displacements with respect to the rest positions and ~R0 is
the rest distance. The relations between cumulants and ∆α are given in eq. (2.11):

M1 = 〈∆α〉 , M2 = 〈∆2
α〉 − 〈∆α〉2 , M3 = 〈∆3

α〉 − 3〈∆2
α〉〈∆α〉+ 2〈∆α〉3 (4.19)

Only the atomic displacements parallel to the bond direction are considered.

Relevance of the one-dimensional model

The study of the simple two-atomic system, besides its possible direct interest (dynamics of two-
atomic molecules) is important also for understanding the behaviour of larger systems (like crys-
tals), since in any case EXAFS samples a unidimensional distribution of distances.
In the following, we will first consider the harmonic approximation and then introduce the effects of
anharmonicity. In both cases, we will separate the classical approach from the quantum approach.

4.1.3 Classical harmonic oscillator

For an harmonic oscillator, the equilibrium positionR0 corresponds to the minimum of the potential
energy. The displacement of r with respect to R0 depends on time according to

x(t) = r(t)−R0 = A cos(ωt) . (4.20)

The total energy of the classical harmonic oscillator is Ecl = k0A
2/2.

The time-averaged displacement is 〈x〉 = 0, and the time-averaged value of x2 is

〈x2〉 = A2 1

2π

∫ 2π

0

cos2(ωt) d(ωt) =
A2

2
=

Ecl

k0
. (4.21)

Let us now consider a classical harmonic oscillator in thermal equilibrium with a reservoir at
temperature T = 1/kBβ (or equivalently a statistical canonical ensemble of classical harmonic
oscillators at the temperature T ).
In the classical approximation, the canonical average of a quantity A is given by

〈A〉 =

∫
dxAe−βV (x)∫
dx e−βV (x)

. (4.22)
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The average energy of the harmonic oscillator is, according to the theorem of equipartition:

〈Ecl〉 = kBT (4.23)

where kB is the Boltzmann constant. The average energy linearly depends on temperature (con-
tinuous line in Fig. 4.1, left) and is independent of force constant and reduced mass.
The average of the squared amplitude of vibration is thus

〈A2〉 =
2〈Ecl〉
k0

(4.24)

and the variance of the canonical distribution of x is

σ2 = 〈x2〉 =
〈A2〉

2
=
〈Ecl〉
k0

=
kBT

k0
. (4.25)

The variance of x, corresponding to the second cumulant C∗2 or Debye-Waller exponent,

- depends linearly on temperature, like the average energy;

- contrary to the energy, it depends also on the force constant, and then, via Eq. (4.5), on
reduced mass and frequency.

4.1.4 Quantum harmonic oscillator - Cumulants

In harmonic approximation, the full hamiltonian operator is

Ĥ0 = T + V (x) = p2/2µ+ k0 x
2/2. (4.26)

A more detailed quantum treatment of the harmonic oscillator is given in Appendix D.5. The
results there obtained can be used here, provided the mass m is substituted by the reduced mass
µ. One can show that, when the harmonic oscillator is in thermal equilibrium with a reservoir at
temperature T = 1/kBβ, the average energy is given by

〈E〉 = h̄ω

[
1

2
+

1

eβh̄ω − 1

]
, (4.27)

where ω =
√
k0/µ.

The temperature dependence of the average energy is shown in the left panel of Fig. 4.1; its main
properties are:

- When T → ∞ (β → 0), then 〈E〉 → kBT , independent of k0 and µ, say independent of ω
(classical approximation).

- When T → 0 (β →∞), then 〈E〉 → h̄ω/2 = (h̄/2)
√
k0µ (zero point energy). The zero point

energy is proportional to the angular frequency ω; for a given force constant k0, the zero
point energy depends on the reduced mass µ (isotopic effect).

A characteristic temperature θ can be associated to the angular frequency: θ = h̄ω/kB = hν/kB .
Numerically, θ [K] = 47.99 ν [THz].

Distribution and cumulants

Making use again of the treatment of Appendix D.5, one can show that the distribution of distances
for a quantum harmonic oscillator has a gaussian shape

ρ(r) = (1/σ
√

2π) e−(r−R0)2/2σ2

; ρ(x) = (1/σ
√

2π) e−x
2/2σ2

(4.28)

The first cumulant C∗1 of the real distribution ρ(r), taking into account Eq. (D.70), is

C∗1 = 〈r〉 = 〈R0 + x〉 = R0 + 〈x〉 = R0. (4.29)
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Figure 4.1: Average energy (left) and variance (right) σ2 of an harmonic oscillator for different
values of frequency ν = ω/2π (3 THz, circles; 7 THz, squares) and reduced mass (20 amu, open
symbols; 30 amu, full symbols).

It then corresponds to the position of the minimum of the potential energy R0; there is no thermal
expansion.

The second cumulant C∗2 is the variance σ2 of the gaussian distribution ρ(r), say the mean
square relative displacement (MSRD) of absorber and backscatterer atoms.

C∗2 = σ2 =
〈
(r − 〈r〉)2

〉
= 〈x2〉. (4.30)

Defining z = exp(−βh̄ω) and remembering that σ2
0 = h̄/2µω, it is easy to calculate σ2, which can

be expressed in different equivalent ways:

σ2 = σ2
0

1 + z

1− z
= σ2

0 coth

(
βh̄ω

2

)
=

h̄

µω

[
1

2
+

1

eβh̄ω − 1

]
. (4.31)

Numerically,

σ2 =
0.505379

ν µ
coth(23.9962 ν/T ) ,

where σ2 is measured in Å2, the frequency ν = ω/2π in THz and the reduced mass µ in atomic
mass units.

Comparing Eqs. (4.27) and (4.31) one can see that

σ2 = 〈E〉/k0 = 〈E〉/µω2 . (4.32)

The temperature dependence of σ2 is shown in the right panel of Fig. 4.1, and is characterized by
the following behaviour.

a) When T → 0, then σ2 → σ2
0 = h̄/2

√
k0µ = h̄/2µω. The zero point amplitude of vibrations,

for a given force constant k0, depends on the reduced mass µ (isotopic effect). Numerically
(σ2

0 in Å2, ν in THz, µ in amu):

σ2
0 =

h̄

2µω
=

0.505379

νµ

The isotopic effect on the EXAFS Debye-Waller factor has been experimentally detected for
germanium [Purans et al., 2008].

b) When T → ∞, then σ2 → σ2
∞ = kBT/k0 = kBT/µω

2. The slope of σ2
∞(T ) is inversely

proportional to the force constant k0, and thus depends on ω. Numerically (σ2
0 in Å2, ν in

THz, µ in amu):

σ(∞) =
0.0210593

ν2µ
T
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At last, the 3rd cumulant, corresponding to the third central moment, is zero, C∗3 = 〈x3〉 = 0.
Also higher order cumulants are zero for the gaussian real distribution.

The cumulants Cn of the effective distribution are different from those of the real distribution (see
§ 3.6). The difference is generally significant only for the first cumulant.

4.1.5 Anharmonicity, classical approximation

Let us now consider an anharmonic potential energy, expressed through the series expansion (4.3)

V (x) = k0 x
2 / 2 + k3 x

3 + k4 x
4 . . . (4.33)

where again x = r − R0 and R0 is the position of the minimum of the potential energy (conven-
tionally referred to as “rest position”). Note, however, that for the classic anharmonic oscillator
R0 corresponds to the equilibrium position only for T = 0.
The 3rd-order force constant is generally negative, k3 < 0.
In the classical approximation, the EXAFS cumulants (E.30-E.33) can be expressed as a function
of the lowest order force constants of the potential V (x) by calculating the average values through
the classical formula

〈A〉 =

∫
dxAe−βV (x)∫
dx e−βV (x)

. (4.34)

where

A1 = δC∗1 = 〈x〉 = 〈x〉 − r0 (4.35)

A2 = C∗2 = (x− 〈x〉)2 = (r − 〈r〉)2 (4.36)

A3 = C∗3 = (x− 〈x〉)3 = (r − 〈r〉)3 (4.37)

and so on. One obtains [Stern et al., 1991]:

δC∗1 (T ) = − 3k3

k2
0

kBT −
3k3

k4
0

(
45k2

3

k0
− 32k4

)
(kBT )2 + ... (4.38)

C∗2 (T ) =
kBT

k0
+

3

k3
0

(
12k2

3

k0
− 4k4

)
(kBT )2 + ... (4.39)

C∗3 (T ) = − 6k3

k3
0

(kBT )2 − 36sk3

k5
0

(
24k2

3

k0
− 14k4

)
(kBT )3 + ... (4.40)

C∗4 (T ) =
12

k4
0

(
9k2

3

k0
− 2k4

)
(kBT )3 + ... (4.41)

A calculation extended to the 5th-order force constant is reported in the PhD Thesis of Tranquada
[Tranquada, 1983]; the results up to the 4th-order force constant coincide with the results of Stern.
Eq. (4.38) corresponds to Eq. (5.13) of Brüesch [Brüesch, 1982].
From Eqs. (4.38–4.41) one can draw the following conclusions for the classical approximation:

1. The thermal expansion δC∗1 is, to first order, proportional to the temperature T and to the
3rd-order force constant k3. For T = 0, δC∗1 = 0.

2. The second cumulant C∗2 is, to first order, proportional to temperature: C∗2 = σ2
∞ = kBT/k0.

The first order term is purely harmonic; anharmonicity is taken into account by higher order
terms.

3. The third cumulant C∗3 is, to first order, proportional to the square of temperature.

4. The fourth cumulant C∗4 is, to first order, proportional to the cube of temperature.

5. By comparing the first-order expressions of the first two cumulants, one can see that (always
to first order)

δC∗1 = − 3k3

k0
C∗2 (4.42)

The same formal expression is found from the quantum treatment (see below).
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Figure 4.2: First three cumulants for the Bromine molecule Br2, calculated in the classical
approximation through Eqs. (4.38–4.41), using the force constants k0 = 15.28 eV/Å2, k3 = -10.96
eV/Å3, k4 = 6.6 eV/Å4 from [Huber and Herzberg, 1979]. Continuous and dashed lines are 1st
and 2nd order approximations, respectively.

6. By comparing the first-order expressions of the first three cumulants, one can see that (always
to first order)

δC∗1 = C∗3/2C
∗
2 (4.43)

This relation has sometimes been used to evaluate the thermal expansion in crystals directly
from the third cumulant [Tröger et al., 1994].

A realistic example of the temperature dependence of the first three cumulants in the classical
approximation (4.38)–(4.40) , including the second order terms, is given in Fig. 4.2 for the bromine
molecule Br2. The force constants k0, k3, k4 from vibrational spectra [Huber and Herzberg, 1979]
quoted by [Yokoyama, 1999] have been used; the force constant k0 and k3 are in good agreement
with the experimental values from [Yokoyama et al., 1996].

4.1.6 Anharmonicity, quantum treatment

Quantum perturbative treatment

A quantitative relation between EXAFS cumulants and force constants for a system with
one degree of freedom has been proposed by Frenkel and Rehr up to the third cumulant
[Frenkel and Rehr, 1993] and extended by Yokoyama up to the fourth cumulant and to higher
approximation orders for the second cumulant [Yokoyama et al., 1996, Yokoyama, 1999]. It is
based on the perturbative approach of Ref. [Feynman, 1972], shortly treated in Appendix D.4.

Basically, the unperturbed Hamiltonian contains the potential energy of the harmonic oscillator
and one defines again

ω =
√
k0/µ, σ2

0 = h̄/2µω, z = e−βh̄ω, (4.44)

Numerically, if the frequencies ν = ω/2π are measured in THz and the reduced masses µ in a.m.u.

k0 = 4.093× 10−3 µν2 , σ2
0 = 0.505

1

µν
, z = exp

[
−48

ν

T

]
.

The following approximate expressions for the leading cumulants have been found.

1. The variation of the 1st cumulant δC∗1 = 〈r〉 −R0 = 〈x〉 is, to first order,

δC∗1 = − 3k3σ
2
0

k0

1 + z

1− z
+ . . . (4.45)

Note that, for the quantum oscillator, δC∗1 is not zero event for T = 0, owing to zero point
energy.
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Equation (4.45) corresponds to (15) of [Frenkel and Rehr, 1993], where a = δC∗1 , to (19) of
[Yokoyama et al., 1996] and to (8) of [Yokoyama, 1999].

2. The 2nd cumulant can be expressed as a sum C∗2 ' C
(0)
2 +C

(1)
2 +C

(2)
2 , where the zero-order

term (harmonic) is

C
(0)
2 = σ2

0

1 + z

1− z
, (4.46)

the 1st-order term (negative if k4 > 0) is

C
(1)
2 = − 12 k4σ

6
0

h̄ω

(1 + z)2

(1− z)2
− 24 k4σ

6
0

kBT

z(1 + z)

(1− z)3
(4.47)

and the 2nd-order term (positive) is

C
(2)
2 =

4 k2
3σ

8
0

(h̄ω)2

13z2 + 58z + 13

(1− z)2
+

120 k2
3σ

8
0

h̄ωkBT

z(1 + z)

(1− z)3
. (4.48)

Equation (4.46) corresponds to (11) of [Frenkel and Rehr, 1993].

Equations (4.46) and (4.47) correspond to (20) of [Yokoyama et al., 1996] and to (10) and
(11) of [Yokoyama, 1999].

The second order term (4.48) corresponds to (12) of [Yokoyama, 1999] (where however a
factor 24 appears instead of 120 in the second term).

3. The 3rd cumulant is, to first order,

C∗3 = − 2k3σ
4
0

k0

z2 + 10z + 1

(1− z)2
+ . . . (4.49)

Equation (4.49) corresponds to (18) of [Frenkel and Rehr, 1993], to (21) of
[Yokoyama et al., 1996] and to (13) of [Yokoyama, 1999].

4. The 4th cumulant can be expressed as a sum C∗4 ' C
(1)
4 + C

(2)
4 , where the 1st-order term

(negative if k4 > 0) is

C
(1)
4 = − 12 k4σ

8
0

h̄ω

z3 + 9z2 + 9z + 1

(1− z)3
− 144 k4σ

8
0

kBT

z2

(1− z)4
(4.50)

and the 2nd-order term (positive) is

C
(2)
4 =

12 k2
3σ

10
0

(h̄ω)2

5z3 + 109z2 + 109z + 5

(1− z)3
+

720 k2
3σ

10
0

h̄ωkBT

z2

(1− z)4
. (4.51)

Equation (4.50) corresponds to (22) of [Yokoyama et al., 1996] and to (15) of
[Yokoyama, 1999] (where however (h̄ω)2 appears instead of h̄ω as a denominator in the first
term).

The second order term (4.51) corresponds to (16) of [Yokoyama, 1999].

A comparison between the quantum treatment and the classical approximation at the lowest order
terms is given in Fig. 4.3 for the case of the Br2 molecule, again using the force constants from
vibrational spectra [Huber and Herzberg, 1979] quoted by [Yokoyama, 1999].
The coefficients of thermal expansion for the Bromine molecule, calculated from the first-order
quantum approximation to the first cumulant (4.45) and from the first-order classical approxima-
tion (4.38) are compared in Fig. 4.4.

In a recent anharmonic analysis of temperature-dependent EXAFS data for CdTe , the harmonic
contribution C0

2 to the second cumulant has been found to correspond to 91% of the total at 300 K;
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Figure 4.3: First three cumulants for Br2 molecule, lowest order quantum calculations (continuous
lines) and classical approximation (dashed lines). The same force constants as in Fig. 4.2 have
been used.

Figure 4.4: Thermal expansion coefficient of
the Br2 molecule: first order quantum approx-
imation (continuous line) and first-order clas-
sical approximation (dashed line).
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the anharmonic contribution is mainly due to the terms C
(2)
2 which depend on k3; the terms C

(1)
2 ,

which depend on k4, are quite unimportant. As for the 4th cumulant, the two terms C
(2)
4 which

depend on k3, have been found to account for most of the fourth cumulant; the two terms C
(1)
4 ,

which depend on k4, give a very small contribution [Fornasini and Grisenti, 2015].

The quantum perturbative calculations have been further extended to the third order for the first,
second and fourth cumulants and to the fourth order for the third cumulant by [Haug et al., 2008]
in order to account for the high temperature anharmonicity effects.

Thermal expansion

By comparing Eq. (4.45) with Eq. (4.46) one can see that the thermal expansion of a system with
one degree of freedom can be expressed, to first order, as

δC∗1 = − 3k3

k0
C

(0)
2 . (4.52)

To our knowledge, this relation has been for the first time proposed by [Frenkel and Rehr, 1993].
It can however be obtained even in the classical approximation. It is accurate, to first order, for
unidimensional systems (two-atomic molecules), but is unsuitable for many-dimensional systems
(see below).

4.1.7 Comparison of classical and quantum approximations

Harmonic oscillator

Let us compare the quantum behaviour

σ2 =
0.523788

ν µ
coth(24.008 ν/T ) ,
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Figure 4.5: Second cumulant of CdTe. Left: classical approximation (4.39), total (continuous line)
and harmonic part (dashed line). Centre: quantum approximation (4.46)+(4.47)+(4.48), total
(continuous line) and harmonic part (dashed line). Right: comparison of the first anharmonic
contributions depending on k3 and on k4: the classical and quantum expressions give very similar
results.

with its classical approximation

σ(∞) =
0.0218278

ν2µ
T

at 300 K in Table 4.1 for some systems. The case of Bromine is represented in Fig. 4.3. As one
can see, the difference can be non negligible for accurate interpretations.

Table 4.1: Comparison between the quantum and classical approximations for the evaluation of
cumulants.

Harmonic
ν0 [THz] µ [amu] σ2

qua − σ2
cla [%]

Ge 7.7 35.0 11.1
Br 6.83 79.9 9.1
Cu 4.96 31.8 4.9
CdTe 3.86 59.76 3.35

Anharmonic contributions

The anharmonic analysis of the second cumulant of CdTe[Fornasini and Grisenti, 2015] has led to
determine the force constants k0 = 4.01 eV/Å2, k3 = −2.69 eV/Å3 and k4 = −0.36 eV/Å4.

By means of (4.39) one can reconstruct the different contribution to the second cumulant in the
classical approximation (Fig. 4.5, left).

By means of (4.46)+(4.47)+(4.48) one can reconstruct the different contribution to the second
cumulant in the quantum approximation (Fig. 4.5, centre).

The classical and quantum approximation are in good agreement at high temperatures, the discrep-
ancy at low temperatures being mainly due to the harmonic term. The anharmonic corrections are
very similar for the classical and the quantum approximations (Fig. 4.5, right); for both approxi-
mations, the contributions of the terms depending on K3 are much larger than the contributions
of the terms depending on k4.
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4.1.8 Atomic displacements in two-atomic systems

We consider now the relation between the interatomic potential and the atomic displacements for
a two-atomic molecule, as a particular case of the general Born-von Karman expansion of a crystal
potential (from [Leibfried and Ludwig, 1961], page 282, linear chain, particular case of two atoms).

This approach is preliminary for a better understanding of the interpretation of cumulants in
many-atomic systems of next § 4.2 and 4.3 (see also [Fujikawa and Miyanaga, 1993]).

Let us consider two different expansions of the potential energy V (r) in powers of the relative
atomic displacements, one with respect to the rest distance, the other with respect to the mean
distance.

To this purpose, it is convenient to distinguish:

1. The rest positions r0
a and r0

b of the two atoms and the rest distance R0 = r0
b − r0

a.

2. The mean positions ra and rb of the two atoms and the mean distance R = rb − ra.

Power expansion with respect to the rest distance R0

The rest distance R0 is the position of the minimum of V (r).

Let u0
a and u0

b be the instantaneous atomic displacements from the rest positions and let ∆u0 =
u0
b − u0

a. The instantaneous distance is

r = R0 + x0 = R0 + ∆u0 (4.53)

The potential energy is expanded as

V (r) = V (R0 + ∆u0) (4.54)

= V (R0) +

(
dV

d∆u0

)
0

∆u0 +
1

2

(
d2V

d∆u2
0

)
0

(∆u0)2 +
1

3!

(
d3V

d∆u3
0

)
0

(∆u0)3 + . . . (4.55)

= V (R0) +
1

2

(
d2V

d∆u2
0

)
0

(∆u0)2 +
1

3!

(
d3V

d∆u3
0

)
0

(∆u0)3 + . . .

The first derivative at the position of potential minimum is zero. We recover the expression (4.33)
of the pair interaction potential.

The average distance, first EXAFS cumulant, is

C∗1 = 〈r〉 = R0 + 〈x0〉 = R0 + 〈∆u0〉 (4.56)

Power expansion with respect to the average distance R

Let ua and ub be the instantaneous atomic displacements from the mean positions and let ∆u =
ub − ua. The instantaneous distance is

r = R+ x = R+ ∆u . (4.57)

The expansion of the potential energy now corresponds to the Born-von Karman expansion

V (r) = V (R+ ∆u) (4.58)

= V (R) +

(
dV

d∆u

)
av

∆u+
1

2

(
d2V

d∆u2

)
av

(∆u)2 +
1

3!

(
d3V

d∆u3

)
av

(∆u)3 + . . .

This expression doesn’t correspond to the expression (4.33) of the pair interaction potential.

The average distance, first EXAFS cumulant, is

C∗1 = 〈r〉 = R+ 〈x〉 = R+ 〈∆u〉 (4.59)
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Harmonic approximation

In the harmonic approximation, the mean positions and rest positions coincide and R = R0.
As a consequence, x = x0, ui = u0

i , ∆u = ∆u0

The average values
〈∆u0〉 = 〈x0〉 = 0 , 〈∆u〉 = 〈x〉 = 0 (4.60)

so that
C∗1 = R0 = R (4.61)

There is no thermal expansion:
δC∗1 = 〈∆u〉 = 0 . (4.62)

Second cumulant: since r = R+ ∆u and 〈∆u〉 = 0,

C∗2 =
〈
(r − 〈r〉)2

〉
=
〈
(r −R)2

〉
= 〈∆u2〉 = 〈∆u2

0〉 (4.63)

Third cumulant: due to the symmetry of the potential and of the distribution,

C∗3 =
〈
(r − 〈r〉)3

〉
=
〈
(r −R)3

〉
= 〈∆u3〉 = 〈∆u3

0〉 = 0 (4.64)

Note: Shorthand notation: 〈∆u2〉 = 〈(∆u)2〉.
Distributions:

a) The distributions of atomic positions around their rest positions ra and rb are gaussian.

b) The distribution ρ(r) of the distance r = rb − ra is gaussian.

Anharmonic potential

For the anharmonic molecule, the potential energy is not symmetric with respect to R0. The
distributions of atomic positions and of interatomic distance are not symmetric.
Average positions and rest positions of the two atoms are different, R 6= R0 and different are the
expressions of cumulants in terms of the relative atomic displacement.
As a consequence, x 6= x0, ui 6= u0

i and ∆u 6= ∆u0.
The standard Born-von Karman expansion is relative to the average positions, not to the rest
positions (in the present case, it would be relative to the average distance R, not to the rest
distance R0).

1. Expansion with respect to the rest distance.
The oscillations of atoms are asymmetric, and since R0 is not the mean position, 〈∆u0〉 6= 0;
for two equal masses, 〈u0

b〉 = −〈u0
a〉 6= 0.

The first cumulant is again
C∗1 = 〈r〉 = R0 + 〈∆u0〉 . (4.65)

The thermal expansion is
δC∗1 = δ〈∆u0〉 . (4.66)

The second cumulant, since r = R0 + ∆u0 and 〈∆u0〉 6= 0, is

C∗2 =
〈
(r − 〈r〉)2

〉
= 〈r2〉 − 〈r〉2

=
〈
(∆u0 − 〈∆u0〉)2

〉
= 〈∆u2

0〉 − 〈∆u0〉2 (4.67)

say it is the variance of the distribution of ∆u0 values with respect to its non-zero average.
The third cumulant, again since r = R0 + ∆u0 and 〈∆u0〉 6= 0, is

C∗3 =
〈
(r − 〈r〉)3

〉
= 〈r3〉 − 3〈r2〉〈r〉+ 2〈r〉3

=
〈
(∆u0 − 〈∆u0〉)3

〉
= 〈∆u3

0〉 − 3〈∆u2
0〉〈∆u0〉+ 2〈∆u0〉3 (4.68)

The expressiond for C∗2 and C∗3 coincide with eq. (2.11) of [Fujikawa and Miyanaga, 1993],
where the displacements are evaluated with respect to the rest positions.



70 P. Fornasini - X-ray Absorption Spectroscopy

2. Expansion with respect to the average distance.
The oscillations of atoms are asymmetric, but the average displacement with respect to the
mean position is always zero, so that 〈ub〉 = 〈ua〉 = 0, and 〈∆u〉 = 0.
The first cumulant is

C∗1 = 〈r〉 = R . (4.69)

The thermal expansion is
δC∗1 = δR . (4.70)

The second cumulant, since r = R+ ∆u, R = 〈r〉 and 〈∆u〉 = 0, is

C∗2 =
〈
(r − 〈r〉)2

〉
=
〈
(r −R)2

〉
= 〈∆u2〉 ; (4.71)

it is the variance of the distribution of ∆u values with respect to the zero average.
The third cumulant is

C∗3 =
〈
(r − 〈r〉)3

〉
=
〈
(r −R)3

〉
= 〈∆u3〉 (4.72)

4.2 Many-atomic systems

Let us now consider the interpretation of EXAFS cumulants in systems composed by more than
two atoms, say with more than one degree of freedom.
It seems convenient to distinguish different types of atomic aggregation:

a) Molecules

b) Unidimensional linear chain

c) Three-dimensional real crystals.

d) Non-crystalline solids and liquids.

For each type of system, we explore

- the harmonic approximation and the anharmonicity effects,

- the relation between total potential, effective pair potential and single pair potential

- the third cumulants and its connection to normal vibrations

An EXAFS experiment gives unidimensional information, expressed in terms of a unidimensional
distribution of distances; here we will refer to the real distribution ρ(r).
For the two-atomic molecule, the unidimensional distribution and its cumulant can be directly con-
nected to the single-pair interaction potential, both in the harmonic approximation and including
anharmonicity, as it was seen in § 4.1.
For many-atomic systems, the problem arises of finding the relation between the three-dimensional
structure of the N -atomic system and the unidimensional distribution sampled by EXAFS.

4.2.1 Molecules

Triatomic linear molecules

Non-linear molecules

4.2.2 The one-dimensional linear chain

We assume that atoms can move only along the direction of the chain, not in perpendicular
directions.
The total potential energy can be expanded in terms of atomic displacements (Born-von Karman
expansion)

V = V0 +
∑
n

(
∂V

∂un

)
{R}

un +
1

2

∑
nn′

(
∂2V

∂un∂un′

)
{R}

unun′

+
1

3!

∑
nn′n′′

(
∂3V

∂un∂un′∂un′′

)
{R}

unun′un′′ + . . . (4.73)
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where

- the partial derivatives are evaluated at the configuration of mean atomic positions {R}
- the displacements u are with respect to the mean atomic positions {R}

We consider only nearest-neighbours interactions.
For the statistical treatment, see for example [Miyanaga and Fujikawa, 1994].

Harmonic approximation

The nearest neighbours interaction is modelled by harmonic springs. The single-bond potential
energy is quadratic, the force linearly depends on the displacements.

- No thermal expansion when temperature is changed

- Gaussian distributions of atomic positions at a given T

- Gaussian distributions of inter-atomic distances at a given T

Anharmonicity effects

The nearest neighbours interaction is modelled by anharmonic springs (k3 < 0).

- Positive expansion of the inter-atomic distance when temperature is changed

- Distributions of atomic positions around the mean values at a given T is gaussian for sym-
metry reasons

- Distributions ρ(r) of inter-atomic distances at a given T : according to the quantum pertur-
bative calculations of [Miyanaga and Fujikawa, 1994] based on a single-pair Morse potential,
the distribution is asymmetric and the 3rd cumulant is different from zero.

4.2.3 3-dimensional Crystals

Let us summarise here the main problems encountered when interpreting EXAFS in crystals.

Inter-atomic distances and thermal expansion

For crystals, from the experimental point of view it is important to understand the relations
between the three distances and the relative thermal expansions which can be measured by EXAFS
and elastic scattering of X-rays (or neutrons)

1. Distance between average atomic positions in crystals and corresponding thermal expansion,
which, for crystals without internal coordinates, are proportional to the lattice parameter
and its thermal expansion, respectively, measured by elastic scattering experiments.

2. Bond distance and bond thermal expansion in crystals, measured by the 1st EXAFS cumulant
C∗1 and corresponding to the average value of the distribution of instantaneous distances ρ(r)
and its expansion.

3. Thermal expansion evaluated from the 3rd cumulant in the unidimensional model according
to (4.52): a = −(3k3/k0)C2 [Frenkel and Rehr, 1993].

A comparison of the three different thermal expansions for different systems is shown in Fig. 4.6.

- The bond expansion measured by EXAFS is always larger than the expansion evaluated from
the measurement of lattice expansion by elastic scattering; this difference can be accounted
for by the effect of perpendicular vibrations (see below).

- Less trivial is to understand the relation between the meaning of the expansion evaluated
from the asymmetry of the distribution and its relation with the other two expansions. The
difference between the relative expansions δC∗1 and δa corresponds to a break-down of the
model for one degree of freedom to interpretat three-dimenasional situations.
Note also that the expression a = −(3k3/k0)C2 [Frenkel and Rehr, 1993] gives the absolute
expansion for a unidimensional system; in Fig. 4.6 only relative expansions are compared
(vertical axis arranged to have a zero value for the three different expansions at T = 0).



72 P. Fornasini - X-ray Absorption Spectroscopy

0 100 200 300

Dc1* %
Da %
Dr %

T (K)

Ge-70

0 100 200 300

DC1* %
Da %
Dr %

0 100 200 300

T (K)

GaAs

0 100 200 300

Te DC1* %
Te Da %
Te Dr %

T (K)

CdTe

0

0.2

0.4

0 100 200 300

Cu DC1* %
Cu Da % short
Cu Dr %

%
 e

xp
an

si
on

T (K)

Cu

Comparison of relative thermal expansions: 
a) from first EXAFS cumulant (circles) 
b) from third cumulant (Frenkel-Rehr) (diamonds) (Cu up to 300K)
c) from lattice expansion (crystallographic expansion) (continuous line)

Figure 4.6: Thermal expansions measured for Cu [Fornasini et al., 2004], Ge [Purans et al., 2008],
GaAs [Abd el All et al., 2012] and CdTe [Ahmed et al., 2013] : from first EXAFS cumulant δC∗1
(circles), from the asymmetry of the distance distribution δa, with a = −(3k3/k0)C2 (diamonds)
and from elastic scattering (continuous line) [Touloukian et al., 1977].

A comparison of the thermal expansion coefficients would be free from the problems related to the
differences in absolute values of the different distances at T = 0.

Potential energies

A correlated problem is the relation between three types of potential energy:

1. The single-pair interaction potential energy

2. The effective pair potential energy, say the potential energy of interaction of a pair of atoms
embedded into a crystalline (or non-crystalline) structure

3. The total potential energy, which for a crystal is generally expressed in terms of the Born-
von Karman expansion in powers of the atomic displacements.

Examples? Lennard-Jones and Coulomb single-pair potentials?

Harmonic approximation and anharmonicity

The meaning of harmonic approximation is different for the different potential energies considered
above. For example, an harmonic single-pair potential doesn’t correspond to an harmonic crystal
potential, and would give origin to a negative lattice thermal expansion [Barron, 1957].
The lattice thermal expansion is connected to the Born- von Karman anharmonicity of the crystal
potential energy.

Crystals: information from Bragg diffraction

The difference and complementarity of diffraction and EXAFS can be traced back to the different
nature of the scattering process and therefore to the different sensitivity to the correlation of atomic
thermal motion.
Powder diffraction experiments allow measuring the mean cell parameters and their temperature
dependence, derived from the probed ensemble of coherently diffracting crystalline domains. For
systems with atoms only in special positions [??], the distances R = |〈~ra〉 − 〈~rb〉| between the
average positions in space of any two atoms can be obtained from the cell parameters by direct
proportionality. It has recently been shown that it is possible to measure the anisotropic displace-
ment parameters (ADP) Uij from Rietveld refinement of good quality powder diffraction data, even
if this kind of refinement is more common from neutron data [David et al., 1992, Kennedy, 1995]
than from X-ray data [Dusek et al., 2001, Artioli, 2002]. From the ADPs, the MSDs along selected
directions can be calculated, for example the MSDs parallel and perpendicular to a given bond
direction, U|| and U⊥ respectively.
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General properties of three-dimensional distributions of distances

See [Stern, 1997] and [Fornasini et al., 2001].

4.3 3D Atomic displacement expansion

4.3.1 Instantaneous inter-atomic distance in EXAFS

Let ~R = 〈~rb〉 − 〈~ra〉 be the average positions of atoms a and b and let ~ua and ~ub the instantaneous
thermal displacements of the absorber and back-scatterer atoms, respectively, from their average
positions. The instantaneous inter-atomic vector distance is then (Fig. 4.7)

~r = ~R+ ∆~u, (4.74)

where ∆~u = ~ub − ~ua is the relative displacement with respect to the average vector distance.
The instantaneous scalar distance r is expressed as:

r = |~R+ ∆~u| =

[(
~R+ ∆~u

)2
]1/2

= R

[
1 + 2R̂ · ∆~u

R
+

∆u2

R2

]1/2

, (4.75)

where R̂ = ~R/R.
It is now convenient to introduce the projections of the instantaneous relative displacement ∆~u
parallel and perpendicular to the inter-atomic bond:

∆u‖ = R̂ ·∆~u; (∆u⊥)2 = (∆u)2 − (∆u‖)
2 , (4.76)

so that R̂ ·∆~u = ∆u‖ in (4.75).

From now on, to simplify notation, we use the short-hand expressions

∆u2 , ∆u2
‖ ∆u2

⊥ (4.77)

as substitute of the more precise expressions

(∆u)2 , (∆u‖)
2 (∆u⊥)2 . (4.78)

We can now expand (4.75) making use of the general form of the binomial series

(1 + x)α =

∞∑
n=0

(
α

n

)
xn ,

where (
α

n

)
=

α (α− 1) · · · (α− n+ 1)

n!
,

(
α

0

)
= 1

are the generalised binomial coefficients. For α = 1/2,

(1 + x)1/2 =

∞∑
n=0

(
1/2

n

)
xn = 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ · · · (4.79)

For the present case of (4.75),

x =
2∆u‖

R
+

∆u2

R2
.

Note: The values 2∆u‖/R and ∆u2/R2 in (4.75) can be estimated from the measured root-mean-
square values of the parallel and perpendicular displacements. The values for some systems
at 300 K are listed in Table 4.2.



74 P. Fornasini - X-ray Absorption Spectroscopy

Table 4.2: Experimental estimate of the values 2∆u‖/R and ∆u2/R2 from the measured parallel
and perpendicular MSRDs at 300 K for some systems.

Cu Ge GaAs CdTe

2(〈∆u2
‖〉)

1/2/R 0.072 0.048 0.052 0.060

〈∆u2〉/R2 0.0043 0.0036 0.0053 0.0092

R!

!u||!

R!

!u||!

r! r!
!u"! !u"!

!u"
2/2R!

!u"
2/2R!

Figure 4.7: Schematic representation of the relation between the equilibrium distance ~R and the
instantaneous distance ~r = ~R+ ∆~u. Two cases with ∆u‖ > 0 and ∆U‖ < 0 are considered on the
left and on the right, respectively. The approximate geometrical extent of the term ∆u2

⊥/2R is
shown.

Truncating the expansion (4.79) at the fourth term one obtains

r ' R+ ∆u‖ +
∆u2

2R
−

∆u2
‖

2R
−

∆u‖∆u
2

2R2
− ∆u4

8R3

+
∆u3
‖

2R2
+

3∆u2
‖∆u

2

4R3
+

3∆u‖∆u
4

8R4
+

∆u6

16R6
.

Substituting ∆u2 = ∆u2
‖+∆u2

⊥ and considering only terms of order up to 1/R3, the instantaneous
scalar distance r is finally expressed as:

r ' R+ ∆u‖ +
∆u2
⊥

2R
−

∆u‖∆u
2
⊥

2R2
+

5∆u4
‖

8R3
− ∆u4

⊥
8R3

+
∆u2
‖∆u2

⊥

2R3
. (4.80)

Multiple scattering paths

For multiple scattering paths (4.80) has been generalised as follows by Poiarkova and Rehr
[Poiarkova and Rehr, 1999].

The equilibrium path is defined as

Rj =
1

2

nj∑
i=1

Rii+ , (4.81)

where j is the path index, Nj is the number of legs, i is the site (atom) index, i+ = i+ 1 and Rii+
is the equilibrium distance between sites i and i+ 1.

The instantaneous distance is

rj ' Rj +
1

2

nj∑
i=1

(~ui+ − ~ui) · R̂ii+ . (4.82)
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Note 1: The right-hand side of (4.82) corresponds to the first two terms of (4.80). Perpendicular
vibrations are not taken into account.

Note 2: In (4.82) the sign of the difference ~ui+ − ~ui has been reverted with respect to eq. (6) of
[Poiarkova and Rehr, 1999].

4.3.2 First cumulant. Mean interatomic distance

The first cumulant C∗1 of the real distribution of distances ρ(r) is the average value 〈r〉 of the
instantaneous distance expressed by (4.80). Let us now consider only the first four terms in the
right-hand side of (4.80).

Since we are considering displacements with respect to the average atomic positions, one has

〈~ua〉 = 〈~ub〉 = 〈R̂ · ~ua〉 = 〈R̂ · ~ub〉 = 0 (4.83)

so that the average relative displacement is zero:

〈∆u‖〉 = 〈R̂ · (~ub − ~ua)〉 = 〈R̂ · ~ub〉 − 〈R̂ · ~ua〉 = 0 . (4.84)

In addition, even
〈∆u‖∆u2

⊥ 〉 = 0 ; (4.85)

as a matter of fact, for any pair of displacements (~ua, ~ub), the pair (−~ub,−~ua) has the same
probability [?? only in harmonic aproximation??]. To the two opposite pairs it correspond equal
values ∆u2

⊥ but opposite values ∆u‖. For each value (∆u⊥)2, ∆u‖ can assume with the same
probability a positive value or its opposite.

In conclusion, one has
C∗1 = 〈r〉 ' R + 〈∆u2

⊥ 〉/2R (4.86)

The last term in (4.86) depends on the Mean Square Relative Displacement in direction normal to
the inter-atomic bond. It is always positive.

The first EXAFS cumulant C∗1 is always larger than the inter-atomic distance R; the difference
grows with temperature (Fig. 4.8, left). The term 〈∆u2

⊥ 〉 cannot be directly obtained from
experiment. It can however be calculated by inverting (4.86) if R is known from other techniques,
like Bragg diffraction.

4.3.3 Second cumulant, Parallel MSRD

The second cumulant is the variance of the distribution of distances ρ(r). For a given atomic pair,

C∗2 = σ2 = 〈(r − 〈r〉)2〉 = 〈r2〉 − 〈r〉2 . (4.87)

From the first three terms on the right-hand side of (4.80),

〈r2〉 ' R2 + 〈∆u2
‖〉+

〈∆u4
⊥〉

4R2
+ 2R〈∆u‖〉+ 〈∆u2

⊥〉+
〈∆u‖∆u2

⊥〉
R

(4.88)

and from (4.86)

〈r〉2 ' R2 +
[〈∆u2

⊥〉]2

4R2
+ 〈∆u2

⊥〉 . (4.89)

Taking into account (4.84) and (4.85), the difference between (4.88) and (4.89) gives, for an atomic
pair,

C∗2 ' 〈∆u2
‖〉 +

〈∆u4
⊥〉

4R2
−
[
〈∆u2

⊥〉
]2

4R2

' 〈∆u2
‖〉 +

1

4R2

{
〈∆u4

⊥〉 −
[
〈∆u2

⊥〉
]2}

(4.90)

According to (4.90), the variance of the distribution of r distances, say the second cumulant C∗2 ,
contains two main contributions:
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1. The leading contribution is the parallel MSRD (projection along the crystallographic bond
direction)

〈∆u2
‖ 〉 =

〈[
R̂ · (~ub − ~ua)

]2〉
(4.91)

2. The second contribution is the variance of the distribution of ∆u2
⊥, divided by 4R2.

This term would be zero only if ∆u2
⊥ = 〈∆u2

⊥〉; this case would correspond to a conic
pendulum with vertex on the absorbing atom, with 〈∆u2

‖〉 = 0.

For a comparison with the relative extent of the two terms, see Fig. 1 of [Fornasini et al., 2001],
where an additional term has been erroneously inserted in Eq. 4 with respect to the present (4.90);
the term has however no influence on the main results shown in the figure.
For most real cases, it seems that the second term can be neglected.

MSRD for multiple scattering paths

For multiple scattering paths, the parallel MSRD (4.91) has been generalised as follows by
Poiarkova and Rehr [Poiarkova and Rehr, 1999]

σ2
j =

1

4

〈[
nj∑
i=1

(~ui+ − ~ui) · R̂ii+

]2〉
, (4.92)

where the symbols have the same meaning as in (4.82).

4.3.4 Third cumulant, mean cubic relative displacement

The third cumulant is equal to the centred moment of order three of the distribution ρ(r):

C∗3 = 〈(r − 〈r〉)3〉 . (4.93)

Let us first evaluate the instantaneous value (r − 〈r〉)3, considering the first three terms of (4.80)
for r and (4.86) for 〈r〉:

(r − 〈r〉)3 =

[
∆u‖ +

∆u2
⊥

2R
− 〈∆u

2
⊥〉

2R

]3

(4.94)

By substituting

a = ∆u‖ , b =
∆u2
⊥

2R
c =
〈∆u2

⊥〉
2R

(4.95)

one finds
(r − 〈r〉)3 = a3 + 3a2(b− c) + 3a(b− c)2 + (b− c)3 . (4.96)

Let us now consider the average value 〈(r − 〈r〉)3〉.
The first term

〈a3〉 = 〈∆u3
||〉 = 〈[R̂ · (~ub − ~ua)]3〉 (4.97)

is not zero even if the vibrations are considered with respect to the average positions.
The second term

〈3a2(b− c)〉 = 3

[〈
∆u2
‖

∆u2
⊥

2R

〉
−
〈

∆u2
‖

〉 〈∆u2
⊥〉

2R

]
(4.98)

is zero is the values of ∆u2
‖ and of ∆u2

⊥ are statistically independent, because in this case the

average value of the product is equal to the product of average values [are they truly independent
??]
The third term

〈3a(b− c)2〉 = 3

〈
∆u||

[
∆u2
⊥

2R
− 〈∆u

2
⊥〉

2R

]2
〉

(4.99)

is probably zero, since (b− c) is an even function of the relative displacements. [verify...]
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The fourth term 〈
(b− c)3

〉
=

1

8R3

〈[
∆u2
⊥ − 〈∆u2

⊥〉
]3〉

(4.100)

is proportional to the mean cubic deviation of ∆u2
⊥ with respect to its average value; this term

establishes a connection between the third cumulant and the perpendicular vibrations in harmonic
approximation.

4.4 MSRD and vibrational dynamics

Let us consider the parallel MSRD (4.91) of a pair of atoms a − b (Single Scattering case). The
square can be expanded into the sum of three terms [Beni and Platzman, 1976]

〈∆u2
‖ 〉 = 〈(R̂ · ~ub)2〉 + 〈(R̂ · ~ua)2〉 − 2 〈(R̂ · ~ub)(R̂ · ~ua)〉. (4.101)

The first two terms are the independent Mean Square Displacements (MSD) of absorber and
back-scatterer atoms. The third term, the Displacement Correlation Function (DCF), depends on
the correlation of atomic motions. The correlation term DCF decreases with increasing distance
and vanishes for very large distances. The sensitivity to correlation is quite peculiar to EXAFS.
In diffraction experiments, as a consequence of long-range averaging, the effect of short-range
correlations is dispersed into thermal diffuse scattering, and the Debye-Waller factor obtained
from the refinement of Bragg peaks measures only the uncorrelated MSD.

4.4.1 Parallel MSRD and dynamical matrix

In the harmonic approximation, the atomic displacements ~u of (4.101) can be expressed in
terms of eigenvectors and eigenfrequencies of the dynamical matrix.

General expression

A general expression of the parallel MSRD of a pair of atoms a− b is given by Eq. (11) of Crozier
et al. [Crozier et al., 1988]:

〈∆u2
‖ 〉 =

h̄

2µab

∑
λ

∣∣∣∣(√µab
mb

~εb(λ)−
√
µab
ma

~εa(λ)

)
· R̂

∣∣∣∣2 1

ω(λ)
coth

h̄ω(λ)

2kBT
(4.102)

where the sum is over all normal modes of the real-space mass-adjusted dynamical matrix

Dab =
∂2V/∂~ua∂~ub√

mamb
, (4.103)

ω(λ) and ~ε(λ) are eigenfrequencies and normalised eigenvectors, µab is the reduced mass of the
pair a− b and

h̄

2ω(λ)
coth

h̄ω(λ)

2kT
= 〈|Q(λ)|2〉 =

〈E(λ)〉
ω2(λ)

. (4.104)

The energy is distributed among normal modes according to the Maxwell-Boltzmann distribution
(equivalent to the Bose-Einstei distribution for phonons):

〈E(λ)〉 =

[
1

exp[h̄ω(λ)/kT ]− 1
+

1

2

]
h̄ω(λ) =

h̄ω(λ)

2
coth

[
h̄ω(λ)

2kT

]
. (4.105)

Crystals

In crystals the translational symmetry allows one to decompose the solution of the real space
dynamical matrix into the solution of N Fourier-transformed dynamical matrices, one for each
value of phonon wave vector ~q (N is the number of primitive cells).
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Eq. (4.102) transforms into

〈∆u2
‖ 〉 =

1

N

h̄

2µab

∑
~q,s

1

ω(~qs)
coth

h̄ω(~q, s)

2kBT

∣∣∣∣(√µab
mb

~wb(~q, s)e
i~q·~R −

√
µab
ma

~wa(~q, s)

)
· R̂

∣∣∣∣2
(4.106)

where normal modes are now labelled by the wavevector ~q and the branch index s; the normalised
eigenvectors ~w refer to a given value of ~q. .

Alternatively, (4.106) can be written as

〈∆u2
‖ 〉 =

1

N

∑
~q,s

〈|Q(~q, s, t)|2〉

∣∣∣∣∣
(
~wb(~q, s)e

i~q·~R
√
mb

− ~wa(~q, s)
√
ma

)
· R̂

∣∣∣∣∣
2

(4.107)

where again

〈|Q(~q, s, t)|2〉 =
〈E(~q, s)〉
ω2(~q, s)

=
h̄

2ω(~q, s)
coth

h̄ω(~q, s)

2kT
. (4.108)

and

〈E(~q, s)〉 =

[
1

exp(h̄ω(~q, s)/kT )− 1
+

1

2

]
h̄ω(~q, s) =

h̄ω(~q, s)

2
coth

[
h̄ω(~q, s)

2kT

]
. (4.109)

One can separate, in (4.107), the contribution due to the uncorrelated motion of atoms

MSD =
1

N

∑
~q,s

〈|Q(~q, s, t)|2〉

[
|~wb(~q, s) · R̂|2√

mb
− |~wa(~q, s) · R̂|2

√
ma

]
(4.110)

and the correlation term

DCF =
2

N
√
mbma

∑
~q,s

〈|Q(~q, s, t)|2〉
[
~wb(~q, s) · R̂

] [
~wa(~q, s) · R̂

]∗
ei~q·

~R . (4.111)

Coordination shells

The DW of a coordination shell is the average of the contributions from all the ab pairs, according
to (4.102) or (4.107) :

〈∆u2
‖〉shell =

1

N

N∑
b=1

〈∆u2
‖〉b , (4.112)

where the sum is over the N back-scattering atoms constituting the coordination shell.

Correlation effects

The contribution of a given pair of atoms ab to the total parallel MSRD depends:
a) on the phase relations between the two eigenvectors ~εa and ~εb (or ~wa and ~wb) of each normal
mode,
b) on the projections of the difference of the eigenvectors on the bond direction R̂ab.
c) In the case of crystals, it is convenient to disentangle, from the eigenvector phase difference, the

intercell phase relation ei~q·
~R (as in eq. 4.107).

Projected VDOS

Let us consider again the general expression (4.102) for a pair of atoms. Following
[Crozier et al., 1988], let us define

pab(λ) =

∣∣∣∣(√µab
mb

~εb(λ)−
√
µab
ma

~εa(λ)

)
· R̂

∣∣∣∣2 (4.113)
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The quantity pab(λ) measures the fractional contribution of mode λ to the parallel MSRD of the
pair ab.
Crozier et al. define an initial “displacement state” where all atoms have zero velocity and

~ub =
√
µab/mb R̂ab , ~ua = −

√
µab/ma R̂ab , ~ui = 0 (i 6= a, b) (4.114)

The quantity pab(λ) is the normalised probability that an initial displacement state is due to mode
λ.
One can define a projected density of vibrational modes

ρab(ω) =
∑
λ

pab(λ) δ[ω − ω(λ)] (4.115)

The parallel MSRD of a given atomic pair can then be expressed in terms of the vibrational density
of states (VDOS) ρab(ω) as [Crozier et al., 1988]:

〈∆u2
‖〉 =

h̄

2µ

∫ ωmax

0

1

ω
ρab(ω) coth

h̄ω

2kT
dω. (4.116)

The dynamical information is contained in the projected density ρab(ω).

MSRD for Bravais crystals

For crystals with one atom per primitive cell (Bravais crystals) the number N of cells coincides
with the number of atoms: there is a unique mass m; there are three acoustic branches (s = 1÷ 3)
and there is a unique eigenvector ~w(~q, s) of unit modulus for each normal mode.
Equation (4.107) becomes

〈∆u2
‖ 〉 =

1

Nm

∑
~q,s

〈|Q(~q, s, t)|2〉
[
~w(~q, s) · R̂

]2 ∣∣∣∣ei~q·~R − 1

∣∣∣∣2
=

1

Nm

∑
~q,s

{
h̄

ω(~q, s)
coth

h̄ω(~q, s)

2kT

[
~w(~q, s) · R̂

]2 [
1− cos(~q · ~R)

]}
(4.117)

Equation (4.117) coincides with (18) of Beni and Platzman [Beni and Platzman, 1976] and
(4) of Sevillano et al. [Sevillano et al., 1979] and corresponds to (4) of Böhmer and Rabe
[Böhmer and Rabe, 1979].

4.4.2 Debye correlated model

For monatomic Bravais crystals, say crystals with one atom per primitive cell, the MSRD can be
described by an approximate correlated Debye Model.
In this model only three acoustic branches are considered, with the same sound velocity vs and
the same linear dispersion relation. The first Brillouin Zone is substituted by a Debye sphere of
radius qD, containing N wavevectors. The volume of the Debye sphere is

VD =
4

3
πq3
D =

(2π)3

Va
, (4.118)

where Va is the volume of the primitive cell in the real space. For monatomic Bravais crystals, Va
corresponds to the volume per atom.
The Debye wave vector is thus

qD =

(
6π2

Va

)1/3

. (4.119)

The maximum frequency ωD = qDvs is the Debye frequency.
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The sum over 3N normal modes of (4.117) is substituted by the integral over the Debye sphere,
multiplied by 3:

1

N

∑
~q,s

→ 3

VD

∫ qD

0

dq

∫ π

0

dθ

∫ 2π

0

dφ q2 sin θ =
9

2q3
D

∫ qD

0

dq

∫ π

0

dθ q2 sin θ . (4.120)

The unit eigenvectors ~w are isotropically distributed in direction: the factor [~w(~q, s) · R̂]2 in (4.117)
is substituted by the average of ~w · R̂, where R̂ is fixed and ~w spans a sphere of unit radius and
surface S = 4π:

〈(~w ·R)2〉 =
1

4π

∫ π

0

dθ cos2 θ

∫ 2π

0

dφ sin θ =
1

3
. (4.121)

As a consequence

σ2
D =

3h̄

2q3
Dm

∫ qD

0

dq q2

∫ π

0

dθ sin θ
1

ω
coth

h̄ω

2kT

[
1− cos(~q · ~R)

]
. (4.122)

Since ∫ π

0

dθ sin θ
[
1− cos(~q · ~R)

]
=

∫ π

0

dθ sin θ [1− cos(qR cos θ)] = 2

[
1− sin(qR)

qR

]
(4.123)

one gets finally

σ2
D(T ) =

3h̄

q3
Dm

∫ qD

0

dq q2 1

ω
coth

h̄ω

2kT

[
1− sin(qR)

qR

]
. (4.124)

or equivalently

σ2
D(T ) =

3h̄

ω3
Dm

∫ ωD

0

dω ω coth
h̄ω

2kT

[
1− sin(qR)

qR

]
. (4.125)

Equation (4.125) corresponds to equations (5)–(7) of Sevillano et al. [Sevillano et al., 1979]. The
factor 1− sin(qR)/qR is plotted in Fig. 4.8 (left panel).

Since ω = vsq and ωD = vsqD, one can substitute q = ωqD/ωD in (4.125), which becomes

σ2
D(T ) =

3h̄

ω3
Dm

∫ ωD

0

dω ω coth
h̄ω

2kT

[
1− ωD sin(ωRqD/ωD)

ωRqD

]
. (4.126)

In general, qD is a priori known from structural information; (4.126) thus depends on one parameter
ωD.

Projected VDOS for Debye model

The correlated Debye model (4.125) can be obtained from the general expression (4.116), provided
2µ is substituted by m and the projected VDOS is [Poiarkova and Rehr, 1999]

ρD(ω) =
3ω2

ω3
D

[
1 − sin(qR)

qR

]
. (4.127)

Asymptotic limit

The asymptotic limit of (4.125) for T →∞ is given by the series

σ2 → 6kT

mω2
D

[
(qDR)2

3 · 3!
− (qDR)4

5 · 5!
+

(qDR)6

7 · 7!
...

]
(4.128)
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Alternative expression for the Debye model

An expression alternative to (4.125) is

σ2
D(T ) =

6h̄

mωD

[
1

4
+

(
T

θD

)2 ∫ θD/T

o

x

ex − 1
dx

]

− 6h̄

mωD

[
1− cos(qDR)

2(qDR)2
+

(
T

θD

)2 ∫ θD/T

o

(qDRT/θD) sin(qDRTx/θD)

ex − 1
dx

]
(4.129)

where the first term in square parentheses accounts for the uncorrelated motion of the two atoms,
while the second term depends on the correlation.
Equation (4.129) corresponds to (6)–(7) of Böhmer and Rabe [Böhmer and Rabe, 1979] [verificare!]
and, to within a factor of 2, to (19) of Beni and Platzman [Beni and Platzman, 1976].

It is worth noting that in the Debye correlated model the un-correlated term MSD depends on
olny one parameter, ωD or qD. The correlation term DCF depends on both parameters ωD and
qD.
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Figure 4.8: Left. Plot of 1 − sin(qR)/qR as a function of qR for fcc crystals; the vertical lines
correspond to the qDRi values for the first four coordination shells. Right. Ratio DCF/MSD for
the first shell of copper: qD = 2.548 Å−1, θD = 323.37 K.

Ratio DCF/MSD. In the seminal paper of 1976 [Beni and Platzman, 1976], Beni and Platzman
introduce the correlated Debye model and evaluate the ratio DCF/MSD for bcc and fcc monatomic
crystals. The product qDR depends on the structure (bcc or fcc), not on the values of the lattice
parameter a.
The ratio DCF/MSD increases with temperature and stabilises, for T ≥ θD, at values near 0.4,
slightly lower for fcc than for bcc (Fig. 4.8, right panel). The increase of the ratio DCF/MSD
can be explained by considering the different temperature dependence of low-frequency modes and
high-frequency modes (right panel of Fig. 4.1. At T = 0 K, all modes contribute only with the
zero-point vibrations. When temperature increases, the contribution to the DW exponent of low-
frequency modes (highly correlated) increases faster than the contribution of high-frequency modes
(less correlated). As a consequence, the ratio DCF/MSD increases up to the Debye temperature.
In the classical regime the temperature dependence is linear for every frequency, and the ratio
DCF/MSD becomes constant.

Debye model for non-monatomic crystals

The physical meaning of the correlated Debye model for non-monatomic non-Bravais crystals (such
as Ge, GaAs, and so on), as well as for non-crystalline materials, is questionable.
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The most reasonable choice is to use a value of Debye wavevector qD calculated for Va corresponding
to the average volume per atom; for crystals, this choice corresponds the the extended BZ scheme
(only three coincident acoustic branches).

4.4.3 Einstein model

A simpler alternative model, the Einstein model, is often used to parametrize the temperature
dependence of the MSRD:

σ2
E =

h̄

µωE

[
1

2
+

1

eh̄ωE/kT − 1

]
=

h̄

2µωE
coth

(
h̄ωE
2kT

)
(4.130)

where µ is the reduced mass of the absorber–backscatterer atomic pair. The Einstein model
depends on one parameter, the frequency ωE .
Numerically,

σ2
E =

0.505379

νE µ
coth(23.9962 νE/T ) ,

where σ2
E is measured in Å2, the frequency νE = ωE/2π in THz and the reduced mass µ in atomic

mass units.

Equation (4.130) corresponds to (9) of Sevillano et al. [Sevillano et al., 1979] for monatomic crys-
tals (where M = 2µ).

The limiting values are:

a) For T → 0, σ2
E → h̄/2µωE ; numerically

σ2
0(0) =

0.505379

νE µ

b) For T →∞, σ2
j → kT/µω2

E (classical approximation); numerically,

σ2
E(∞) =

0.0210539T

ν2
Eµ

where again σ2
E is measured in Å2, the frequency νE = ωE/2π in THz and the reduced mass

µ in atomic mass units.

To the Einstein frequency νE one can associate an Einstein temperature θE = h̄ωE/k = hνE/k.
Numerically, θE [K] = 47.99 νE [THz].

The Einstein frequency can be associated to an effective force constant of bond stretching, k‖ =
µ(2πνE)2 = µω2

E . The effective force constant k‖ can be significantly different from the bond-
stretching force constants of lattice dynamical models. A comparison with the force constants kr
of a valence force field model for Ge, CdTe and CuCl is shown in [Abd el All et al., 2012].
Numerically: k‖[eV/Å2] = 4.091649× 10−3ν2[THz2]µ[amu].

Einstein model and perpendicular MSRD

The Einstein model is used also to fit the temperature dependence of the perpendicular MSRD;
taking into account that the perpendicular MSRD 〈∆u2

⊥〉 has two perpendicular components, the
Einstein model is [Vaccari and Fornasini, 2006]

〈∆u2
⊥〉 = 2σ2

⊥ =
2h̄

µω⊥

[
1

2
+

1

eh̄ω⊥/kT − 1

]
=

h̄

µω⊥
coth

(
h̄ω⊥
2kT

)
(4.131)

The perpendicular Einstein frequency can be associated to an effective force constant of bond
stretching, k⊥ = µ(2πν⊥)2 = µω2

⊥. The effective force constant k⊥ is significantly different from the
bond-bending force constants of lattice dynamical models. A comparison with the force constants
kθ of a valence force field model for Ge, CdTe and CuCl is shown in [Abd el All et al., 2012].
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Einstein model and average energy

The Einstein model corresponds to considering the pair of absorber and back scatterer atoms as a
single harmonic oscillator. The average energy stored in the harmonic oscillator is

< E > = µω2σ2 = h̄ω

[
1

2
+

1

eh̄ω/kT − 1

]
. (4.132)

For T →∞ (classical limit):

a) the energy stored in the relative parallel vibrations is kBT , corresponding to one degree of
freedom of oscillatory motion (two quadratic terms in the Hamiltonian)

b) the energy stored in the total relative vibrations (parallel + perpendicular) is 3kBT , corre-
sponding to three degrees of freedom of oscillatory motion.

According to the classical equipartition of energy, the energy stored in the two atoms corresponds
to 6 degrees of freedom: 3 of CM vibration, 3 of relative vibration.

Einstein model and dynamical matrix

According to [Poiarkova and Rehr, 1999], the square of the Einstein frequency ω2
E is the eigenvalue

of the dynamical matrix corresponding to an eigenvector |Qab(0)〉 where all atomic displacements
are zero but those of the the two atoms a and b, which are given by the initial displacements
(4.114).

In synthetic form,

D |Qab(0)〉 = ω2
E |Qab(0)〉 , say ω2

E = 〈Qab(0)|D |Qab(0)〉 . (4.133)

This expression has been generalised to the case of multiple scattering paths (see below).

4.4.4 Multiple scattering paths

Let us consider again the general expression of the parallel MSRD for a MS path j (4.82):

σ2
j =

1

4

〈[
nj∑
i=1

(~ui+ − ~ui) · R̂ii+

]2〉
. (4.134)

Following again Poiarkova and Rehr [Poiarkova and Rehr, 1999], the sum in (4.134) can be differ-
ently regrouped, focussing on the single atom displacements

σ2
j =

〈[
nj∑
i=1

~ui ·

(
R̂ii− + R̂ii+

2

)]2〉
. (4.135)

Eq. (4.102) is adapted to the MS path j as

σ2
j =

h̄

2µj

∑
λ

1

ω(λ)
coth

h̄ω(λ)

2kBT

∑
i

∣∣∣∣∣
√
µj
mi

(
R̂ii− − R̂ii+

2

)
· ~εi(λ)

∣∣∣∣∣
2

(4.136)

where the reduced mass µj of path j is defined as

1

µj
=

nj∑
i=1

1

mi

(
R̂ii− − R̂ii+

2

)2

. (4.137)
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MS projected VDOS

As a generalisation of (4.114) for the two-atom case, Poiarkova and Rehr define an initial normalised
displacement state for the multiple scattering path, where all atoms have zero velocity, and only
the atoms belonging to the scattering paths are displaced

|Qj(0)〉 =

∣∣∣∣∣
√
µj
m1

(
R̂1nj − R̂12

2

)
, . . . ,

√
µj
mi

(
R̂ii− − R̂ii+

2

)
, . . .

〉
(4.138)

The term in square brackets in (4.136), in analogy with the two-atom case (4.113), measures the
fractional contribution of mode λ to the parallel MSRD of the path j:

pj(λ) =

∣∣∣∣∣
√
µj
mi

(
R̂ii− − R̂ii+

2

)
· ~εi(λ)

∣∣∣∣∣
2

= |〈λ |Qj(0)〉|2 (4.139)

The projected density of vibrational modes for path j is defined as

ρj(ω) =
∑
λ

pj(λ) δ[ω − ω(λ)] (4.140)

The parallel MSRD of a the MS scattering path j is then be expressed in terms of the vibrational
density of states (VDOS) ρj(ω) as [Poiarkova and Rehr, 1999]:

σ2
j =

h̄

2µ

∫ ωmax

0

1

ω
ρj(ω) coth

h̄ω

2kT
dω. (4.141)

Einstein model

As a generalisation of (4.133), [Poiarkova and Rehr, 1999], define the square of the Einstein fre-
quency ω2

E as the eigenvalue of the dynamical matrix corresponding to the eigenvector |Qj(0)〉 of
(4.138):

D |Qj(0)〉 = ω2
E |Qj(0)〉 , say ω2

E = 〈Qj(0)|D |Qj(0)〉 . (4.142)

4.4.5 MSRD calculations

Diagonalisation of the dynamical matrix

Equation of motion method

The equation of motion (EM) method allows one to obtain spectra for linear harmonic problems
without diagonalisinf the dynamical matrix [Beeman and Alben, 1977].
Let us consider a system of N atoms. Within the harmonic approximation the 3N coupled equation
of motion are

mi
d2xiα
dt2

=
∑
jβ

Φiα,jβ xjβ , (4.143)

where Φ are the 2nd order coupling coefficients. Once a convenient set of initial conditions has
been chosen

xiα(t = 0) = x0
iα , (4.144)

the equations of motion can be integrated to obtain the displacements up to a time T and the
VDOS can be calculated according to [Beeman and Alben, 1977]

ρ(ω) =
2

π

∫ T

0

∑
iα

Aiα xiα(t) cos(ωt) exp(−λt2) dt . (4.145)

To calculate the VDOS, the quantities Aiα and x0
iα are set equal to

Aiα =
√

2 cos θiα , x0
iα =

√
2 cos θiα , (4.146)
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where θiα are random angles uniformly distributed between 2 and 2π. An average over several
ρ(ω) computed for different θiα is necessary to obtain an accurate VDOS.
The cutoff parameters T and λ lead to a finite resolution in the density of states, which reduces
to a delta function in the limit T →∞, λ→ 0.

Since matrix diagonalisation is not required, the EM method is quite efficient in dealing with
very large structures. An application of the method to calculate the vibrational states of a model
amorphous metal was made in 1977 by Rehr and Alben [Rehr and Alben, 1977].

Later on, in 1999, the method was applied by Poiarkova and Rehr [Poiarkova and Rehr, 1999] to
calculate the projected VDOS and the Debye-Waller factor of multiple scattering paths in Cu, Ge
and Zn tetraimidazole, starting from a few local parameters in a valence force field model.

Recursion methods

4.4.6 Anharmonicity effects
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Chapter 5

Experimental techniques

The XAFS technique requires the measurement of the x-ray absorption coefficient as a function
of photon energy. In principle, any source characterised by a continuous spectrum is suitable for
XAFS measurements. Actually, Synchrotron radiation is the ideal source for XAFS, thanks to the
continuous spectrum of high intensity and strong vertical collimation; besides, the high degree of
polarisation is advantageous in several applications.
Section 5.1 is dedicated to a short review of the basic properties of x-ray sources.

A laboratory for x-ray spectroscopy with synchrotron radiation (Fig. 5.1) is generally composed
by:

a) an optical apparatus, containing a monochromator and one or more x-ray mirrors;

b) a measurement apparatus, containing sample holders and detectors for measuring the absorp-
tion coefficient.

5.1 X-ray sources for XAFS

5.1.1 Laboratory sources

Sealed tubes

Rotating anode sources

5.1.2 Synchrotron Radiation: general properties

Let us first consider the general properties of the electromagnetic radiation emitted by a single
electron moving at relativistic velocity and submitted to a centripetal acceleration.

storage ring
monochromator

mirror

sample

holder

detectors

Exper. apparatusOptical apparatus

Figure 5.1: Schematic picture of a synchrotron radiation laboratory for XAFS experiments.
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Angular collimation

Continuous spectrum

Polarisation

Time structure

The energy lost by the electron at every turn due to S.R. emission is restored by a radio-frequency
(RF) cavity. Within the RF cavity the voltage is varied sinusoidally. In order to receive the right
amount of energy, the electron has a well defined phase relationship with the RF voltage. As a
consequence, the electrons circulating in the storage ring are organised in bunches of very short
time duration, separated by longer time intervals.

Example: time structure of ESRF:

• Time duration of one bunch: 20 ps.

• The time interval between bunches depends on the number of stored bunches:

– minimum 2.82 ns (992 bunches)

– maximum 2.81 µs (1 bunch)

The time structure can be exploited in pump–probe XAFS experiments.

5.1.3 Synchrotron Radiation: bending magnets

5.1.4 Synchrotron Radiation: insertion devices

Insertion devices are arrays of magnets of alternating polarity inserted into straight sections of the
storage ring lattice. Let λu be the spatial period of the magnetic structure and g the gap, say the
vertical distance between the two arrays of magnetic lattices.
The vertical magnetic field depends on the magnetic period λu and on the gap g according to

Bz(s) =
B0

cosh(πg/λu)
cos

2πs

λu
, (5.1)

where s is the longitudinal coordinate along the average beam direction. The magnetic field
depends on the gap value g.
The magnetic field induces an oscillating trajectory. The transverse position and the angular
deviation with respect to the straight trajectory are given by

x(s) = x0 cos(2πs/λu) , α(s) = α0 cos(2πs/λu) , (5.2)

The amplitudes x0 and α0 are

x0 =
K

γ

λu
2π

, α0 =
K

γ
, (5.3)

where K is

K =
eBλu
2πcme

= 8.934×B[T ]× λu[cm] (5.4)

The properties of the emission from insertion devices depend on the product K = α0γ. Remember
that the angle of emission of Synchrotron Radiation is about 1/γ.

High-K devices: Wigglers

When K > 1, the angular amplitude of the beam oscillations is larger than the angle of emission
of the S.R. beam. The electromagnetic waves emitted by the different poles add incoeherently.
The spectrum is continuous, like for bending magnets. The advantages over bending magnets are:

• critical energy depending on the wiggler magnetic field, independent of the lattice require-
ments: typically, wigglers are used to increase the critical energy with respect to bending
magnets

• flux proportional to the number of wiggles
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Undulators

When K < 1, the angular amplitude of the beam oscillations is smaller than the angle of emission
of the S.R. beam. There is interference between electromagnetic waves emitted by different poles,
giving rise to monochromatic radiation of fundamental frequency ν1 and its harmonics νn. One
can show that, for one electron, the energy of the n-th harmonic is a function of the angle θ and
of the K parameter:

En(θ) =
2hcγ2n/λu

1 +K2/2 + γ2θ2
. (5.5)

The flux of monochromatic radiation in the forward direction is proportional to the square N2 of
the number of wiggles. The bandwith for the harmonic of order n is

∆En
En

' 1

nN
. (5.6)

In principle, due to their monochromatic emission, undulators appear unsuitable for XAFS exper-
iments.
One can however obtain tunability over a continuous spectrum by exploiting various properties:

1. The energy depends on the angle θ of emission according to (5.5); the angle-integrated flux
spreads over an energy range.

2. An actual electron beam is made by many-electron bunches; the source emittance is connected
to the energy spread of the photon beam: high (horizontal) beta sections correspond to large
(horizontal) electron beam sizes, which give rise to enlargement of the energy spread of photon
beam.

3. The frequency of the different harmonics depends on the parameter K, according to (5.5).
The parameter K in turn depends on the magnetic field Bz, which can be varied by varying
the gap g.
Two techinques can be utilized to vary the gap:

a) mechanically varying the gap during the acquisition of a spectrum

b) tapered undulators, where the gap varies along the device length, giving rise to a con-
tinuous spectrum

5.2 X-ray optical instrumentation

5.2.1 Monochromators

Basic tasks of a monochromator are:

• selecting a beam of energy E = h̄ω, defined within a width ∆E, from the continuous syn-
chrotron radiation spectrum;

• executing scans over predefined energy ranges.

The monochromators for x-rays are perfect crystals, working according to the Bragg law:

2 dhkl sin θb = nλ, (5.7)

where dhkl is the distance between the (hkl) crystallographic planes, θb is the incidence angle, n is
an integer and λ is the x-ray wavelength. The energy scan is obtained by rotating the crystal around
an axis parallel to the Bragg planes and normal to the beam direction It is worth remembering
some important properties:

a) Only crystallographic planes for which the structure factor F (hkl) 6= 0 give rise to diffraction;
for example, Bragg reflection from (110) planes of silicon is forbidden.

b) The maximum wavelength selected for a given family of planes is λ = 2d, in correspondence
with normal incidence.
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Table 5.1: Distance 2d corresponding to selected planes of silicon and germanium crystals.

Planes: Si(111) Si(220) Si(311) Si(400) Si(331) Si(511) Ge(111) Ge(220)
2d (Å): 6.2708 3.84 3.28 2.7154 2.5 2.08 6.5328 4.0004

(111)(333)

E-EB (eV)
0 1 2 3

1

4-1 0 31 2
∆θ (arc sec)

0

Figure 5.2: Left: typical rocking curve of a crystal monochromator, plotted against the shift with
respect to the Bragg angle (the vertical dashed line). Right: comparison of the rocking curves of
the (111) and (333) reflections of silicon.

• In addition to the wavelength λ = 2d sin θ (fundamental), also the wavelengths λ/2, λ/3, ...
(harmonics) are selected. Harmonics are sources of noise in XAFS.

For x-ray energies higher than 2 keV, the crystals most frequently utilized are silicon and germa-
nium. Table 5.1 shows the 2d values for some relevant families of planes.

The x-ray beam is diffracted by the monochromator within a finite angular interval, whose center
is slightly shifted with respect to the Bragg angle θb. The profile of the diffracted intensity as a
function of the angle is called rocking curve (Fig. 5.2, left). The width of the rocking curve (Darwin
width) and its shift with respect to the Bragg angle amount to a few arc-seconds (1′′=4.8×10−6

rad). The Darwin widths are always larger for fundamental reflections than for harmonics (Fig.
5.2, right).

In general, the x-ray monochromators for synchrotron radiation are based on consecutive Bragg
reflections from two parallel crystals. In this way, the outgoing beam has fixed horizontal direction.
Two main configurations are possible (Fig. 5.3).

a) Channel-cut monochromators. The two Bragg-reflecting faces belong to a single mono-crystal,
suitably machined. This monochromator is simple to realise, mechanically stable, easy to use.
On the other hand, the outgoing beam is contaminated by harmonics; besides, the crystal
cannot focalize the beam.

b) Independent crystals monochromators. The main advantage of independent crystals is the
possibility of slightly detuning their Bragg angles. In this way, by exploiting the smaller
Darwin width of harmonics with respect to the fundamental wavelength (Fig. 5.2, right), it
is possible to reduce the harmonic content of the outgoing beam. Besides, the single crystals
can be thin enough to be curved, allowing the beam focalization in the horizontal plane.

The energy resolution ∆E of the monochromatic beam depends on two factors:

a) the Darwin width of the crystal;

b) the vertical angular divergence Ω of the beam; to a good approximation, Ω = (d + s)/`,
where s is the vertical dimension of the source, d the aperture of the collimating slits, ` the
distance between source and monochromator.
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Figure 5.3: Channel cut monochromator (left) and independent-crystals monochromator (right)

The relative resolution can be easily obtained by deriving the Bragg law, Eq. (5.7):

∆E/E = ∆λ/λ = ∆Θ cotgθb. (5.8)

where Θ (in radians) is the convolution between Darwin width and beam divergence. Typically,
∆E/E ∼ 10−4÷10−5.

5.2.2 Mirrors

Frequently, the monochromator is accompanied by one or more x-ray mirrors, whose aims are:

a) to contribute to the rejection of harmonics;

b) to collimate and focalize the beam.

The x-ray mirrors are based on the phenomenon of total reflection. Basically, the index of refraction
can be expressed as

n = 1− δ − iβ. (5.9)

The imaginary part β is proportional to the absorption coefficient µ. The real part 1−δ is negative
for x-rays. The parameter δ, which is proportional to the density ρ of the material and to λ2, is
very small, of the order of 10−6÷10−5.
Total external reflexion occurs for incidence angles smaller than the critical angle θc, that depends
on the x-ray wavelength and material density according to

θc =
√

2δ ∝ λ
√
ρe (5.10)

and is of the order of milliradians. By properly choosing the incidence angle of the beam on the
mirror, it is possible to obtain the reflection of only the fundamental wavelength, and the rejection
of the harmonics. Besides, by slightly bending the mirror surface, it is possible to focalize the
beam (typically in the vertical plane). Because of the small values of the critical angle θc, the
longitudinal dimensions and the bending radii of the x-ray mirrors are very large.

5.3 X-ray detectors

Several types of X-ray detectors are used in XAFS experiments. Their role is to convert the X-ray
energy into an electrical signal.
One can distinguish two main modes of operation:

• Current integrating mode. Single photons are not distinguished; this mode is particularly
suitable for the high fluxes of S.R.

• Pulse counting mode. Each single photon is separately counted, so that its energy can in
principle be discriminated; the maximum count rate is however limited.
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5.3.1 Ionisation chambers

An ionisation chamber is a vessel containing two parallel plane electrodes, filled with gas. X-ray
photons ionise the gas, typically 20–40 eV are necessary to create an electron–ion pair. Charged
particles are collected by the electrodes.

Ionisation chamber are current integrating detectors. The output current has to be proportional
to the energy deposited by the absorbed X-rays and independent of the accelerating voltage of the
electrodes.

The accelerating voltage has to be

• sufficiently high to prevent recombination of electrons and ions,

• sufficiently low to avoid further ionisation of the gas by the electrons, resulting in amplification
(which voulkd lead to the proportional counter regime).

Ionisation chambers have to be operated in the voltage region corresponding to the plateau: current
independent of voltage.

The response of ionisation chambers depend on the filling gas and its pressure.

5.3.2 Photodiodes

In photodiodes the energy of x-ray photons creates electron–hole pairs. The electric field at the
junctions separate electrons from holes.
Photodiodes can be used in the current integrating mode, as ionisation chambers.
PIN = Positive–Intrinsic–Negative
PIPS = Passivated Implanted Planar Silicon

5.3.3 Scintillators

Scintillators transform x-ray pulses into visible light pulses.
Typical scintillator materials: doped NaI, plastic (anthracene), YAP (yttrium-aluminum per-
ovskite).

Visible light pulses are counted by photomultipliers (photocathode + dynodes).

5.3.4 Solid-state detectors

Pulse-counting detectors.
Usually 13 or 19 or more Si or Ge elements.
Maximum count rate per element limited to a few hundred thousand counts per second.
Energy resolution no better that 130 eV.
They must be operated at LN temperature.

Silicon Drift Detectors (SDD) providing higher throughput are under development.

Problems with counting detectors: pile-up and dead time.

5.3.5 Diffractive analysers

When using pulse-counting detectors, in many cases a weak signal has to be discriminated from
an intense background (e.g. for very diluted samples). To avoid saturation of the pulse counting
detector by the background signal, it is advisable to reject the backgraound before it reaches the
detector.

To this purpose, conventional crystal monochromators in Bragg geometry require very small focal
spot size.

New types of diffractive analyzers have been developed: Pyrolitic Graphite, adaptive Bragg, MAAD
(multilayer array analyzer detectors), BCLA (bent crystal Laue analysers).
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5.4 Measurement of the absorption coefficient

According to (1.1), the absorption coefficient µ =ln(Φ0/Φ)/x is proportional to the ratio between
the photon fluxes impinging on and outgoing from the sample. Different instrumental configura-
tions can be used to measure µ, depending on the sample dimension and composition as well as
on the kind of sought information.

a) Direct measurement of µ through transmission experiments.

b) Indirect measurements of decay products, whose yield is proportional to µ.

– Detection of fluorescence photons (FLY, fluorescence yield).

– Detection of emitted electrons (AEY, Auger electrons yield; PEY, partial electrons yield;
TEY, total electrons yield).

– Detection of optical luminescence (XEOL-PLY, x-ray excited optical photolumines-
cence).

c) Detection schemes for time-resolved EXAFS (quick-EXAFS, energy-dispersive detection).

In the following sections, the most frequently used detection schemes are described in some detail.

5.5 Transmission measurements

The photon fluxes Φ0 e Φ can be directly measured by two detectors placed immediately in front
and past the sample (Fig. 5.4, left). In general, to bear the high synchrotron radiation fluxes,
ionization chambers with plane parallel electrodes, some tens of centimeters long, are used as
detectors (Fig. 5.4, right).

The absorption of x-ray photons inside the ionization chambers creates ion-electron pairs. The
electrodes, maintained at a potential difference of the order of about 100 eV, collect a low intensity
current (typically 10−10÷10−8 A). The electrical signals I0 and I generated by the two ionization
chambers are proportional to the reduction of the photon flux within each chamber.

One can easily see that the connection between measured currents I0, I and photon fluxes Φ0,Φ is

I0/I = C(ω) (Φ0/Φ) , (5.11)

where C(ω) is a smoothly varying function of the photon energy, determined by the ionization
chambers efficiency. The measured quantities I0, I are connected to the absorption coefficient µ
by the relation

µx = ln(Φ0/Φ) = ln I0/I − lnC(ω) , (5.12)

where the additive term lnC(ω) can be easily subtracted in the data analysis procedures (see
Chapter 6).

The efficiency of ionization chambers can be fitted to different spectral regions by varying the
atomic species of the filling gas and its pressure.

To optimize the signal to noise ratio, the sample has to be relatively thin, typically about 10 µm.
When the sample is in powder form, compressed in a pellet or deposited on a thin film, one must
be careful to avoid holes or inhomogeneities, which could cause spurious variations of the EXAFS
amplitude. A rule of thumb is to verify the similarity of EXAFS spectra obtained from samples of
different thicknesses.

Transmission measurements are preferred, when possible, in virtue of their easiness and accuracy.
In some cases, however, they are not suitable, for example for diluted samples or for surface
measurements.
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Ι0 Ι1

samplemonochromator

Figure 5.4: Left: layout of a direct transmission measurement apparatus (not to scale). Right:
electrical connections of an ionization chamber.

5.6 Fluorescence detection

When the absorbing species A is a tiny fraction of the entire sample, its contribution µA to the
total absorption coefficient µtot can be exceedingly small. For concentrations typically lower than
1 % (diluted samples), the XAFS structures at the absorption edge of the absorbing species µA
are comparable to the statistical noise of the total measured absorption coefficient µtot. In this
case, transmission measurements are ineffective.
In general, for diluted samples one resorts to fluorescence measurements, in which the intensity
If of the fluorescence emitted at frequency ωf by the absorbing species A, as a result of radiative
de-excitation (Sec. 2.3), is measured as a function of incident energy h̄ω (Fig. 5.5, top left).

5.6.1 Fluorescence intensity

Let us first consider the fluorescence emitted by a thin slab at a depth zn below the sample
surface (Fig. 5.5, top right); the incident beam impinges at an angle θi and the fluorescent beam
outgoing at an anlgle θf is collected within a solid angle Ω (in many experimental apparatuses,
θi = θf = 45◦). The total fluorescence intensity emitted by a slab of thickness dzn is

If (ωf ) dz = Φ0(ω) exp

[
−µtot(ω)zn

sin θi

]
︸ ︷︷ ︸

input absorption

ηf µa(ω)
dz

sin θi︸ ︷︷ ︸
fluor.

exp

[
−µtot(ωf )zn

sin θf

]
︸ ︷︷ ︸

fluor. absorption

Ω

2π
. (5.13)

According to (5.13), the fluorescence intensity

a) is proportional to the impinging photon flux Φ0 (at frequency ω), attenuated by the absorp-
tion from all atoms (total) through the sample thickness zn;

b) is proportional to the absorption coefficient µa(ω) of the atomic species a at the frequency
ω and to the fluorescence yield ηf ;

c) is attenuated by the absorption from all atoms (total) through the sample thickness zn;

d) is proportional to the solid angle Ω/4π determined by the detector acceptance.

Usually, the fluorescence detector is placed such as the incoming and outgoing beams form an angle
of 90◦ in the horizontal plane, in order to minimise the influence of elastically scattered photons.
The sample surface is usually placed at 45◦ with respect to both incoming and outgoing beams.
Let us now integrate (5.13) over the full sample thickness z, for the realistic case of θi = θf = 45◦.
The total fluorescence intensity is

If (ωf ) = Φ0(ω) ηf
Ω

4π

µa(ω)

µtot(ω) + µtot(ω)
[1− expA] , (5.14)

where

A =
√

2 z [µtot(ω) + µtot(ωf )] . (5.15)

5.6.2 Two limiting cases: thin and thick samples

One can now distinguish the two cases of thin and thick samples.
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Figure 5.5: Top left: layout of an apparatus for fluorescence measurements (top view of the
horizontal plane). Top right: fluorescence from a thin slab. Bottom left: thin sample. Bottom
right: thick sample.

Thin samples

For thin samples (Fig. 5.5, bottom left), since z is small, one can truncate the expansion of expA
in (5.14) to the second term, so that 1− expA ' 1− 1 +A = A, and finally on can simplify

If (ωf ) ∝ µa(ω) . (5.16)

For thin samples, only a small fraction of the impinging beam intensity is absorbed, and the
fluorescence signal is If is proportional to the absorption coefficient of the species a, independently
of the degree of dilution.

Thick samples

For thick samples (Fig. 5.5, bottom right), since zs is large, one has 1 − expA ' 1, and (5.14)
becomes

If (ω) = Φ0(ω)
Ω

4π
ηf

µa(ω)

µtot(ω) + µtot(ωf )
. (5.17)

For a thick sample, all the beam intensity is absorbed.

a) If the atomic species a is concentrated, above its absorption edge one has µa(ω) ' µtot(ω);
besides, µtot(ω) � µtot(ωf ), so that the fraction in (5.17) is nearly constant ' 1. The
variation of µa(ω) only changes the penetration depth of the beam, but does not modulate
the intensity of the fluorescence signal.

b) If the atomic species a is diluted (typically < 1%), one has instead µa(ω) � µtot(ω), the
fraction in (5.17) is not constant, and the fluorescence intensity If (ωf ) reflects the oscillations
of the absorption coefficient µa(ω).

5.6.3 Detection of fluorescence signals

In fluorescence measurements, one directly measures the fluorescence intensity If (ω) and the signal
I0 of a detector placed before the sample. I0 is connected to the incoming flux by an efficiency
factor, decreasing with energy, I0(ω) = C(ω) Φ0(ω). This fact has to be properly accounted for in
the analysis of the signal.

The possibility of revealing XAFS of elements approaching p.p.m. level dilution strongly depends
on the quality of the detector system.
For a recent review, see [Heald, 2015].

Fluorescence detectors should fulfil the following requirements:
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a) to measure only the fluorescence radiation, eliminating the background due to elastic and
inelastic scattering and unwanted fluorescence lines;

b) to select a solid angle as large as possible.

Polarisation (90◦ detection) is used to minimise scattering, but is less effective for large solid angles.

Three main types of detectors can be distinguished (sometimes combined together):

a) Filter-slit systems

b) Multi-element solid state detectors

c) Crystal analysers

Filter-slit systems

The fluorescence is lower in energy than most of the scattering. An X-ray filter with an edge in
between can be used to reduce the scattered background.
For K-edge filters the absorption coefficient for the scattered radiation can be six to seven times
higher than for the fluorescence signals. Since the transmission depends exponentially on the
absorption coefficient, dramatic background reductions can be achieved with a small loss in the
fluorescence signal. Also, since the filter is providing the energy discrimination a large-area non-
energy- resolving detector can be used that can collect a very large solid angle [copied from Heald].

Example: Let us consider a Cu diluted sample; the K edge is at 8979 eV, the Kα fluorescence is
at 8037 eV.
A Ni filter will strongly absorb the scattered radiation with energy higher than its K edge
(8333 eV); the absorption of the Cu Kα fluorescence will be much weaker.
The Ni filter will however emit its own Kα fluorescence at 7470 eV.

The filter fluorescence can be minimised by appropriate collimators (Soller slits).

Solid-state detectors

SSD (typically Si or Ge) are energy-dispersive detectors. They collect all of the photons and for
each photon output a signal proportional to the photon energy.
The energy resolution is good enough to separate the fluorescence signal from most of the back-
ground. However, they need to handle the total count rate that is incident upon them. Their main
limitation is a maximum count rate of the order of 105 − 106.
Systems with multiple detectors, up to several hundred, have been developed to overcome the
problem.
Currently the best detectors are the silicon drift detectors (SDDs): with proper dead-time correc-
tion they can handle about 106 counts/s with approximately 3% energy resolution.

Crystal analysers

Diffraction-based crystal analysers allow the ultimate energy resolution.
Perfect crystals have energy resolutions much better than needed; the line-width of the fluorescence
lines are generally larger than the perfect crystal acceptance.
Different approaches have been developed to overcome the low efficiency of perfect crystals (mosaic
crystals, strain in bent crystals).

5.7 Electrons detection

Because of the high penetration of x-rays, transmission measurements are sensitive to the bulk
properties of a sample. To study surface properties, it is convenient to measure the flux of electrons
emitted by the sample as a consequence of x-ray absorption (Fig. 5.6, top left): photoelectrons
and Auger electrons. The intensity of the flux of both kind of electrons is proportionale to the
absorption coefficient. However, the energy of photoelectrons varies when the photon energy varies,
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Figure 5.6: Top left: layout of an apparatus for electron yield measurements. Top right: X-rays
(straight arrows) have a penetration depth of the order of 500 Å, while electrons have mean free
parhs of the order of 5–10 Å (thin dark surface layer); secondary eletrons (scattered paths) have
escape depths of the order of 50–100 Å. Bottom left: electron detector in vacuum. Bottom right:
electric curcuit for the detection of the total electron yield.

while the energy of Auger electrons is constant and depends of the atomic species. The detection of
Auger electrons is thus used to study the local environment of selected atomic species, like atoms
adsorbed on a surface of different composition (Surface EXAFS, for short SEXAFS).

Since electrons have a short mean free path, of the order of 5–10 Å, only Auger and photoelectrons
directly generated in the vicinity of the surface can be detected. The inelastic collisions of both
Auger and photoelectrons give however rise to secondary electrons, with a large spread of possible
energies, whose global escape depth can be of the order of 50–100 Å(Fig. 5.6, top right), and whose
intensity is again proportional to the absorption coefficient.

According to the different requirements, one can utilize different detection procedures.

a) One can detect only the Auger electrons emitted by a given atomic species, by means of a
detector with a narrow energy window(AEY, Auger electrons yield); this detection scheme
is particularly suited to study the environment of adsorbed atoms: the intensity of the
Auger beam reproduces the XAFS structures; however, when the photon energy is varied,
unwanted contributions from photoelectrons of the substrate can enter the detector and
seriously contanimane the signal.

b) One can detect a large fraction of the emitted electrons, both Auger and photoelectrons and
their secondary, by means of a detector with a large energy window (PEY, partial electrons
yield); in this way the contamination from the substrate is diluted, although the signal to
background ratio is reduced.

c) One can detect all emitted electrons (TEY, total electron yield). For adsorbate studies,
this method further dilutes the contamination from the substrate and reduces the signal to
background ratio. The TEY detection is sometimes used to study the surface XAFS of bulk
materials: in this case one can show that the full TEY signal is proportional to the absorption
coefficient.

The detection of electrons emitted by a surface must be done in vacuum, by means of suitable
detectors (Fig. 5.6, bottom left), simple electron multipliers for TEY or energy analyzers for AEY.
For bulk TEY, the electrons can be collected by a very simple electric circuit (Fig. 5.6, bottom
right).
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5.8 Alternative layouts for XAFS measurement

Several different measurement schemes have been developed to meet different specific requirements:
time-resolved, high-pressure, magnetic dichroism, and so on.

5.8.1 Quick XAFS (QEXAFS)

In standard XAFS measurements the energy scan is done by rotating the monochromator in discrete
steps. At each step, the detectors signals are integrated for a time interval sufficiently long to reduce
the statistical noise below a predetermined level. This methodology is unsuitable to study fast time-
dependent phenomena. Even working with high flux sources, the acquisition speed is often limited
by the requirements of mechanical stabilization of the monochromator. The acquisition time of an
EXAFS spectrum by a standard method is generally longer than 10 to 20 minutes.
In Quick XAFS, the monochromator, typically a single channel-cut crystal, is mounted on an
oscillating cradle, which is in turn mounted on a coarse goniometer. One EXAFS spectrum is
scanned during a fast oscillation of the cradle, over an amplitude of the order of a few degrees and
time duration that can be less than 50 ms.
Very quick data acquisition is required, based on ion chambers or solid-state detectors and fast
analog to digital converters.
Typical applications of Quick-EXAFS are the real-time studies of catalytic reactions.
Recent implementations of Quick-EXAFS developed by R. Frahm have been made at SLS-
SuperXAS (2008) and Soleil-SAMBA (2009).

5.8.2 Dispersive XAFS

In Dispersive XAFS (EDXAS), the selection of the beam energy is obtained by geometrical methods
(Fig. 5.7). A large incoming white (say non-monochromatized) beam impinges on a curved crystal
“poly-chromator”; the different parts of the beam impinge on different parts of the crystal at
different Bragg angles, corresponding to different energies covering the entire EXAFS interval.
The curved crystal focalizes all the outgoing monochromatic beams on a single point, where the
sample is placed. The sample is thus simultaneously crossed by beams of all the selected energies.
Once the sampled has been crossed, the beam is again dispersed on a position sensitive detector,
such as an array of photodiodes, on which the entire EXAFS spectrum is simultaneously detected.
By this method, the beam is naturally focalised on a small region of the sample and the acquisition
times can be reduced to a few milliseconds.
Advantages of dispersive XAFS:

• No mechanical movements are necessary; there is an intrinsic stability in the focal spot
position and in the energy scale.

• Simultaneous acquisition of all data points

• Acquisition time determined by acceptable statistics

Disadvantages:

• Critical in terms of temporal and spatial beam stability and sample presentation

• Only trasmission mode

• X-ray beam not perfectly focussed through the sample

• No reference measurements during acquisition

In general, dispersive spectrometers are installed on bending magnet sources, which yield a suffi-
ciently large horizontal divergence to obtain, with reasonable radii of curvature of the polychro-
mator crystal, an energy dispersion covering a whole EXAFS spectrum.
The ESRF-ID24 dispersive spectrometer is instead connected to an undulator source through a
non-conventional optical scheme. By exploiting the undulator high brilliance, a focal spot of about
5× 5 µm2 can be obtained on the sample.
Most common applications of dispersive XAFS (EDXAS):
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Figure 5.7: Schematic layout of an apparatus for dispersive XAFS measurements.

• Time resolved XAFS; typical application is the in situ study catalytic reactions.

• High-pressure studies (tens of GPa) using a diamond-anvil cell, where the small and stable
focal spot is exploited.

• X-ray dichroism studies. The stability and speed of dispersion spectrometers can be exploited
to increase the sensitivity to small differences in XAS spectra, for example generated by the
rotation of a magnetic field.

• Micro-XAFS chemical mapping.

5.8.3 Time-resolved XAFS: time slicing

This method is useful to monitor the relaxation of a system after an external excitation.
The system is excited at a given time (by a laser pulse, a pressure jump, the insertion of a catalyser,
etc). The absorption coefficient at a given value of energy in the XAFS region is measured as a
function of time. After full relaxation, the excitation is reproduced in exactly the same way (on
the same system or on an identical system) and the absorption coefficient is measured as a function
of time at a different energy value. By a suitable number of excitations, one can measure the time
evolution of the absorption coefficient at a suitable number of energy values, sufficient to reproduce
the EXAFS signals as a function of time.

5.8.4 Pump-probe experiments

Ultra-fast measurements. Exploits the time structure of Synchrotron Radiation.

5.8.5 Grazing incidence, Reflexafs

5.9 Sample conditioning

By properly choosing the sample-holder, the physical and chemical environment of the sample can
be controlled. One can use cryostats (liquid nitrogen down to 77 K or liquid helium down to 4
K) or ovens to vary the sample temperature. Low temperatures are currently used to reduce the
thermal damping of EXAFS. Temperature scans are used to study phase transitions, local thermal
expansion, lattice dynamics, etc. Diamond anvil cells are used to perform measurements under
very high pressures (tens of GPa). Chemical reactions, like catalysis, can be studied in suitable
cells.
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Chapter 6

EXAFS analysis

Different methodologies can be chosen to analyze EXAFS spectra, depending on the sample nature
and complexity, the type on information sought, the availability of computing power, and sometimes
also personal taste.

6.1 Extraction of the EXAFS signal

The determination of the normalised EXAFS function χ(k) starting from the experimental signal
is in principle different for different detection methods (transmission, fluorescence, electron yield,
etc.) [Bunker, 2010].

Let us consider here the case of direct transmission measurements (§ 4.2) and focus on the ab-
sorption spectrum at the K edge of a given element within a compound. According to (5.11), the
output of the measurement is

ln(I0/I) = ln(Φ0/Φ) + ln C(ω) = µt(ω)x + ln C(ω) (6.1)

where I0, I are the detector signals, Φ0,Φ are the photon fluxes, µt(ω) is the total absorption
coefficient and x is the thickness of the sample. C(ω) is a smoothly varying function of the photon
energy.

6.1.1 Singling out the contribution of the studied edge

The first step of the analysis consists in extracting the contribution µ(ω)x of the K edge of the
selected element from the experimental signal:

µ(ω)x = ln(I0/I) − µn(ω)x (6.2)

where µn is the contribution of all the other excitations of the selected element plus the excitations
of the other elements of the compound; µnx includes also the contribution of C(ω) of eq. (6.1).

In the pre-edge energy region, µnx = ln(I0/I). Above the edge energy, µnx is estimated by
extrapolating the pre-edge behavior (fig. 6.1, left).

Fitting the relatively short pre-edge region with a realistic Victoreen-like behaviour generally can
easily lead to non-negligible distortion when the Victoreen curve is extrapolated to the much longer
post-edge energy interval.

As a consequence, one prefers to fit the pre-edge region by a straight line, which is then extrapolated
above the edge. Also this procedure introduces a distortion of the calculated absorption coefficient
µ(ω)x above the edge. The distortion is compensated when the atomic absorption coefficient is
calculated (see below).
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Figure 6.1: Left: Experimental absorption signal for crystalline germanium, measured at 10 K
(continuous line). The dotted line is the extrapolation of the pre-edge behavior. The difference
(continuous – dotted) is the product µx relative to the K edge. Right: Evaluation of the atomic
absorption coefficient; the dashed line corresponds to two 4th-degree polynomials, joined at k=10
Å−1.

6.1.2 The edge energy

The photo-electron wavenumber k is defined in Eq. (3.5). In general the core electron binding
energy Eb is unknown, and k is experimentally determined as

k =

√
(2m/h̄2) (h̄ω − Es) = 0.51233

√
h̄ω − Es, (6.3)

where Es is a threshold energy, arbitrarily chosen in correspondence of some characteristic point of
the edge, for example the first inflection point. The last equality in Eq. (6.3) holds for wavenumbers
measured in Å−1 and energies in eV.
The discrepancy between Eb ed Es, a priori unknown, is conventionally called E0, so that Eb =
Es +E0. If the subsequent quantitative analysis is made by comparison with a reference EXAFS,
the same criterion must be used in determining Es for both samples; the difference ∆E0 is anyway
treated as a free parameter to be optimized by best-fit. If the analysis is made by comparison with
theoretical simulations, the E0 value is a free parameter to be optimized by fit.

6.1.3 The atomic absorption coefficient

The atomic absorption coefficient µ0 is now necessary to calculate the EXAFS function χ(k) =
(µ − µ0)/µ0 (Eq. 3.17). To evaluate µ0 one looks for a curve which averages the oscillations of
the absorption coefficient. A frequently utilized approach is based on polynomial splines (Fig. 6.1,
right). This step of the analysis is generally made by a trial and error procedure, and requires
patience and skillfulness.
Since the absorption coefficient above the edge has been distorted by the procedure of linear fit of
the pre-edge region, it can be preferable to obtain the normalised EXAFS signal as

χ(k) =
µ(k)− µ0(k)

µ1(k)
(6.4)

where µ1(k) is a smooth Victoreen-like function (∝ λ2.8, where λ is here the photon wavelength)
with absolute values normalized to the absorption jump of each spectrum.

6.1.4 Information from the EXAFS signal

The EXAFS signal can directly give qualitative information. For example (Fig. 6.2) the EXAFS
of crystalline germanium at 77 K is much more structured than the one of amorphous germanium,
since many coordination shells contribute to the former, only one to the latter. When temperature
increases, the EXAFS of c-Ge becomes simpler, because thermal disorder more strongly damps the
contributions of the outer shells.
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Figure 6.2: EXAFS of amorphous germanium at 77 K (left), and of crystalline germanium at 77
and 300 K (center and right, resp.)

6.2 Fourier filtering

The direct quantitative analysis of the entire EXAFS signal χ(k), in principle feasible, is seldom
performed. In general, one prefers a different approach, which includes the Fourier transform and
back-transform of the EXAFS signal.

6.2.1 Direct Fourier transform

The Fourier transform from the space of wavevectors k to the conjugate space of distances r is
performed through the integral

F (r) =

∫ kmax

kmin

χ(k) W (k) kn exp(2ikr) dk (6.5)

where W (k) is a window function that reduces the spurious oscillations induced by the finite k
range. The factor kn is used to balance the low-k and high-k regions of the spectrum (typically
n = 1− 3). The limits kmin and kmax are chosen so as to exclude both the low-k signal, where the
EXAFS formula is unreliable (typically kmin > 2− 4 Å−1), and the high-k signal, where the signal
to noise ratio is small.
The Fourier transform F (r) of Eq. (6.5) is a complex function, in principle extending over the
entire r axis, and made of a real and an imaginary part, ReF (r) and ImF (r), respectively. The
modulus of F (r)

|F (r)| =
√

[ReF (r)]2 + [ImF (r)]2 (6.6)

is characterized by peaks in correspondence of the leading frequencies 2r of the χ(k) signal, say of
the most important scattering paths in real space (Fig 6.3). In general, the most prominent peaks
correspond to single scattering paths (coordination shells).
The F (r) function is not a true radial distribution function: the positions of the peaks are at
slightly shorter distances, by about 0.2 − 0.3 Å, than the real distances, due to the phase-shifts
φs(k) present in the total phases Φ = 2kRs + φs of each scattering path. Besides, the shape of
the peaks is strongly influenced by the artefacts of the Fourier transform algorithm.

Important qualitative and sometimes also quantitative information is contained in the Fourier
transforms F (r). Let us consider some examples.

1. A non-zero F (r) at shorter distances than the first-shell peak suggests a poor evaluation of
the atomic absorption coefficient µ0, which introduced unphysical low-frequency oscillations.
The procedure for determining the atomic absorption coefficient µ0 should be repeated ab-
initio.

2. The height of the peaks depends on the coordination number and on the degree of thermal
and structural disorder.

3. The differences between Fourier transforms reflect the effects induced on a given sample by
variations of temperature, pressure, chemical environment, etc. (Fig. 6.4).
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3. The comparison between Fourier transforms of different samples allows to evaluate differences
in distances or disorder effects (Fig. 6.4).

4. Peaks not corresponding to possible inter-atomic distances can be due to non-negligible mul-
tiple scattering effects.

6.2.2 Inverse Fourier transform

The contribution of a given coordination shell (or of a given scattering path) can be singled out by
an inverse Fourier transform limited to the corresponding interval rmin÷ rmax, with window W̃ (r):

χ̃(k) = (2/π)

∫ rmax

rmin

F (r) W̃ (r) exp(−2ikr) dr. (6.7)

The Fourier filtered signal χ̃(k) is in principle a complex quantity.
Where the direct and inverse transforms performed for r spanning the entire real axis from −∞
to +∞, one would obtain Im χ̃(k) = 0 and Re χ̃(k) would correspond to the original signal, to
within the artefact os the Fourier filtering procedure.
Actually, the inverse transform is done on an interval of only positive r values. As a consequence,
both real and imaginary parts of χ̃(k) are different from zero. The real part corresponds to the
filtered EXAFS signal:

Re χ̃(k) = χs(k) = As(k) sin Φs(k) (6.8)

where As(k) and Φs(k) synthetically indicate the total amplitude and phase of the EXAFS of the
s-th shell. The imaginary part Im χ̃(k) is used to separately calculate the amplitude and phase of
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the filtered signal:

As(k) =
√

[Re χ̃(k)]2 + [Im χ̃(k)]2; Φs(k) = arctg [Re χ̃(k)/Im χ̃(k)]. (6.9)

6.3 Quantitative determination of structural parameters

The final step of EXAFS analysis consists in the quantitative evaluation of the structural param-
eters: average inter-atomic distances 〈r〉, coordination numbers N , Debye-Waller exponents σ2.
If the first-shell contribution is well singled out in the Fourier transform F (r), the corresponding
back-transformed signal χ̃(k) can be safely analysed within the single scattering approximation.
The outer shell contributions cannot generally be completely disentangled and are mixed with con-
tributions from multiple scattering paths, which cannot be neglected in refined analyses. In any
case, according to (3.43), to obtain the values of the structural parameters from an experimental
EXAFS spectrum, one must know the scattering amplitudes |f(k)|, phase-shifts φ(k) and inelastic
factors S2

0 and λ(k) of each relevant scattering path.
Most available software packages [XAFS software, , GNXAS, 2015, FEFF, 2012] allow a sorting
of all the relevant single and multiple scattering paths for a given model structure, as well as the
ab-initio calculation of scattering amplitudes and phasesihfts for the different scattering paths and
an evaluation of the mean free path λ(k). It is thus possible to simulate a theoretical EXAFS
function χsim(k) for the given model structure. The structural parameters of the studied system
can be obtained by building up a suitable starting model structure, calculating χsim(k) for the
model structure, comparing with the experimental EXAFS χexp(k) and refining, by a best-fitting
procedure, the values of the parameters, including the edge shift E0 = Eb − Es.
In principle, the fit of theory to experiment could be done over the entire original EXAFS spectrum.
More frequently, the fit is limited to a filtered portion of the signal, corresponding for example
to the first shell, or to an interval of distances including a number of coordination shells. The
comparison of theory with experiment can be done in the r space after Fourier transform or on
the k space after back-transform. In any case, since Fourier transforms introduce distortions, it
is strictly necessary that both calculated and experimental EXAFS spectra undergo exactly the
same transform procedures before comparison.
The maximum number of independent parameters that can reasonably be obtained from an EXAFS
spectrum depends on the quantity and quality of available information. According to a conservative
rule of thumb based on information theory, the maximum number of independent parameters
obtainable from a Fourier filtered EXAFS signal is

nind ' (2 ∆k∆r)/π, (6.10)

where ∆k = kmax − kmin and ∆r = rmax − rmin are the intervals of the direct and inverse Fourier
transforms, respectively.

6.4 Separate analysis of amplitude and phase

If the Fourier filtered coordination shell is made by one atomic species and if a reference sample
of known structure is available, then the EXAFS analysis can be completed in a rather simple and
elegant way. The method, sometimes called ratio method, consists in the separate comparison of
phases and amplitudes of the EXAFS signals of the sample under study with those of the reference.
The procedure cancels the “physical” parameters |fs(k, π)|, φs, S2

0 and λ, supposed to be identical
in both samples.
The ratio method was invented by Stern et al [Stern et al., 1975], extended by Bunker
[Bunker, 1983] and Tranquada et al [Tranquada and Ingalls, 1983, Tranquada and Ingalls, 1986]
to include cumulants. A presentation including the energy shift has been given by Freund et al
[Freund et al., 1989].
Sample and reference will be here identified by the apices s and m, respectively.
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Figure 6.5: Total phase Φ(k) and amplitude A(k) of the 1st-shell EXAFS of crystalline germanium.
The Fourier filtering introduces artifacts, particularly strong at the extreme k values.

Amplitude and phase (Fig. 6.5) are obtained through Eqs. (6.9). They can be expressed as a
function of cumulants as

A(k) = (S2
o/k) N |f(k, π)| exp

(
Co − 2k2C2 + 2k4C4/3 ...

)
(6.11)

Φ(k) = 2kC1 − 4 k3C3/3 ... + φ(k). (6.12)

Phase analysis

If the phaseshifts of both samples are identical, φs(k) = φm(k), they can be eliminated by sub-
tracting the total phase of the reference from the one of the sample:

Φs(k)− Φm(k) = 2k(Cs1 − Cm1 )− 4 k3(Cs3 − Cm3 ) /3 + ... (6.13)

In this way it is also possible to eliminate the artifacts of the Fourier filtering and reduce possible
multiple scattering and curved waves effects.

A polynomial fit allows to get the differences between the first odd cumulants: ∆C1 = Cs1 − Cm1 ,
∆C3 = Cs3 − Cm3 , ... It is useful to plot ∆Φ/2k against k2 (Fig. 6.6, left): the intercept then
gives ∆C1, the slope is proportional to ∆C3 and deviations from linearity imply a non negligible
influence of ∆C5.
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Figure 6.6: EXAFS at the Te K edge of CdTe: comparison of phases (left) and amplitudes (right)
of seven files measured at 300 K with the average of six reference files measured at 20 K. Data
from [Abd el All et al., 2013]
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Amplitude analysis

If |f(k, π)|, S2
0 and λ of both samples are identical, they can be eliminated by dividing the sample

amplitude by the reference amplitude. In this way, it is also possible to eliminate the Fourier
filtering artifacts and reduce possible multiple scattering and curved wave effects. The logarithm
of the amplitude ratio is

ln
As(k)

Am(k)
= ln

Ns

Nm
+ (Cso − Cmo )− 2k2(Cs2 − Cm2 ) + 2k4(Cs4 − Cm4 )/3− ... (6.14)

A polynomial fit to

ln
As(k)

Am(k)
− (Cso − Cmo ) = ln

Ns

Nm
− 2k2(Cs2 − Cm2 ) + 2k4(Cs4 − Cm4 )/3− ... (6.15)

allows one to evaluate the ratio of coordination numbers Ns/Nm and the differences between the
first even cumulants: ∆C2 = Cs2 − Cm2 , ∆C4 = Cs4 − Cm4 , ...
It is useful to plot ln[As(k)/Am(k)] − (Cso − Cmo ) against k2 (Fig. 6.6, right): the intercept gives
the coordination number, the slope is proportional to ∆C2 and deviations from linearity imply a
non negligible influence of ∆C4.
The term

Cso − Cmo = −2 (Cs1 − Cm1 )/λ− 2 [lnCs1 − lnCm1 ] (6.16)

is often but not always negligible. It can be easily estimated from a rough knowledge of interatomic
distances of sample and model and of the mean free path. The second term in (6.16) is larger than
the first term.

6.5 Uncertainty evaluation

As for any experimental result, the values of structural parameters obtained from EXAFS analysis
are meaningless if not accompanied by a reliable estimate of their uncertainties (error bars). A
sound assessment of the uncertainty of EXAFS results requires a careful evaluation of random fluc-
tuations and systematic errors in both experimental and data analysis procedures. The following
tentative systematic analysis has taken from [Abd el All et al., 2013].

The influence of counting statistics is generally negligible in transmission measurements at third
generation S.R. sources. A number of other factors should be however taken into account: tempera-
ture fluctuations of the sample; temperature fluctuations and mechanical instabilities of monochro-
mator, mirrors and their supports; calibration and resolution of the monochromator angular en-
coder; electron beam fluctuations. All these factors can lead to non-negligible uncertainties of the
photon energy and, on a non perfectly homogeneous sample, to variations of the amplitude of
EXAFS. Not to speak of possible systematic errors, related for example to the sample temperature
calibration, photon beam energy calibration, sample deterioration, and so on.
Not all these factors can reasonably be under complete control of the synchrotron radiation users
or even of the beamline scientists. Suitable experimental strategies and data analysis procedures,
joined to a critical discussion of results, can anyway lead to a sound a posteriori evaluation of
uncertainties and of their most relevant causes.

As a general rule of experimental practice, EXAFS measurements in a given condition (e.g. on a
given sample at a given temperature) should be repeated a convenient number of times, typically
at least three times. When this happens, the different spectra are frequently summed, to obtain an
average EXAFS function χ(k). We consider preferable to analyse separately each spectrum. The
resulting cumulants represent a restricted sample of a parent population of values due to short-term
fluctuations. It is reasonable to account for these fluctuations by evaluating the uncertainty as the
standard deviation of the distribution of mean values; this contribution to uncertainty decreases
when the number of spectra increases.
As a numerical example, let us consider the phase analysis of seven files measured at 300 K at
the Te K edge and compared with the average reference file at 20 K (Fig. 6.6, left). For the
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fitting interval k = 4 to 14 Å−1, the values of the odd cumulants of the effective distribution were
∆C1 = (0.73± 0.04)× 10−2 Å and ∆C3 = (1.65± 0.11)× 10−4 Å3.

A second source of uncertainty is connected to the data analysis procedure. Different windows and
k weigths in Fourier transform and backtransform, as well as different fitting intervals in k space
lead to different values of cumulants. In this respect, the ratio method, based on the separate
analysis of phases and amplitudes, is by far less affected by statistical correlation effects than the
non-linear fitting procedures. The different values of cumulants obtained by different choices of
data analysis parameters cannot be considered as independent samples of a parent distribution:
increasing the number of fitting intervals cannot decrease the final uncertainty. The different values
can be considered as sampling a uniform distribution, and the corresponding uncertainty can be
evaluated as the standard deviation of the distribution, σn = ∆(δCn)/

√
12. The point here is

not the repetition of the fitting procedure over a large number of fitting intervals, but a sound
choice of the width ∆(δCn) of the uniform distribution, which in turn depends on the choice of the
extrema kmin and kmax of the fitting intervals. In the ratio method, the largest fitting interval can
be chosen as the interval where the phase differences (Fig. 6.6 left) or the logarithms of amplitudes
ratios (Fig. 6.6 right) of different files measured in the same conditions show a reasonable agreement.
The visual choice suffers from some arbitrariness, but leads generally to quite conservative estimates
of uncertainty, in view of the large sensitivity of the phase and amplitude plots to tiny discrepancies
of the spectra.
As a numerical example, let us consider again the phase analysis of the seven files measured at
300 K at the Te K edge (Fig. 6.6, left) and focus on the first cumulant. The three fitting intervals
from kmin = 4 to kmax = 13, 14 or 15 Å−1 give different average values of the first cumulant, 0.678,
0.73 and 0.8×10−2 Å; the contribution to the total uncertainty is 0.035×10−2 Å.

An important contribution to the evaluation of uncertainty is represented by the comparison of
independent measurements performed on the same system, for example in different laboratories or
on samples of different thicknesses and possibly at two different absorption edges.

A last point for the evaluation of the quality of results is the comparison of the temperature
dependence of the cumulants with a reasonably smooth behaviour. An interesting example is
given in [Abd el All et al., 2013] by the sequence of cumulants obtained from the Te and Cd edges
between 50 and 150 K. The quantities derived from the phase analysis of the Te K edge (odd
cumulants and perpendicular MSRD) are characterised by a tiny deviation from the expected
smooth temperature dependence; this effect is absent in the quantities derived from the Cd K
edge. In this case, the discrepancies between the results from Te and Cd edges are consistent
with the uncertainty bars: one can reasonably assume that, had a larger number of spectra been
measured at each temperature, the Te data would have been in better agreement with a smooth
temperature dependence. One cannot however exclude the possibility that the observed kinks are
due to long-period fluctuations of the experimental apparatuses or to occasional systematic errors,
which anyway escaped our direct detection; in such a case, they can be considered as a measure of
the extent of long-term reproducibility of a routine experiment performed on a standard beamline.

External accuracy checks can rely on the comparison of experimental results with theoretical
models.



Chapter 7

XANES

This last Section is dedicated to XANES. Starting point for treating XANES is the Golden Rule
in dipole approximation, Eq. (??), like for EXAFS. The interpretation of XANES is however by
far more complicated. We will give here only an introductory phenomenological account.
Two different approaches to XANES can be distinguished, which have been developed in different
times and scientific environments. The first approach focusses on the electronic structure; it is
particularly suited to study the XANES in the very proximity of the edge. The second approach
focusses on geometric structure and on the multiple scattering of the photo-electron; it is par-
ticularly suited to give a unified picture of XANES and EXAFS. To the extent that electronic
and geometric structure are interconnected, the two approaches, apparently rather different, are
actually connected, and in many cases equivalent.

7.1 XANES and electronic structure

In the proximity of an edge, the x-ray absorption coefficient depends on the transitions of the
photo-electron to low-lying un-occupied states. Let us summarize here some general properties.
a) The initial state is a well defined core level, almost insensitive to the chemical environment.
The edge structures directly reflect the modulations of the density of un-occupied electronic states
of lower energy.
b) The initial one-electron core state is a localized wavefunction. As a consequence, the edge
structures sample the density of final states projected on the absorber site.
c) The initial core state has a well defined angular momentum symmetry. By virtue of the electric
dipole selection rules, the edge structures sample the density of final states projected on the angular
momentum. For example, K and L1 edges, corresponding to s initial levels, sample the density
of p final states. L2 and L3 edges, corresponding to p initial levels, sample the density of s and d
final states.
d) The excited state corresponding to an x-ray core hole has typically an energy width Γh of the
order of several eV (Fig. ??). The edge structures reflect the density of final states convoluted with
the Γh width, in addition to instrumental resolution.

Let us now consider some examples.
In atomic systems, the situation is relatively simple. Let us consider the K edge of Argon gas
shown in Fig. ??, left. The zero of the energy axis corresponds to the ionization threshold at
3205.9 eV, determined by XPS. The structures at lower energies correspond to transitions from
the 1s core level to Rydberg states 4p (main peak at -3 eV), 5p, . . ., np. The lifetime of the excited
state produces the widening of Rydberg peaks and the arctangent shape of the edge.
In molecular systems, transitions to atomic Rydberg states still contribute to the edge structures.
In general, however, the edge structures are dominated by transitions to valence orbitals and
resonant states both below and above the ionization threshold. Their interpretation in terms
of electronic states is quite complicated; the best results are generally obtained by a multiple
scattering approach (one speaks of MSR, multiple scattering resonances).
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Figure 7.1: Fine structure at the L1 and L3 edges of antimony (continuous lines) and iodine (dashed
lines) in SbSI. The sensitivity to atomic site and to angular momentum is evident. Circles show
the calculated total density of states at the bottom of conduction band.

In crystalline solids the long-range order simplifies the description and calculation of electronic
states. The edge structures are sensitive to the density of un-occupied states in the low-lying
part of the conduction band, projected on the absorber site and angular momentum, and can be
compared with band calculations (Fig. 7.1).

7.2 XANES and multiple scattering

EXAFS can be interpreted with good accuracy in terms of single scattering (SS) of the photo-
electron. Multiple scattering (MS) phenomena are generally, although not always, negligible.
In the XANES region, on the contrary, MS phenomena become very important. This can be
intuitively understood by two considerations: a) the photo-electron kinetic energy is small with
respect to the interaction potential, making more probable the scattering; b) the photo-electron
mean free path is larger.

7.2.1 Multiple scattering paths

According to Eq. (??), the absorption coefficient in the EXAFS region can be expressed, in SS
approximation, as

µ(k) = µ0(k) [1 + χ2(k)] , (7.1)

where µ0 is the atomic absorption coefficient and χ2 the EXAFS function. The label “2” has
been added to remember that the photo-electron path is made of 2 segments, from absorber to
back-scatterer atom and viceversa, respectively.
To take into account multiple scattering effects, Eq. (7.1) is modified as follows:

µ(k) = µ0(k) [1 + χ2(k) + χ3(k) + ...+ χn(k) + ...] . (7.2)

In Eq. (7.2) the generic term χn represents the contribution due to all possible paths of order
n, say composed of n segments (Fig.??). For example, χ3 corresponds to all paths in which the
photo-electron is backscattered twice.
In principle, Eq. (7.2) contains an unlimited number of terms χn. Each term χn in turn corresponds
to different paths, whose number grows very fastly when n increases. The relative weight of the
different terms in Eq. (7.2) depends on the photo-electron energy. Going down from high to low
energy, it is useful to distinguish three regimes.
a) In the EXAFS region the terms χn of order n > 2 are negligible; we are in the single scattering
(SS) regime.
b) In the IMS region (intermediate multiple scattering), only a limited number of terms χn (n > 2)
is important; one can then calculate the absorption coefficient µ(k) to a good approximation by
evaluating only the most significant terms χn.
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χ2

χ3
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Figure 7.2: Examples of multiple scattering paths. Each row correspond to a given contribution
χn. Each column corresponds to a given n-body correlation function gn.

c) At low energies, in the FMS region (full multiple scattering), the series of Eq. (7.2) converges
very slowly or does not converge at all; the absorption coefficient can be obtained only through a
direct calculation of the full scattering operator.
Multiple scattering calculations of XANES are evidently much more complicated than single scat-
tering calculations of EXAFS. In particular, it is impossible to interpret XANES by a simple
parametrized equation.
If thermal disorder effects are neglected, for each multiple scattering path a contribution

χn(k) = A (k, {~r}) sin [kRp + Φ (k, {~r})] (7.3)

should be considered, formally similar to the standard EXAFS formula, but substantially much
more complicated. In Eq. (7.3), Rp is half the total photo-electron path. {~r} is the set of
coordinates describing all interested atoms, A e Φ are functions depending on the potential acting
on the photo-electron.
A multiple scattering calculation is based on the following steps: a) assumption of a geometrical
structure; b) sorting of the paths relevant for the application of Eq. (7.2): c) calculations of the A
and Φ functions of Eq. (7.3) for each path; d) optimization of structural parameters by best fit to
the experimental spectrum.
The multiple scattering formalism requires the presence of a cluster of atoms surrounding the
absorber atom, independently of any degree of long range order. It represents then a unifying
framework for treating molecules and condensed systems, both crystalline and amorphous.

7.2.2 N-body correlations

The complexity of multiple scattering calculations is balanced by the possibility of obtaining from
XANES three-dimensional structural information, e.g. on bonding angles and n-body correlation
functions.
The scattering paths including only the absorber and one back-scatterer atom contain information
only on the two-body correlation function g2(r). This is the case of EXAFS (χ2), but also of some
paths of order n > 2 (Fig.7.2). The g2(r) function is connected to the real distribution ρ(r) by
ρ(r) = 4πr2g2(r).
The scattering paths including the absorber and two different scatterer atoms contain information
on the three-body correlation function g3(r1, r2, φ), where r1 and r2 are inter-atomic distances, φ
the bonding angle (Fig.7.2).
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Appendix A

Basic electrodynamics

In this Appendix, some basic concepts of electrodynamics are reviewed, the main goal being to
support the description of the interaction of electromagnetic radiation with material systems.

In Section A.1, the description of the electromagnetic field in terms of the ~E and ~B vectors and of
the Maxwell equations is accounted for; the interaction of the radiation field with electrical charges
is described, in the classical approximation, by the Coulomb-Lorentz force.
The interaction of radiation with atoms requires a quantum approach. The use of the Coulomb-
Lorentz force is out of question in quantum mechanics. The right approach has to be sought within
the hamiltonian formalism. The first step in this direction (Section A.2) is the introduction of the
scalar and vector potentials, which play a key role in both classical and quantum hamiltonian
approaches. Thanks to the gauge invariance, the potentials represent a flexible mathematical
instrument which facilitates field calculations in different physical situations.
Sections A.3 and A.5 are dedicated to the expression of the electromagnetic fields in the reciprocal
space and to their quantisation in terms of photons.
At last, the Lagrange and Hamilton formalisms for the interaction of radiation with matter are
introduced in Section A.6. The expression of the interaction Hamiltonian which concludes this
section is a necessary input for the subsequent Appendix B, where the radiation-matter interaction
is approached within the time-dependent perturbation formalism.

The International System of units (SI) is used for electromagnetic quantities.
Basic references: [Feynman et al., 1977, Cohen-Tannoudji et al., 2004, Zangwill, 2012].

A.1 Maxwell equations and Lorentz force

The Maxwell equations connect the electric and magnetic fields to their sources, the electric charges
and currents. The dynamic effect of the electric and magnetic fields on the electric charges is
described by the Lorentz force.
Maxwell equations and Lorentz force represent the law of electromagnetism.

A.1.1 Maxwell equations

The electromagnetic field is described by the electric field ~E and the magnetic induction field ~B.

Maxwell equations in integral form

The four Maxwell equations in integral form connect the electric and magnetic fields to the electric
charge q and the electric current I.

Electrostatic Gauss law: ∫
S

~E · ~un dS =
q

ε0
(A.1)

113



114 P. Fornasini - X-ray Absorption Spectroscopy

Magnetostatic Gauss law: ∫
S

~B · ~un dS = 0 (A.2)

Faraday-Henry law: ∮
L

~E · d~̀ = − d

dt

∮
S

~B · ~un dS. (A.3)

Ampère-Maxwell law: ∮
L

~B · d~̀ = µ0 I + ε0µ0
d

dt

∮
S

~E · ~un dS. (A.4)

Maxwell equations in differential form

Making use of the Gauss and Stokes theorems∫
S

~C · ~un dS =

∫
V

~∇ · ~C dV ,
∮
L

~C · ~̀dS =

∫
S

~∇× ~C dS , (A.5)

where ~C is a generic vector, the integral Maxwell equations can be transformed into their differential
form, where the electric and magnetic fields are connected to the charge density ρ and to the current
density ~J :

~∇ · ~E (~r, t) =
1

ε0
ρ (~r, t) (A.6)

~∇ · ~B (~r, t) = 0 (A.7)

~∇× ~E (~r, t) = − ∂

∂t
~B (~r, t) (A.8)

~∇× ~B (~r, t) =
1

c2
∂

∂t
~E, (~r, t) +

1

ε0c2
~J(~r, t) (A.9)

Continuity equation

From (A.6) and (A.9) one can derive the equation of continuity, which corresponds to the conser-
vation of electric charge:

∂

∂t
ρ (~r, t) + ~∇ · ~J (~r, t) = 0 . (A.10)

S.I. Units

- the electric field E is measured in V m−1

- the magnetic induction B is measured in T

- the electric charge density ρ is measured in C m−3

- the current density J is measured in A m−2

- the vacuum permittivity ε0 is 8.8544×10−12 N−1m−2C2.

A.1.2 Maxwell equations in vacuum, wave equations

In vacuum, where no electric charges are present (ρ = 0 and ~J = 0), the differential Maxwell
equations reduce to:

~∇ · ~E (~r, t) = 0 (A.11)

~∇ · ~B (~r, t) = 0 (A.12)

~∇× ~E (~r, t) = − ∂

∂t
~B (~r, t) (A.13)

~∇× ~B (~r, t) =
1

c2
∂

∂t
~E, (~r, t) (A.14)
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Let us take the curl of (A.13) and (A.14); remembering that ~∇× (~∇×~v ) = ~∇(~∇ ·~v ) and making
use of (A.11) and (A.12) one finds the two wave equations for the electric and magnetic fields:

∂2

∂t2
~E (~r, t) = c2∇2 ~E (~r, t) (A.15)

∂2

∂t2
~B (~r, t) = c2∇2 ~B (~r, t) (A.16)

Wave equation

The two above equations (A.15) and (A.16) imply the same form for the six components of the

two vectors ~E and ~B,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 (A.17)

say
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
= 0 (A.18)

where ψ can be one of the different scalar quantities Ex, Ey, Ez, Bx, By, Bz.
Different functions ψ(t, x, y, z) can satisfy the wave equation (A.17).
As a further consequence of the Maxwell equations, one can show that in an electromagnetic
wave the electric and magnetic fields are always perpendicular, ~B⊥ ~E, and that both ~E and ~B are
perpendicular to the propagation direction. Besides, the the oscillating electric and magnetic fields
are not independent, but are connected by the scalar relation E = cB.

Plane waves

One can easily verify that any functions

ψ(t, x) = f(t− x/c) , ψ(t, x) = f(t+ x/c) (A.19)

satisfie the differential wave equation (A.17). They represent plane waves propagating in the
forward and in the backward x direction, respectively, with velocity c.
By considering three functions (A.19) satisfying the wave equation (A.18) for the three components
Ex, Ey, Ez of the electric field, one can build up three-dimensional electromagnetic waves.
Any function representing a possible plane electromagnetic wave can be expressed a a Fourier
integral of sinusoidal plane waves. That’s why one give particular attention to sinusoidal waves

Spherical waves

By expressing the Laplacian operator ∇2 as a function of the radial distance, one can rewrite the
wave equation (A.17) as

∂2(rψ)

∂r2
− 1

c2
∂2(rψ)

∂t2
= 0 (A.20)

The solution is a spherical wave

r ψ(t, r) = f(t− x/c) , ψ(t, r) =
f(t− x/c)

r
. (A.21)

The function ψ diverges for r → 0. Actually, a spherical wave requires a source at the origin (or
in the region around the origin). Taking into account the source s, the wave equation becomes

∂2(rψ)

∂r2
− 1

c2
∂2(rψ)

∂t2
= −s , (A.22)

or, in cartesian coordinates,

∇2ψ − 1

c2
∂2ψ

∂t2
= −s . (A.23)
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It is important to realise that for r → 0, say near the source,

∇2ψ − 1

c2
∂2ψ

∂t2
' ∇2ψ (A.24)

(the time derivative is negligible with respect to the space derivatives) and

f(t− x/c)
r

' f(t)

r
. (A.25)

Near the source, the solution to the wave equation can be calculated as for the static case. The
solution propagates radially with velocity c.

A.1.3 Coulomb-Lorentz force

Let us now consider the effects of the magnetic and electric fields on an electric charge. The force
acting on a charge q which at time t is in position ~r and moves with velocity ~v (Coulomb-Lorentz
force) is

~F (~r, t) = q
[
~E (~r, t) + ~v × ~B (~r, t)

]
. (A.26)

For a non relativistic particle, the classical dynamic equation is

m
d2

dt2
~r (t) = q

(
~E (~r, t) + ~v (t)× ~B (~r, t)

)
(A.27)

For a relativistic particle, the dynamic equation is

d

dt
(γm~v) = q

(
~E + ~v (t)× ~B

)
(A.28)

where

γ =

[
1− v2

c2

]−1/2

(A.29)

Comments

- The four Maxwell equations are first-order, the Coulomb-Lorentz equation is second-order.

- The evolution of the fields depends on ρ and ~J through the Maxwell equations. The motion
of the charged particles depends on the fields through the Coulomb-Lorentz equation.

- The dynamical state of the global system particles + fields is given, at each instant t0, by the
values of the fields at all points ~r and the positions ~ri and velocities ~vi of all the particles.

A.1.4 Energy and momentum

It is an experimentally confirmed fact that the electromagnetic field can store and transport energy.
Energy is a conserved quantity. The theory of relativity requires that energy is locally conserved:
no simultaneous transfer of energy between distant points can happen.
We want to inquire how the electromagnetic energy can be expressed as a function of the electric
and magnetic fields [Ref. Feynman II, Ch. 27].

Poynting theorem

The local conservation of energy can be expressed by a continuity equation in integral form

− ∂

∂t

∫
V

u dV =
∑
Σ

~S · d~n+

∫
V

~E · ~J dV , (A.30)

where u(~r, t) is the local energy density, ~S is the energy flux through the surface Σ which encloses
the volume V and the last term represent the exchange of energy between the field and matter.
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The continuity equation (A.30) can be readjusted and expressed in differential form as

~E · ~J = − ∂

∂t
u− ~∇ · ~S . (A.31)

Extracting the current density ~J from the last Maxwell equation (A.9),

~J = −ε0
∂

∂t
~E + ε0c

2 ~∇× ~B ,

one can express the left side of (A.31) in terms of electric and magnetic fields:

~E · ~J = −ε0 ~E ·
∂

∂t
~E + ε0c

2 ~E · (~∇× ~B) ; (A.32)

transforming the last term of (A.32) according to

~E · (~∇× ~B) = ~B · (~∇× ~E) + ~∇ · ( ~B × ~E)

and taking into account that ~∇× ~E = −∂ ~B/∂t, one finds the final form of (A.32):

~E · ~J = − ∂

∂t

[
ε0
2
E2 +

ε0c
2

2
B2

]
− ε0c2~∇ · ( ~E × ~B) . (A.33)

Energy

Let us now compare the two expressions (A.31) and (A.33) for the local conservation of energy.
By equating the first terms of the right-hand sides of the two equations, one can express the energy
density u of the electromagnetic field as

u(~r, t) =
1

2
ε0
[
E2(~r, t) + c2B(~r, t)

]
. (A.34)

The total energy of a classical system particles + fields is

H =
∑

i

1

2
miv

2
i (t) +

ε0
2

∫
d3r

[
E2(~r, t) + c2B2(~r, t)

]
(A.35)

By equating the second terms of the right-hand sides of the two equations, one can express the
energy flux density ~S as the Poynting vector

~S(~r, t) = ε0c
2~∇ · [ ~E(~r, t)× ~B(~r, t)] . (A.36)

Note: The choice is not unique; the Poynting vector is defined to within a vector of zero divergence.

For an electromagnetic wave, where E = cB, the energy density and the modulus of the Poynting
vector magnitude are, respectively,

u = ε0E
2 , S = ε0cE

2 = uc . (A.37)

Linear momentum

The density ~g of linear momentum of the electromagnetic field is connected to the energy flux
(Poynting vector) by

~S = c2 ~g . (A.38)

The total linear momentum of a classical system particles + fields is thus

~P =
∑

i
mi~vi(t) + ε0

∫
d3r

[
~E (~r, t)× ~B (~r, t)

]
(A.39)
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The demonstration is cumbersome and ius here not given.
Let us consider some examples.

Example 1: Relativistic particles of rest mass m 6= 0.
Let n be the number of particles per unit volume. It is easy to see that

~g = nγm~v , ~S = nγmc2 ~v . (A.40)

Example 2: Relativistic particles of rest mass m = 0 (photons).
Let n be the number of photons per unit volume. The photon energy and momentum are

ε = hν = cp , ~p = h̄~k =
hν

c
û . (A.41)

The magnitudes of energy flux and momentum density are

S = nεc , g = np = nε/c . (A.42)

Example 3: Plane wave impinging on a charge q and exerting the force ~F = q( ~E + ~v × ~B).

The electric field induces a motion of the charge with velocity ~v⊥ ~B. As a consequence, the
magnetic field induces a force in the direction of propagation (radiation pressure) of magnitude
FB = qvB = qvE/c = vFe/c. The average power lost by the field is dW/dt = 〈vFE〉. The
radiation pressure is

〈FB〉
A

=
1

A

dp

dt
=

1

A

1

c

dW

dt
, (A.43)

whence
gc = S/c . (A.44)

A.1.5 Angular momentum

The total angular momentum of a classical system particles + fields is

~J =
∑

i
[mi ~ri(t)× ~vi(t)] + ε0

∫
d3r

{
~r ×

[
~E (~r, t)× ~B (~r, t)

]}
(A.45)

A.2 Scalar and vector potentials

[Reference: [Feynman et al., 1977] II, Section 18-6].

The properties of an electromagnetic field are completely specified by the knowledge of the electric
and magnetic fields ~E(~r, t) and ~B(~r, t), say by their six components.

In many instances it is however more convenient to describe the electromagnetic field by two
alternative quantities, the vector potential ~A(~r, t) and the scalar potential U(~r, t). Let us first see
how the two potentials are connected to the electric and magnetic fields.

A) The Maxwell equation (A.7), ~∇· ~B = 0, implies that a vector field ~A exists, such that ~B = ~∇× ~A.

B) By substituting ~B = ~∇× ~A in the Maxwell equation (A.8), one gets

~∇×

(
~E +

∂ ~A

∂t

)
= 0 , so that ~E +

∂ ~A

∂t
= −~∇U ,

since a vector whose curl is zero can be expresses as the gradient of a scalar function.

In conclusion, the two vectors ~B(~r, t) and ~E(~r, t) can be connected to a scalar field U(~r, t) and a

vectorial field ~A(~r, t) through the following relations:

~B = ~∇× ~A , ~E = − ~∇U − ∂ ~A

∂t
(A.46)
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Note 1: ~A and ~E are polar vectors, ~B is an axial vector.

Note 2: The potentials ~A and U are not observable quantities, as the electric and magnetic fields
are (see below). Actually, they are useful mathematical entities, which simplify the treatment
of a number of problems. One first advantage is that they characterise the electromagnetic
field in terms of only four scalar quantities (U,Ax, Ay, Az) instead of the six components of ~E

and ~B.
We will see later on that the potentials ~A and U facilitate the Lagrangian and Hamiltonian
formulations of the interaction of radiation with matter.

Maxwell equations with potentials

Maxwell equations (A.7) and (A.8) have been used to define the scalar and vector potentials.
By substitution, the two remaining Maxwell equations (A.6) and (A.9) can be expressed in terms
of the potentials as follows:

∇2U (~r, t) =
1

ε0
ρ (~r, t) − ~∇ · ∂

∂t
~A(~r, t) (A.47)[

1

c2
∂2

∂t2
−∇2

]
~A(~r, t) =

1

ε0c2
~J(~r, t)− ~∇

[
~∇ · ~A(~r, t) +

1

c2
∂

∂t
U(~r, t)

]
(A.48)

Only two equations are thus sufficient to connect the potentials to the charge and current densities.

A.2.1 Gauge transformations of potentials

The potentials ~A and U are not observable quantities; the Maxwell equations are unchanged if the
following substitutions are made:

~A → ~A+ ~∇f(~r, t) = ~A′ , U → U − ∂

∂t
f(~r, t) = U ′ , (A.49)

where f(~r, t) is any differentiable function of ~r and t.

By substituting ~A → ~A′ and U → U ′, the fields ~E and ~B, say the observable quantities of the
electromagnetic field, are unchanged:

~B = ~∇× ~A′ , ~E = −~∇U ′ − ∂ ~A′

∂t
. (A.50)

The two vectors ~A and ~A′ have the same curl ~B, but, according to (A.49), a different divergence:

~∇ · ~A′ = ~∇ · ~A + ∇2f(~r, t). (A.51)

The arbitrariness of the function f(~r, t) implies the arbitrariness in the choice of ~∇ · ~A (gauge
choice). This arbitrariness may be exploited to optimise the choice of the potentials according to
the peculiarities of the phenomenon to be described.
One can show that the basic equations of both classical and quantum mechanics are not affected
by different gauge choices.
The two most commonly used gauges are the Lorenz and the Coulomb gauge.

Note: The Lorenz gauge is due to the Danish physicist Ludwig Lorenz, not to be confused with
the Dutch physicist Hendrick Lorentz.

A.2.2 Lorenz gauge

By imposing to the potentials the condition (Lorenz gauge)

~∇ · ~A = − 1

c2
∂U

∂t
, (A.52)
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the Maxwell equations (Gauss and Ampère laws) for the potentials (A.47) and (A.48) become:

∇2U − 1

c2
∂2U

∂t2
= − ρ

ε0 (A.53)

∇2 ~A − 1

c2
∂2 ~A

∂t2
= − ~J

ε0c
2 (A.54)

The symmetry of (A.53) and (A.54) is appealing; the scalar and vector potentials are uncoupled,
the scalar potential is connected to the charge density, the vector potential to the current density.

Fields in vacuum, electromagnetic waves and potentials

In vacuum, the Maxwell equations for the potentials in the Lorenz gauge (A.53) and (A.54) reduce
to the wave equations

∇2U − 1

c2
∂2U

∂t2
= 0 (A.55)

∇2 ~A − 1

c2
∂2 ~A

∂t2
= 0 (A.56)

The electromagnetic waves can thus be described in terms of the four scalar quantities U,Ax, Ay, Az.

A.2.3 Coulomb gauge (radiation gauge)

By imposing to the potentials the alternative condition

~∇ · ~A = 0 , (A.57)

the Maxwell equations for the potentials become:

∇2U = − ρ
ε0 , (A.58)

∇2 ~A− 1

c2
∂2 ~A

∂t2
= − ~J

ε0c
2 . (A.59)

The Coulomb gauge does not preserve the relativistic covariance, and is suited for static charge
distributions (the term ∂2U/∂t2 is missing).

For empty space (ρ = 0, ~J = 0), one can add the condition U = 0 and obtain the wave equation
containing only the vector potential:

∇2 ~A − 1

c2
∂2 ~A

∂t2
= 0 . (A.60)

The choice U = 0, ~∇ · ~A = 0 is also called radiation gauge. The radiation gauge is particularly
useful to treat the interaction of radiation with matter (see below).

A.2.4 The potentials and their sources

In the static case (say when the distributions of charges and currents are independent of time),
the Maxwell equations reduce to

~∇ · ~E = ρ/ε0 ~∇× ~B = µ0
~J (A.61)

~∇× ~E = 0 ~∇ · ~B = 0 (A.62)

Since now ~E = ~∇U (no ~A contribution), the relation between scalar potential and electric charge
is the Poisson equation

∇2U = −ρ/ε0 . (A.63)
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For the magnetic field, since ~B = ~∇× ~A,

~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2 ~A = µ0
~J . (A.64)

In the Coulomb gauge, ~∇· ~A = 0, the relation between vector potential and current density becomes

∇2 ~A = −µ0
~J . (A.65)

The potentials at point 1 depend on the distributions of charge ρ and current ~J at various points
2 according to the well known expressions:

U(1) =
1

4πε0

∫
ρ(2)

r12
dV2 , ~A(1) =

µ0

4π

∫ ~J(2)

r12
dV2 (A.66)

If the distributions of charges and currents are time-dependent, the potentials of the Lorenz
gauge at the point 1 and time t are obtained from the distributions of charge ρ and current ~J at
the positions 2 at the retarded times t′ = r12/c:

U(1, t) =
1

4πε0

∫
ρ(2, t− r12/c)

r12
dV2 , ~A(1, t) =

µ0

4π

∫ ~J(2, t− r12/c)

r12
dV2 . (A.67)

Again, the scalar potential U only depends on the charge density, the vector potential ~A only
depends on the current density ~J .

A.3 Electrodynamics in reciprocal space

A.3.1 Fourier transforms of the fields and equations

Spatial Fourier transform

Following § I.B. of [Cohen-Tannoudji et al., 2004], we consider the spatial Fourier Transform of

the fields. Accordingly, the vectors V (~r, t) in real space are connected to the vectors ~V(~k, t) in
reciprocal space by the relations

~V (~r, t) =
1

(2π)3/2

∫
d3k ~V(~k, t) ei

~k·~r , ~V(~k, t) =
1

(2π)3/2

∫
d3r ~V (~r, t) e−i

~k·~r . (A.68)

Note that the units of V (~r, t) and ~V(~k, t) differ by a factor proportional to a volume.
The first equation corresponds to the expansion of a vectorial function V (~r, t) into plane waves.
Since the functions V (~r, t) here considered are real (electric and magnetic fields, etc.), the complex
F.T. functions obey the relations

~V∗(~k, t) = ~V(−~k, t) , (A.69)

so that, when integrating over all the reciprocal space, the imaginary parts cancel out.

Maxwell equations

Taking into account the properties of Fourier transform, the Maxwell equations (A.6)–(A.9) in
reciprocal space become

i~k · ~E(~k, t) =
1

ε0
% (~k, t) (A.70)

i~k · ~B(~k, t) = 0 (A.71)

i~k × ~E (~k, t) = − ∂

∂t
~B (~k, t) (A.72)

i~k × ~B (~k, t) =
1

c2
∂

∂t
~E , (~k, t) +

1

ε0c2
~J (~k, t) (A.73)
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- Maxwell equations (A.6)–(A.9) in real space are partial differential equations.

- Maxwell equations (A.70)–(A.73) in reciprocal space are local equations, which introduces a
great semplification.

The continuity equation is

i~k · ~J (~k, t) +
∂

∂t
% (~k, t) . (A.74)

Potentials

Local relations hold also between fields and potentials

~B(~k, t) = i~k × ~A(~k, t) , ~E(~k, t) = −i ∂
∂t

~A(~k, t)− i~kU(~k, t) , (A.75)

and local are the Maxwell equations for potentials

k2 U =
1

ε0
% + i~k · ∂

∂t
~A (A.76)

1

c2
∂2

∂t2
~A+ k2 ~A =

1

ε0c2
~J − i~k

(
i~k · ~A+

1

c2
∂

∂t
U
)
. (A.77)

A.3.2 Longitudinal and transverse fields

Definition

Longitudinal and transverse fields (or longitudinal and transverse components of fields) can be de-
fined both in the real and reciprocal space). The definition in reciprocal space is more transparent.

A longitudinal vector field is such that

~∇× ~V‖(~r) = 0 , in real space (A.78)

i~k × ~V‖(~k) = 0 , in reciprocal space (A.79)

for all ~r and all ~k.

A transverse vector field is such that

~∇ · ~V⊥(~r) = 0 , in real space (A.80)

i~k · ~V⊥(~k) = 0 , in reciprocal space (A.81)

for all ~r and all ~k.

Electric and magnetic fields

The first two of Maxwell equations define the longitudinal and transverse character of electric and
magnetic fields.

- The magnetic field is purely transverse, since its divergence is always zero..

- The electric field would be purely transverse only if no charge where present anywhere in
space.

- The longitudinal component of the electric field is connected to the distribution of charges;
for a discrete set of charges one can see that (§ I.B. of [Cohen-Tannoudji et al., 2004])

~E‖(~r, t) =
1

4πε0

∑
i

qi
~r − ~ri(t)
|~r − ~ri(t)|3

. (A.82)

Note: The longitudinal electric field is instantaneous. Actually, one can show that also the trans-
verse electric field ~E⊥ has an instantaneous component which cancels that of ~E‖, so that the

total field ~E = ~E⊥ + ~E‖ is actually retarded.
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Coulomb gauge and potentials

In the Coulomb gauge,
~A‖ = 0 . (A.83)

Energy and momentum

We have seen before that the total energy of a system of particles embedded in an electromagnetic
field is

Htot =
∑

i

1

2
miv

2
i (t) +

ε0
2

∫
d3r

[
E2(~r, t) + c2B2(~r, t)

]
(A.84)

and the total momentum is

~Ptot =
∑

i
mi~vi(t) + ε0

∫
d3r

[
~E (~r, t)× ~B (~r, t)

]
(A.85)

The longitudinal part of the field energy corresponds to the Coulomb potential energy

Hlong =
ε0
2

∫
d3r E2

‖(~r, t) = Ucoul =
1

8πε0

∑
ij

qiqj
|~ri − ~rj |

(A.86)

(including the divergent self-energy).
The transverse part is

Htrans =
ε0
2

∫
d3r

[
E2
⊥(~r, t) + c2B2(~r, t)

]
(A.87)

The longitudinal part of the field momentum can be transformed to reciprocal space making use
of the Parseval relation

~Plong = ε0

∫
d3r

[
~E‖ (~r, t)× ~B (~r, t)

]
= ε0

∫
d3k

[
~E∗‖ (~r, t)× ~B (~r, t)

]
(A.88)

From the first Maxwell equation in reciprocal space, the relation between B and A and the identity
~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c, one obtains

~Plong = ε0

∫
d3k

1

ε0
%∗(~k)

~k

k2
×
[
i~k × ~A

]
=

∫
d3k %∗(~k)

[
~A− k̂(k̂ · ~A

]
=

∫
d3k %∗(~k)

[
~A− ~A‖

]
=

∫
d3k %∗(~k) ~A⊥ . (A.89)

and finally, coming back to the real space,

~Plong =

∫
d3r ρ∗(~r) ~A⊥(~r) =

∑
i

qi ~A⊥ . (A.90)

The transverse part of the field momentum is

~Ptrans = ε0

∫
d3r

[
~E⊥ (~r, t)× ~B (~r, t)

]
(A.91)

The total momentum can thus be expressed as

~Ptot =
∑

i
mi~vi(t) +

∑
i
qi ~A⊥ + ε0

∫
d3r

[
~E⊥(~r, t)× ~B (~r, t)

]
(A.92)

=
∑

i
~Pi + ε0

∫
d3r

[
~E⊥(~r, t)× ~B (~r, t)

]
(A.93)
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where the quantity
~Pi = mi~vi + qi ~A⊥ (A.94)

is the conjugate momentum of the position ~ri in the lagrangian and hamiltonian formalisms (see
below).

Substituting

~vi =
1

mi
(~Pi − qi ~A⊥) (A.95)

in (??) and assuming the Coulomb gauge, where ~A⊥ = ~A, the total energy can be written as

Htot =
∑
i

1

2mi

[
~Pi − qi ~A

]2
+ Ucoul + Htrans (A.96)

A.4 Normal coordinates

In real space, the last two Maxwell equations in vacuum, (A.13) and (A.14), lead to the wave

equations for the fields ~E and ~B, (A.15) and (A.16).
Wave equations are obtained for the scalar and vector potentials in the Lorenz gauge and for the
vector potential in the Coulomb gauge.

We want now to study the description of waves in the reciprocal space. To that purpose, let us
consider the transverse part of the last two Maxwell equations (A.72) and (A.73) in vacuum. The

transverse parts are sufficient to describe electromagnetic waves (let us put ~J = 0).
In reciprocal space the equations can be rewritten

∂

∂t
~B (~k, t) = −i~k × ~E⊥(~k, t) (A.97)

∂

∂t
~E⊥(~k, t) = i c2 ~k × ~B (~k, t) (A.98)

say, making the cross product of ~k by the first equation,

~k × ∂

∂t
~B (~k, t) = i k2 ~E⊥(~k, t) (A.99)

∂

∂t
~E⊥(~k, t) = i c2 ~k × ~B (~k, t) (A.100)

Multiplying the second equation by c/k and summing the two equations, one obtains

∂

∂t

(
~E⊥ ± ck̂ × ~B

)
= ±iω

(
~E⊥ ± ck̂ × ~B

)
(A.101)

where ω = ck and k̂ = ~k/k.

Classical normal coordinates

It is convenient to introduce a new complex vector variable

~α (~k, t) = − i
2

√
2ε0
h̄ω

[
~E⊥ (~k, t) + c k̂ × ~B (~k, t)

]
(A.102)

where the normalisation constant under square root has been written in a form that facilitates the
transition to the quantum approach.
The (real) fields are thus expressed as

~E⊥ (~k, t) = i

√
h̄ω

2ε0

[
~α (~k, t) + ~α ∗ (−~k, t)

]
(A.103)

~B (~k, t) =
i

c

√
h̄ω

2ε0

[
k̂ × ~α (~k, t)− k̂ × ~α ∗ (−~k, t)

]
(A.104)
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The vector potential is (Coulomb gauge)

~A (~k, t) = ~A⊥ (~k, t) =

√
h̄

2ε0ω

[
~α (~k, t) + ~α ∗ (−~k, t)

]
(A.105)

Normal coordinates and harmonic oscillators

The Maxwell equations in vacuum correspond to the equation for the complex vector variable α
(normal coordinate)

d

dt
~α (~k, t) = − iω ~α (~k, t) . (A.106)

This equation is the equation of the normal coordinates of harmonic oscillators.
Let us consider a classical harmonic oscillator, of coordinate x and momentum p. The Hamilton
equations are

dx

dt
=
∂H

∂p
=

p

m
,

dp

dt
= −∂H

∂x
= −mω2x (A.107)

Introducing the new adimensional dynamical variables

x̂ =

√
mω

h̄
x , p̂ =

√
1

mωh̄
p (A.108)

(where the factor h̄ is introduced to simplify the transition to the quantum case) the Hamitlon
equations become very symmetrical

dx̂

dt
= ω p̂ ,

dp̂

dt
= −ω p̂ (A.109)

Finally, let us introduce the complex variable α (and its complex conjugate α∗)

α(t) =
1√
2

(x̂+ iŷ) , α∗(t) =
1√
2

(x̂− iŷ) (A.110)

The Hamitlon equations for x̂ and p̂ can be expressed into a single equation for α

dα(t)

dt
= −iω α(t) (A.111)

whose solution is
α(t) = α0 e

−iωt (A.112)

The total classical energy is

H =
p2

2m
+

1

2
mω2x =

1

2
h̄ω (p̂2 + x̂2) = h̄ω |α0|2. (A.113)

The normal variables ~α (~k, t) behave as harmonic oscillators. They define the normal modes of the
classical electromagneti field.
The quantization of the electromagnetic field is achieved by substituting the normal variables α
and α∗ with annihilation and creation operators.

Classical real-space quantities (continuum case)

Let us now come back to the electromagnetic field in real space and take into account that α(t) =
α0 exp(−iωt).
The fields and the potential vector are

~E⊥ (~r, t) = i

∫
d3k

∑
ε
Eω
[
αε0 (~k) ε̂ ei(

~k·~r−ωt) + α∗ε0 (~k) ε̂ e−i(
~k·~r−ωt)

]
(A.114)

~B (~r, t) = i

∫
d3k

∑
ε
Bω
[
αε0(~k) k̂ × ε̂ ei(~k·~r−ωt) + c.c.

]
(A.115)

~A⊥ (~r, t) =

∫
d3k

∑
ε
Aω

[
αε0 (~k) ε̂ ei(

~k·~r−ωt) + c.c.
]

(A.116)
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where

Eω =

√
h̄ω

2ε0(2π)3
, Bω =

Eω
c
, Aω =

Eω
ω

(A.117)

and ε̂ is the polarisation unit vector (2 directions, normal to ~k).

The transverse field energy and momentum are

Htrans =

∫
d3k

∑
ε

h̄ω

2

[
α∗ε (~k)αε (~k) + αε (~k)α∗ε (~k)

]
(A.118)

~Ptrans =

∫
d3k

∑
ε

h̄~k

2

[
α∗ε (~k)αε (~k) + αε (~k)α∗ε (~k)

]
(A.119)

where ω = ck.

Classical real-space quantities (discrete case)

Let us introduce the expressions of the field quantities in the discrete case, where the Fourier
integrals are substituted by the Fourier series.

The fields and the potential vector are now

~E⊥ (~r, t) = i
∑
~ks

√
h̄ω~ks
2ε0V

[
α~ks e

i(~k·~r) + α∗~ks e
−i(~k·~r)

]
ε̂~ks (A.120)

~B (~r, t) = i
∑
~ks

√
h̄ω~ks

2ε0c2V

[
α~ks e

i(~k·~r) + α∗~ks e
−i(~k·~r)

]
(~k × ε̂~ks) (A.121)

~A⊥ (~r, t) =
∑
~ks

√
h̄

2ε0V ω~ks

[
α~ks e

i(~k·~r) + α∗~ks e
−i(~k·~r)

]
ε̂~ks (A.122)

where s is the polarisation index and

α = α0 e
iωt . (A.123)

The transverse field energy and momentum are

Htrans =
∑
~ks

h̄ω~ks
2

[
α∗~ksα~ks + α~ksα

∗
~ks

]
(A.124)

~Ptrans =
∑
~ks

h̄~k

2

[
α∗~ksα~ks + α~ksα

∗
~ks

]
(A.125)

where ω~ks = ck.

A.5 Quantisation of the field

Quantum operators

The transition to the quantum treatment can be obtained by substituting the normal variables
α(~k) and α∗(~k) with the annihilation and creation operators a(~k) and a†(~k).

The commutation relations for annihilation and creation operators in the continuum case are

[aε(~k), aε′(~k
′)] = 0 , [a†ε(

~k), a†ε′(
~k′)] = 0

[aε(~k), a†ε′(
~k′)] = δεε′δ(~k − ~k′)

(A.126)
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The fields and the potential operators are

~E⊥ (~r, t) = i
∑
~ks

√
h̄ω~ks
2ε0V

[
a~ks e

i(~k·~r) + a†~ks
e−i(

~k·~r)
]
ε̂~ks (A.127)

~B (~r, t) = i
∑
~ks

√
h̄ω~ks

2ε0c2V

[
a~ks e

i(~k·~r) + a†~ks
e−i(

~k·~r)
]

(~k × ε̂~ks) (A.128)

~A⊥ (~r, t) =
∑
~ks

√
h̄

2ε0V ω~ks

[
a~ks e

i(~k·~r) + a†~ks
e−i(

~k·~r)
]
ε̂~ks (A.129)

From creation and annihilation operators one obtains the number operator

N~ks = a†~ks
a~ks . (A.130)

The Hamiltonian operator is

Htrans =
∑
~ks

h̄ω~ks

[
a†~ks

a~ks +
1

2

]
=
∑
~ks

h̄ω~ks

[
N~ks +

1

2

]
(A.131)

and the momentum operator is

~Ptrans =
∑
~ks

h̄~k

[
a†~ks

a~ks +
1

2

]
=
∑
~ks

h̄~k
[
a†~ks

a~ks

]
. (A.132)

In the last step we used the fact that
∑
~ks
~k = 0, since for eack ~k there is an equivalent −~k.

Single-mode operators

Let us consider the number operator N~ks for the mode ~ks. The eigenvalue equation is

N~ks |n~ks〈= n~ks |n~ks〉 . (A.133)

The eigenstatesof N~ks are orthogonal

〈m~ks|n~ks〉 = δmn . (A.134)

To the mode ~ks a Hilbert subspace is associated, whose vectors are linear combinations of the
eigenvectors of N~ks:

|Φ~ks〉 =
∑

n~ks
cn~ks |n~ks〉 . (A.135)

The creation and annihilation operators act on the eigenstates of N~ks as

a†~ks
|n~ks〉 =

√
n~ks + 1 |n~ks + 1〉 (A.136)

a~ks |n~ks〉 =
√
n~ks |n~ks − 1〉 (A.137)

Eigenvalues and eigenstate of the total Hamiltonian

Let us consider the total Hamiltonian of the free electromagnetic field

Htrans =
∑

vecks
h̄ω~ks [n~ks + 1/2] (A.138)

The eigenvalues of the total Hamiltonian are

Efield =
∑
~ks

h̄ω~ks

[
n~ks +

1

2

]
(A.139)
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The stationary eigenstates of the Hamiltonian are

| {n~ks} 〉 = |n~k1s1 , n~k2s2 , . . . n~kisi , . . .〉 . (A.140)

A pure state of the electromagnetic field is a linear combination of basis states | {n~ks} 〉.
The effects of the creation, annihilation and number operators on the basis states are:

a†~kisi
| . . . , n~kisi , . . .〉 =

√
n~kisi + 1 | . . . , n~kisi + 1, . . .〉 (A.141)

a~kisi | . . . , n~kisi , . . .〉 =
√
n~kisi | . . . , n~kisi − 1, . . .〉 (A.142)

N~kisi | . . . , n~kisi , . . .〉 = n~kisi | . . . , n~kisi , . . .〉 (A.143)

Expectation value of the Electric field

The expectation value of the electric field ~E at a given position ~r and at a given time t is

〈 ~E(~r, t)〉 = 〈Φ| ~E(~r, t) |Φ〉 , (A.144)

where |Φ〉 is a pure state of the electromagnetic field, linear combination of basis states |{n~ks}〉.
If the pure state Φ corresponds to a basis state, say if the number of photon per mode is well
defined, the expectation value is identically zero.
The phase and the number of photons are complementary variables.

A.6 Matter-radiation interaction

In this last section of Appendix A, we introduce some basic elements of the mechanism of interaction
of radiation with matter. The main goal is to support and complement the treatment of Section
2.2. To this aim, it is necessary to insert in the Schrödinger equation a suitable Hamiltonia.
The unperturbed Hamiltonian of a material system (electron, atom, ...) immersed in an electro-
magnetic field is the sum of the hamiltonians of the material system Hat and of the electromagnetic
field Htrans = Hrad:

H0 = Hat +Hrad , (A.145)

independent of time.
The corresponding stationary eigenstates are

|Ψ〉 = |Φat〉 ⊗ |{n~ks}〉 . (A.146)

In the following, in order to derive a suitable expression for the Hamiltonian, we start from the
Lagrangian approach including the electromagnetic field, we obtain the expression of the conjugate
momentum and we conclude with the Hamiltonian approach. We consider first the classical case
and then the quantum case.

A.6.1 Classical treatment

It is convenient to start the classical treatment of the matter-radiation interaction by the Lagrange
approach and then quite naturally to introduce the Hamilton approach, which is fundamental for
the subsequent quantum treatment.

Lagrangian approach for purely mechanical systems

The most general approach to the laws of motion of mechanical systems is given by the Principle of
least action (or, more correctly, of stationary action), otherwise known as Hamilton principle. An
axiomatic introduction can be found in Chapter 1 of “Mechanics”, by [Landau and Lifschitz, 1976].
We limit ourselves here to a simpler approach, restricting our attention to a system composed by
a single particle (typically an electron).
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For a single non relativistic particle one defines a Lagrange function as the difference between the
kinetic and the potential energies (Feynman II, Chapter 19 [Feynman et al., 1977] ).

L(~r,~v) = Ek − Ep = mv2/2− V (~r) . (A.147)

Let us assume that at times t1 and t2 the particle is in positions ~r1 and ~r2, respectively. The
principle of least action asserts that the motion of the particle between the times t1 and t2 is such
that the action, say the time integral of the Lagrange function of L, is minimum (or stationary):

δ

∫ t2

t1

L(~r,~v) dt = 0 . (A.148)

By standard variational methods one finds that the least action principle leads to the Lagrange
equation

d

dt

∂L

∂~v
− ∂L

∂~r
= 0 . (A.149)

Substituting L from (A.153) into (A.149) one obtains the Newton equation of motion

m~a = ~F = −~∇V (A.150)

For complex mechanical systems (e.g. constrained systems) the Lagrange function is expressed
in terms of a suitable set of independent generalised coordinates {qi} and their derivatives {q̇i}:
L(qi, q̇i). The least action principle leads, for each one of the generalised coordinates, to an eqution
of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (A.151)

Lagrangian approach including the electromagnetic field

The extension to relativistic particles and/or to systems embedded in an electromagnetic field is
far from trivial, the Lagrange function cannot be simply expressed as the difference between kinetic
and potential energies. In that cases, one seeks for a Lagrange function suitably defined so that
the least action principle leads to the known classical laws of motion.

Let us consider a particle embedded in an electromagnetic field, characterised by the potentials ~A
and U (for simplicity we neglect the potential energy V due to other interactions).
One can show that a good Lagrange function is

L =
1

2
mv2 + q ~v · ~A− q U +

ε0
2

∫
d3r

[
E2(~r)− c2B2(~r)

]
, (A.152)

where we can distinguish three contributions: a) the kinetic energy of the particle, b) the interaction
of the particle with the electromagnetic field (expressed in terms of the vector and scalar potentials,
~A and U , respectively) and c) the spatial integral of the electric and magnetic fields.

Note: It is evident that one cannot consider the Lagrange function (A.152) simply as the difference
between kinetic and potential energy contributions. As matter of fact, in the integral the
electric and magnetic field contributions have opposite sign.

In our applications it is reasonable to consider the electromagnetic field sufficiently strong so that
the integral in (A.152) is unaffected by the interaction with a single particle. In the following
we can thus neglect the electric and magnetic fields integral and consider the Lagrange function
limited to the first three terms

L = mv2/2 + q ~v · ~A − q U , (A.153)

where ~v depends on time, ~A depends both on time and position, U depends only on position. It is
worth remembering that the actual values of the potentials ~A and U are not univocally determined,
but depend on the gauge choice.
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We will now show that the Coulomb-Lorentz force acting on the charge q, say m~a = q ~E + q~v× ~B,
can be derived in the Lagrangian formalism if one assumes the non-relativistic Lagrange function
(A.153).

Actually, by substituting in (A.149) the Lagrangian L from (A.153)

∂L

∂~v
= m~v + q ~A , (A.154)

d

dt

∂L

∂~v
=

d

dt

[
m~v + q ~A

]
= m~a + q

∂ ~A

dt
+ q (~v · ~∇) ~A , (A.155)

∂L

∂~r
= q ~∇( ~A · ~v) − q ~∇U

= ( ~A · ~∇)~v︸ ︷︷ ︸
0

+ (~v · ~∇) ~A + ~v × (~∇× ~A) + ~A× (~∇× ~v)︸ ︷︷ ︸
0

− q ~∇U , (A.156)

one obtains the expression of the Coulomb-Lorentz force

m~a = −q

[
~∇U +

∂ ~A

∂t

]
+ q ~v × (~∇× ~A) = q ~E + q ~v × ~B , (A.157)

which is independent of the gauge choice.

Hamiltonian approach

The Lagrangian L is a function of position ~r and velocity ~v.

An alternative approach to classical mechanics is the Hamiltonian approach, which plays a funda-
mental role in the transition from classical to quantum mechanics.

To introduce the Hamiltonian approach, let us first define the generalized momentum ~P canonically
conjugate to the position vector ~r of a single particle: ~P = ∂L/∂~r.

In the absence of electromagnetic fields,

~P =
∂L

∂~v
= m~v , (A.158)

the generalised momentum is equal to the mechanical momentum, ~P = m~v.

In the presence of an electromagnetic field, from (A.153) one finds instead

~P =
∂L

∂~v
= m~v + q ~A. (A.159)

Note that now ~P 6= m~v, the conjugate momentum is different from the mechanical momentum
m~v. While the mechanical momentum m~v is an observable quantity, the conjugate momentum
~P is not, since it depends on the value of ~A, which in turns depends on the gauge choice. The
coniugate momentum thus depends on the gauge choice.

One can substitute the Lagrange function L(~r,~v) with the new Hamilton function H(~r, ~P ) without
losing any physical information on the system by means of a Legendre transform:

H(~r, ~P ) = ~v · ∂L
∂~v
− L

= ~v · (m~v + q ~A)−mv2/2− q~v · ~A+ qU

= mv2/2 + qU =
1

2m

∣∣∣~P − q ~A∣∣∣2 + qU. (A.160)
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The second-order Lagrange equation of motion (A.149) is substituted by two first-order Hamilton
equations of motion:

d~r

dt
=

∂H

∂ ~P
, (A.161)

d~P

dt
= −∂H

∂~r
. (A.162)

From the first Hamilton equation (A.161) one recovers the expression for the mechanical momentum

m~v = ~P − q ~A (A.163)

so that one can see that the Hamilton function

H =
1

2
mv2 + qU (A.164)

corresponds to the total energy (kinetic plus potential).

Note: It has been noted above that the mechanical momentum is gauge invariant, the canonical
momentum is not. By converse, the mechanical momentum, in the presence of an electro-
magnetic field, doesn’t have a classical canonical Poisson structure or a quantum commutator
structure: the commutator of the mechanical momentum with itself is non-vanishing.

We need now to show that the classical Coulomb-Lorentz force can be obtained from the Hamilton
equations. From (A.163) one obtains

d~P

dt
= m

d~v

dt
+ q

d ~A

dt
(A.165)

From the second Hamilton equation (A.162) one obtains

d~P

dt
=

q

m

(
~P − q ~A

) ∂ ~A

∂~r
− q~∇U . (A.166)

By equating the right sides of the two last equations, one finds

m
d~v

dt
=

q

m

(
~P − q ~A

) ∂ ~A

∂~r
− q

d ~A

dt
− q~∇U

= q~v
∂ ~A

∂~r
− q(~v · ~∇) ~A − q ∂

~A

∂t
− q~∇U

= q(~v × ~B) + q ~E . (A.167)

Interaction of an atom with the electromagnetic field

Let us now consider the specific problem of interest here, say the interaction of the electromagnetic
field of an X-ray beam with an atom. To that purpose:

a) One can consider only the interaction with electrons, and neglect the contribution of the
nucleus to the Hamiltonian, because it has a much larger mass than the electrons.

b) The generic charge q is substituted by the electron charge q = −e.
c) The electromagnetic field is conveniently treated within the interaction gauge (Coulomb

gauge with zero scalar potential), so that the U scalar field reduces to the potential V
describing the electrostatic interaction between the electrons and the nucleus and between
the electrons.

The non-relativistic classical hamiltonian (A.160) is expressed as the sum over the contributions
of all the electrons:

H =
∑
j

1

2m

[
~Pj + e ~A(~rj , t)

]2
+ V (~r1 . . . ~rN ) (A.168)
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where j labels the N electrons within the atom. The time dependence of the vector potential has
been evidenced.
Again, the quantity within square parentheses represents the sum of the mechanical momenta of
the electrons.

A.6.2 Quantum treatment

The transition from the classical to the quantum hamiltonian is made by substituting the classical
quantities with the corresponding operators. In the following, the notation ~P thus indicates the
canonical momentum operator.
For explicit calculations, one generally works in the coordinate representation, where

~Pj → −ih̄~∇j , ~A → ~A, . . . (A.169)

Hamiltonian of an atom interacting with an electromagnetic field

In the radiation gauge and if the electron spin is neglected, the quantum hamiltonian of an atom in
an electromagnetic field has the same expression as the classical hamiltonian, provided we consider
~P as an operator:

H =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2}
+ V (~r1 . . . ~rN ) . (A.170)

If the electron spin is also considered, the total Hamiltonian becomes

H =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2
+

e

m
~Sj · ~B(~rj)

}
+ V (~r1 . . . ~rN ) . (A.171)

For one electron,

H =

{
1

2m

[
~P + e ~A(~r, t)

]2
+

e

m
~S · ~B(~r)

}
+ V (~r ) . (A.172)

Let us now calculate the square of the binomial expressions [~P + e ~A(~r)]2:

[~P + e ~A(~r)]2 = P 2 + e
(
~P · ~A+ ~A · ~P

)
+ e2A2 . (A.173)

The radiation gauge guarantees that, since ~∇ commutes with ~A, the commutativity of the classical
product ~P · ~A is preserved; in radiation gauge, ~∇ · ~Aψ = ~A · ~∇ψ.
The (one-electron) Hamiltonian can be written as

H =

{
P 2

2m
+

e

m
~A · ~P +

e2

2m
A2 +

e

m
~S · ~B(~r)

}
+ V (~r ) . (A.174)

The Hamiltonian can be divided into the sum of two terms, the unperturbed hamiltonian and the
interaction hamiltonian:

H = H0 +Hint. (A.175)

Unperturbed hamiltonian

The first term H0 of (A.175) is the unperturbed hamiltonian

H0 =
∑
j

P 2
j

2m
+ V (~r1 . . . ~rN ) . (A.176)

In the absence of the electromagnetic field, the canonical momenta Pj correspond to the mechanical
momenta m~vj .
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By solving the time-independent Schrödinger equation H0|φ〉 = E|φ〉 one obtains the energies Ei
and the corresponding stationary eigenstates |φi〉.
When the electromagnetic field is switched on,

~Pj = m~vj → ~Pj + e ~A = m~vj (A.177)

For one electron

H0 =
P 2

2m
+ V (~r ) . (A.178)

Interaction hamiltonian

The second term Hint of (A.175) represents the (time-dependent) interaction between the electro-
magnetic field and the electrons. If the electrons spin is neglected

Hint =
e

m

∑
j

~A(~r, t) · ~Pj +
e2

2m

∑
j

A2(~rj , t) (A.179)

To take into account also the electron spin and its interaction with the magnetic field, the interac-
tion hamiltonian is modified as:

Hint =
e

m

∑
j

~A(~r, t) · ~Pj +
e

m

∑
j

~Sj · ~B(~rj , t) +
e2

2m

∑
j

A2(~rj , t) (A.180)

The three terms have different magnitudes.
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Appendix B

Time-dependent perturbation
theory

Let us review here the basics of the time-dependent perturbation theory, focusing the at-
tention on its application to the interaction of matter and radiation [Merzbacher, 1970],
[Cohen-Tannoudji et al., 1973],[Chen and Kotlarchyk, 1997].

B.1 Introduction: time evolution of quantum systems

B.1.1 The evolution operator

The state vector |Ψ(t)〉 of a quantum system obeys the time-dependent Schrödinger equation

ih̄
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (B.1)

where a time-dependent Hamiltonian is considered here for the sake of generality.
In our applications, |Ψ(t)〉 can represent the quantum state of the system matter+radiation or the
quantum state of only the atomic system.
The time evolution of the system from an initial time ti to a final time tf is given by the evolution
operator U(tf , ti),

|Ψ(tf )〉 = U(tf , ti) |Ψ(ti)〉 . (B.2)

Inserting (B.2) into the Schrödinger equation (B.1), one finds the differential equation for the
evolution operator:

ih̄
∂

∂tf
U(tf , ti) = H(t)U(tf , ti) . (B.3)

Together with the initial condition U(ti, ti) = 1, the differential equation (B.3) completely defines
the evolution operator U(tf , ti).
The differential equation (B.3) and the initial condition U(ti, ti) = 1 can be summarised into a
unique integral equation:

U(tf , ti) = 1 − 1

ih̄

∫ tf

ti

H(t′)U(t′, ti) dt
′ . (B.4)

B.1.2 Transition amplitude

Let us consider a system prepared in a state |Ψi〉 at time ti.
The basic quantum mechanical problem of interest here is to evaluate the amplitude of probability
of finding the system in the state |Ψf 〉 at a subsequent time tf .
The amplitude of probability is the matrix element of the evolution operator
[Cohen-Tannoudji et al., 2001]

〈Ψf |U(tf , ti) |Ψi〉 . (B.5)

135
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Properties of the transition amplitudes

Transition amplitudes are multiplicative quantities.
Let us consider the transition from an initial stationary state |Ψ1〉 at time t1 to a final stationary
state |Ψ3〉 at time t3.
Let us assume that at time t2 the system is in an intermediate stationary state.

1. If the intermediate state |Ψ2〉 is observed, the transition amplitudes multiply:

〈Ψ3|U(t3, t1) |Ψ1〉 = 〈Ψ3|U(t3, t2) |Ψ2〉 〈Ψ2|U(t2, t1) |Ψ1〉 (B.6)

2. If the intermediate state is not observed and is thus unknown,

〈Ψ3|U(t3, t1) |Ψ1〉 =
∑

n
〈Ψ3|U(t3, t2) |Ψn〉 〈Ψn|U(t2, t1) |Ψ1〉 (B.7)

and the sum over the intermediate states gives rise to interference effects.

Perturbative methods

The calculation of transition amplitudes is generally performed by a perturbative approach, which
is based on the decomposition of the total Hamiltonian into an unperturbed part H0 and a per-
turbation term Hint.
The perturbation term can describe the coupling between two quantum subsystems of the entire
system (e.g. an atom and the electromagnetic field) or the interaction of a quantum system with
an external perturbation (e.g. an atom and a classical electromagnetic field).
In the following subsections, we compare the time evolution of un-perturbed systems (§ B.1.3) and
of interacting systems (§ B.1.4).

B.1.3 Time evolution of un-perturbed systems

If the Hamiltonian operator is independent of time, H(t) = H0, the integration of the differential
equation (B.3) with the initial condition U(ti, ti) = 1 gives the trivial dependence on time

U (0)(tf , ti) = exp[−iH0(tf − ti)/h̄] . (B.8)

One can easily verify that the evolution operator U (0)(t′, ti) = exp[−iH0(t′ − ti)/h̄ obeys the
integral equation (B.4) with H(t′) = H0, independent of time.

Stationary Schrödinger equation

For a time-independent hamiltonian H0 (un-perturbed system) the stationary Schrödinger equation
is

H0 |φn〉 = En |φn〉 , (B.9)

where En are the energy eigenvalues and |φn〉 are the stationary eigenstates of the un-perturberd
Hamiltonian H0. The matrix elements of the unperturbed hamiltonian are

〈φn|H0 |φk〉 = En δnk . (B.10)

Time-dependent Schrödinger equation

The time-dependent Schrödinger equation for the un-perturbed system with time-independent
Hamiltonian is

ih̄
∂

∂t
|Ψ(t)〉 = H0 |Ψ(t)〉 , (B.11)

and, taking into account (B.8) and putting tf = t and ti = 0, the time dependence of the generic
state |Ψ(t)〉 is given by

|Ψ(t)〉 = e−iH0t/h̄ |Ψ(0)〉 . (B.12)
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The state |Ψ(t)〉 can be projected on the basis of the stationary eigenstates of H0:

|Ψ(t)〉 =
∑
n

cn(t)|φn〉 , cn(t) = 〈φn|Ψ(t)〉 , (B.13)

where the time dependence of |Ψ(t)〉 is transferred to the time dependence of the coefficients cn(t).
Applying the evolution operator to each one of the stationary eigenstates |φn〉 and making again
use of (B.8) one finds

|Ψ(t)〉 =
∑
n

bn e
−iEnt/h̄ |φn〉 , cn(t) = bn e

−iEnt/h̄ , (B.14)

where bn = cn(0) are constant values.
The probability of finding the system in the eigenstate |φn〉 is |cn(t)|2 = |bn|2, independent of time.

Note: The un-perturbed system can be the sum of two non-interacting quantum sub-systems, such
as an atom and the electromagnetic field or a thermal neutron and an atomic nucleus, as well
as a quantum atomic system embedded in a classical electromagnetic field.

B.1.4 Time evolution of interacting systems

Let us now introduce the interaction between the two quantum sub-systems or the interaction
between a quantum system and the classical external field.
The total hamiltonian is now

H(t) = H0 + Hint(t) , (B.15)

where the time-dependent interaction term Hint(t) is here considered as a weak perturbation with
respect to the unperturbed hamiltonian H0.
The state |Ψ(t)〉 can again be projected on the basis of the eigenstates of H0, but now the time
dependence of the coefficients cn(t) cannot be reduced to the trivial one (B.14); now

|Ψ(t)〉 =
∑
n

cn(t)|φn〉 =
∑
n

bn(t) e−iEnt/h̄|φn〉 (B.16)

and a residual weak time dependence affects the coefficients bn(t).
The probability of finding the system in the eigenstate |φn〉 is now |cn(t)|2 = |bn(t)|2 and can
change in time.

Example 1: A thermal neutron or a photon, spatially localised as wave-packets, are scattered by
an atom; the effect of the interaction is limited to a short time interval.

Example 2: Often the interacting systems are described in terms of non-localised states, e.g. the
quantum description of the electromagnetic fields in terms of number of photons per normal
mode or the classical description of the electromagnetic field as a radiation beam. In these
situations, the interaction is adiabatically switched on at time ti and switched off at time tf .
The interaction is described in terms of a transition rate (transition probability per unit time).

The problem

Our problem is to determine the transition rate (transition probability per unit time) from an
initial stationary eigenstate |φi〉 of H0 to a final stationary eigenstate |φf 〉 of H0.
To that purpose, we need to evaluate the transition amplitude

〈φf |U(tf , ti) |φi〉 . (B.17)

The problem is solved along the following guidelines:

1. One works within the interaction picture, where the trivial time-dependence of the initial
and final stationary states is eliminated; the interaction picture is a mixture of

a) Heisenberg picture for the un-perturbed system, whose Hamiltonian is H0;

b) Schrödinger picture for the interaction described by the Hamiltonian Hint

2. A perturbative approach is employed.
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Adiabatic switching of the interaction

In a number of situations, typically when considering the interaction of a system with a beam, it
is convenient to adiabatically switch-on the interaction at a time ti and switch off it at a time tf .
This can be achieved by multiplying Hint by a parameter λ which is zero for t < ti and for t > tf ,
and becomes adiabatically 1 in the interaction interval.

If the interaction time becomes infinite (ti → −∞, tf → +∞), the matrix element of the evolution
operator

〈φf |U(tf , ti) |φi〉 . (B.18)

corresponds to the matrix element of the S scattering matrix.

B.2 Time-dependent perturbation approach

Let |φn〉 be a stationary eigenstate of the system matter+radiation in the Schrödinger picture,

|φn(t)〉 = |φat〉 ⊗ |φrad〉 = |φat〉 ⊗ |{n~ks}〉 , (B.19)

or a stationary state of an atom embedded in a classical electromagnetic field.

We will calculate the transition amplitudes and the transition probabilities between two stationary
states by an iterative solution of the integral equation for the evolution operator.

To evidence the advantage of the interaction picture, we will first solve the problem in the
Schrödinger picture and then in the interaction picture.

B.2.1 Schrödinger picture

Once the Hamiltonian has been separated into an unperturbed term H0 and an interaction term
Hint, the integral equation for the evolution operator in the Schrödinger picture can be written as
([Cohen-Tannoudji et al., 2001] page 26)

U(tf , ti) = e−iH0(tf−ti)/h̄ +
1

ih̄

∫ tf

ti

dτ e−iH0(tf−τ)/h̄Hint(τ)U(τ, ti)

= U ((0)(tf , ti) +
1

ih̄

∫ tf

ti

dτ U ((0)(tf , τ)Hint(τ)U(τ, ti) (B.20)

where

e−iH0(tf−ti)/h̄ = U ((0)(tf , ti) , e−iH0(tf−τ)/h̄ = U ((0)(tf , τ) (B.21)

are the un-perturbed evolution operators associated to H0.

One can easily see that the above expression of U(tf , ti) verifies the differential equation

ih̄
∂

∂tf
U(tf , ti) = (H0 +Hint)U(tf , ti) (B.22)

and the initial condition U(ti, ti) = 1.

Iterative solution of the integral equation

The time-dependent perturbation theory is based on the iterative solution of the integral equation
for the evolution operator. To obtain an iterative solution, the evolution operator in the Schrödinger
picture is expanded as

U(tf , ti) = U ((0)(tf , ti) +

∞∑
n=1

U (n)(tf , ti) . (B.23)
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The zero order term corresponds to the first term in the right-hand member of (B.20), say to
the unperturbed evolution operator

U ((0)(tf , ti) = e−iH0(tf−ti)/h̄ (B.24)

The first order term in the approximation is obtained by substituting U(t, ti) = U (0)(t, ti) within
the integral of the integral equation (B.20), so that:

U (1)(tf , ti) =
1

ih̄

∫ tf

ti

dτ e−iH0(tf−τ)/h̄Hint(τ) e−iH0(τ−ti)/h̄

=
1

ih̄

∫ tf

ti

dτ U (0)(tf , τ)Hint(τ)U (0)(τ, ti) . (B.25)

The integral over the time τ contains 2 unperturbed evolution operators, one from time ti to time
τ , the other from time τ to time tf , separated by the interaction operator Hint.

The second order term in the approximation is obtained by substituting U(τ, ti) = U (0)(τ, ti) +
U (1)(τ, ti) in the integral of the integral equation (B.20), so that:

U (2)(tf , ti) =

(
1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1 e
−iH0(tf−τ2)/h̄Hint(τ2) e−iH0(τ2−τ1)/h̄Hint(τ1) e−iH0(τ1−ti)/h̄ .

(B.26)
Now there are 3 unperturbed evolution operators separated by 2 interaction operators.

And so on with higher order terms. The general expression for the term of order n is

U (n)(tf , ti) =

(
1

ih̄

)n ∫ tf

tn−1

dτn . . .

∫ t1

ti

dτ1 e
−iH0(tf−τn)/h̄Hint(τn) . . . Hint(τ1) e−iH0(τ1−ti)/h̄ ,

(B.27)
where tf ≥ tn−1 ≥ . . . ≥ t1 ≥ ti. There are n+ 1 unperturbed evolution operators separated by n
interaction operators.

Expansion of the transition amplitude

By inserting the different orders of approximation of U(tf , ti) into the expression of the transition
amplitude between the stationary states |Φi〉 and |Φf 〉

cfi(t) = 〈Φf |U(tf , ti) |Φi〉 (B.28)

and inserting the completeness relation on the eigenstates of H0 between any two successive Hint

operators, one obtains the corresponding expansion of the transition amplitude.

The zero order term is

c
(0)
fi (t) = 〈Φf | e−iH0(tf−ti)/h̄ |Φi〉 = e−iE(tf−ti)/h̄ δfi (B.29)

The first order term is

c
(1)(t)
fi =

1

ih̄

∫ tf

ti

dτ e−iEf (tf−τ)/h̄ 〈Φf |Hint |Φi〉 e−iEi(τ−ti)/h̄.

= e−iE(tf−ti)/h̄ 1

ih̄

∫ tf

ti

dτ eiEfτ/h̄ 〈Φf |Hint |Φi〉 e−iEiτ/h̄ (B.30)

The second order term is obtained by inserting the completeness relation
∑
k |Φk〉〈Φk| between
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the two interaction operators Hint:

c
(2)
fi (t) =

(
1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1∑
k
e−iEf (tf−τ2)/h̄ 〈Φf |Hint |Φk〉 e−iE1(τ2−τ1)/h̄ 〈Φk|Hint |Φi〉 e−iEi(τ1−ti)/h̄

= e−iE(tf−ti)/h̄
(

1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1∑
k
eiEfτ2/h̄ 〈Φf |Hint |Φk〉 e−iE1(τ2−τ1)/h̄ 〈Φk|Hint |Φi〉 e−iEiτ1/h̄ (B.31)

where the sum is over the intermediate virtual states Φk.

The extension to higher-order terms is trivial.
The term of order n contains the product of n interaction factors and n+ 1 free evolution factors
and n− 1 sums over intermediate virtual states.
Notice that all transition amplitude terms contain the factor e−iE(tf−ti)/h̄, which represents the
free evolution of the initial and final states. When calculating the transition probabilities, the
squared modulus of this factor is equal to one.

B.2.2 Interaction picture

In the following, eigenstates and operators in the interaction picture are characterised by a tilde.

The stationary eigenstates of the un-perturbed hamiltonian in the interaction picture |φ̃n(t)〉 are
connected to the eigenstates of the Schrödinger picture |φn(t)〉 by

|φ̃n(t)〉 = eiH0t/h̄ |φn(t)〉 . (B.32)

In the interaction picture, the stationary eigenstates have no time dependence at all.

The connection between the evolution operators in the interaction and Schrödinger pictures is

Ũ(tf , ti) = eiH0t/h̄ U(tf , ti) e
−iH0t/h̄ , (B.33)

and the connection between the interaction hamiltonians in the two pictures is

H̃int = eiH0t/h̄Hint e
−iH0t/h̄ . (B.34)

In the interaction picture, the time dependence of the evolution operator is only due to the inter-
action hamiltonian; the corresponding differential equation is

ih̄
∂

∂tf
Ũ(tf , ti) = H̃int(tf ) Ũ(tf , ti) , (B.35)

The integral equation for the evolution operator in the interaction picture is

Ũ(tf , ti) = 1 +
1

ih̄

∫ tf

ti

dτ H̃int(τ) Ũ(τ, ti) . (B.36)

Iterative solution of the integral equation

The integral equation for the evolution operator can be solved by an iterative method.
The evolution operator in the interaction picture is expanded as

Ũ(tf , ti) = 1 +

∞∑
n=1

Ũ (n)(tf , ti) (B.37)

The zero order term is
Ũ (0)(tf , ti) = 1 . (B.38)
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The first order term in the approximation is obtained by substituting U(t, ti) = U (0)(t, ti) = 1 in
the integral equation:

Ũ (1)(tf , ti) =
1

ih̄

∫ tf

ti

dτ H̃int(τ)

=
1

ih̄

∫ tf

ti

dτ eiH0τ/h̄Hint(τ) e−iH0τ/h̄ .

(B.39)

The second order term in the approximation is

Ũ (2)(tf , ti) =

(
1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1 H̃int(τ2) H̃int(τ1)

=

(
1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1e
iH0τ2 Hint(τ2) e−iH0(τ2−τ1)Hint(τ1) e−iH0τ1

(B.40)

And so on with higher order terms.
As one can see, in the interaction picture the free evolution exponentials

e−iH0tf/h̄ , eiH0ti/h̄ (B.41)

relative to the initial and final states are missing.

Transition amplitudes

As for the Schrödinger picture, even for the interaction picture the transition amplitude between
the stationary states |Φi〉 and |Φf 〉

c̃fi = 〈Φf | Ũ(tf , ti) |Φi〉 (B.42)

can be expanded as a sum of terms of increasing order
The zero order term is

c̃
(0)
fi = δfi (B.43)

The first order term is

c̃
(1)
fi (t) =

1

ih̄

∫ tf

ti

dτ eiEfτ/h̄ 〈Φf |Hint(τ) |Φi〉 e−iEiτ/h̄ (B.44)

The second order term is obtained by inserting a completeness relation between the two inter-
action operators Hint:

c̃
(2)
fi (t) =

(
1

ih̄

)2 ∫ tf

t1

dτ2

∫ t1

ti

dτ1∑
Φ1

eiEfτ2/h̄ 〈Φf |Hint(τ2) |Φ1〉 e−iE1(τ2−τ1)/h̄ 〈Φ1|Hint(τ1) |Φi〉 e−iEiτ1/h̄
(B.45)

The extension to higher-order terms is trivial.
The term of order n contains the product of n interaction factors and n+ 1 free evolution factors
and n− 1 sums over intermediate virtual states.

Transition probabilities

The transition amplitudes c̃
(n)
fi of the interaction picture differ from the transition amplitudes c

(n)
fi

of the Schrödinger picture for the absence of the factor e−iE(tf−ti)/h̄, which represents the free
evolution of the initial and final states. Since the squared modulus of this factor is equal to one,
the transition probabilities between an initial and a final state are the same in the Schrödinger and
in the interaction pictures:
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|〈φf |U |φi〉|2 =
∣∣∣〈φf |Ũ |φi〉∣∣∣2 (B.46)

In what follows, we gain a deeper insight on the first-order approximation and the so-called Golden
Rule for the interaction of atoms with the electromagnetic field (§ B.4) as well as on the electric
dipole approximation (§ B.5). A short introduction is given to the second-order approximation
(§ B.6).
Reference: [Cohen-Tannoudji et al., 1973, Cohen-Tannoudji et al., 2001].

B.3 Interaction Hamiltonian

Let us now restrict our attention to the problem of an atomic system interacting with the electro-
magnetic field. See Appendix A for the description of the electromagnetic field and an introduction
to the interaction Hamiltonian.

B.3.1 Total Hamiltonian of an atom

If the radiation gauge is used (~∇· ~A = 0, φ = 0) and if the electron spin is neglected, the hamiltonian

of an atom in an electromagnetic field is better expressed in terms of the vector potential ~A:

Ĥ =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2}
+ V (~r1 . . . ~rN ) , (B.47)

where ~Pj is the quantum operator of the generalized momentum of the j-th electron and V is the
potential energy due to the Coulomb interactions inside the atom.
If the electron spin is also considered, the total Hamiltonian becomes

Ĥ =
∑
j

{
1

2m

[
~Pj + e ~A(~rj , t)

]2
+

e

m
~Sj · ~B(~rj)

}
+ V (~r1 . . . ~rN ) , (B.48)

where ~Sj is the spin of the j-th electron and ~B = ∇× ~A is the magnetic field.

Decomposition of the total Hamiltonian

Let us focus our attention on the squared expressions in (B.47):[
~P + e ~A

]2
= P 2 + e

[
~P · ~A+ ~A · ~P

]
+ e2A2 . (B.49)

In principle, ~P and ~A (which is a function of position ~r) don’t commute.
We can however exploit the gauge properties of the potentials to simplify this expression.
In the position representation, the time-dependent Schrödinger equation of an electron in the
electromagnetic field is

ih̄
∂

∂t
ψ(~r, t) =

[
− h̄2

2m
∇2 − ih̄ e

2m

(
~∇ · ~A+ ~A · ~∇

)
+

e2

2m
A2 − eφ

]
ψ(~r, t) . (B.50)

In the radiation gauge, ∇ · ~A = 0 and φ = 0, so that

~∇ · ( ~Aψ) = ~A · (~∇ψ) + (~∇ · ~A)ψ = ~A · (~∇ψ) (B.51)

say (
~∇ · ~A+ ~A · ~∇

)
ψ = 2 ~A · ~∇ψ (B.52)
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and the Schrödinger equation becomes

ih̄
∂

∂t
ψ(~r, t) =

[
− h̄2

2m
∇2 − ih̄ e

m

(
~A · ~∇

)
+

e2

2m
A2

]
ψ(~r, t) . (B.53)

Once the square of the binomial [~Pj + e ~A(~rj)]
2 has been calculated in radiation gauge, the total-

Hamiltonian can be decomposed into the sum of two terms, the unperturbed hamiltonian and the
interaction hamiltonian:

Ĥ = Ĥ0 + Ĥint. (B.54)

Unperturbed hamiltonian

The first term Ĥ0 is the unperturbed hamiltonian, say the hamiltonian of the atom in absence of
electromagnetic field:

Ĥ0 =
∑
j

P 2
j

2m
+ V (~r1 . . . ~rN ) . (B.55)

By solving the time-independent Schrödinger equation Ĥ0|φ〉 = E|φ〉 one obtains the energies Ei
and the corresponding stationary eigenstates |φi〉.

Interaction hamiltonian

The second term ĤI represents the (time-dependent) interaction between the electromagnetic field
and the electrons. If the electrons spin is neglected

Ĥint =
e

m

∑
j

~A(~r, t) · ~Pj +
e2

2m

∑
j

A2(~rj , t) (B.56)

The radiation gauge guarantees that, since~∇ commutes with ~A, the commutativity of the classical
product ~P · ~A is preserved; in radiation gauge, ~∇ · ~Aψ = ~A · ~∇ψ.

To take into account also the electron spin and its interaction with the magnetic field, the interac-
tion hamiltonian is modified as:

Ĥint =
e

m

∑
j

~A(~r, t) · ~Pj +
e

m

∑
j

~Sj · ~B(~rj , t) +
e2

2m

∑
j

A2(~rj , t) (B.57)

The three terms have different magnitudes.

Note: In the full quantum approach, the vector potential is an operator, decomposed into a sum
of creation and destruction operators for the different normal modes, which operate on the
quantum state of the field, creating and destroying single photons.
In the semiclassical approach, quantum mechanics applies only to the atomic system.

B.3.2 Feynman diagrams

The different levels of approximation can be schematically visualised by means of Feynman dia-
grams.
Time is represented by the vertical axis. The trajectories of the interacting particles are represented
by lines, which can be different depending on the type of particle (electrons, photons...).
First-order processes are characterised by one interaction vertex, where the particles meet and
interact (by emitting or absorbing new particles, deflecting one another, or changing type).
Second order processes are characterised by the presence of two interaction vertices, connected by
a vertical line which represents virtual states where energy conservation is not respected.

For the interaction of electromagnetic radiation with electrons, it is important to consider at least
the following different processes:
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a) First-order in the approximation (one interaction vertex) and first-order in the interaction

( ~A · ~P term of the interaction Hamiltonian)
These processes correspond to the absorption or emission of one photon by an atom.

b) First-order in the approximation (one interaction vertex) and second-order in the interaction,
(terms A2 term in the interaction Hamiltonian).
These processes can correspond to

- absorption or emission of two photons by an atom

- scattering of one photon by an electron

c) Second-order in the approximation (two interaction vertices connected by a line of virtual

states) and first-order in the interaction (terms ~A · ~P term in the interaction Hamiltonian).

B.4 First-order approximation and Golden Rule

The first-order transition amplitude in the interaction picture is

c̃
(1)
fi (t) =

1

ih̄

∫ tf

ti

dt 〈Φf |Hint |Φi〉 ei(Ef−Ei)t/h̄

=
1

ih̄

∫ tf

ti

dt 〈Φf |Hint |Φi〉 exp(iωfit) (B.58)

where ωfi = Ef − Ei/h̄ is the Bohr frequency.
Correspondingly, the first-order transition probability is

P(1)
fi (t) = |c(1)

fi (t)|2 =
1

h̄2

∣∣∣∣∫ tf

ti

dt 〈Φf |Hint |Φi〉 exp(iωfit)

∣∣∣∣2 (B.59)

Let us now separately considering two different situations:

1. Interaction Hamiltonian Hint non explicitly depending on time.

2. Interaction Hamiltonian Hint explicitly depending on time, for example with a sinusoidal
dependence.

B.4.1 Interaction Hamiltonian not depending explicitly on time

Examples of processes where the interaction Hamiltonian doesn’t depend explicitly on time:

a) scattering of electrons by a Coulomb potential,

b) scattering of thermal neutrons by an effective Fermi potential,

c) scattering of X-ray photons by electrons, where the time dependence of the vector potential
is cancelled for the terms of second-order in the interaction, A2, which correspond to the
annihilation of a photon of given ~k and the creation of a photon of a given ~k ′.

It is convenient to distinguish two cases:

1. Transition between sharply defined initial and final states

2. Transition between initial and/or final states not sharply defined

1. Transition between sharply defined initial and final states

Since the matrix element is independent of time, it can be factorized out of the integral in (B.58).
Moreover, it is convenient to choose a time scale such that ti = −T/2 and tf = +T/2, where T is
the duration of the interaction, so that the integral is easily peformed and the transition amplitude
becomes

c̃
(1)
fi (T ) = −i 〈Φf |Hint |Φi〉

∫ +T/2

−T/2

dt

h̄
eiωfit

= −2πi 〈Φf |Hint |Φi〉 δ(T )(ωfi)

(B.60)
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where the delta function is

δ(T )(ωfi) =
1

2π

∫ +T/2

−T/2

dt

h̄
eiωfit =

1

πh̄

sin(ωfiT/2)

(ωfi)
(B.61)

The δ(T ) function is a diffraction function with the following properties

a) the maximum amplitude is T/2πh̄ for ωfi = 0, say for Ef = Ei, where Ef = Ei is here the
total energy of the two interacting sub-systems

b) the width of the central peak is of the order of 4πh̄/T ,

c) for T →∞, δ(T )(ωfi)→ δ(ωif ),

d) it expresses the energy conservation to within a h̄/T uncertainty.

The transition probability is the squared modulus of the transition amplitude:

P(1)
fi (T ) = |c(1)

fi (T )|2 =
4

h̄2 |〈Φf |Hint |Φi〉|2
[

sin(ωfiT/2)

ωfi

]2

(B.62)

The behaviour of the transition probability P(1)
fi (t) is represented in Fig. B.1 for a given duration

t of the interaction. Its main properties are:

a) Peak for ωfi = 0, say for Ef = Ei (energy conservation).

b) Peak width ∝ T−1; the violation of the energy conservation is possible for short times,
according to the time-energy uncertainty principle, ∆E∆T ≥ h̄. For t → ∞, energy is
conserved.

c) Peak height ∝ T 2. The transition probability increases indefinitely with the square of the
interaction time T , and the transition probability per unit time wfi = dPfi/dt linearly
increase with the interaction time T .
This result is clearly unphysical for long interaction times, and depends on the inadequacy
of the first-order approximation when long times are considered for a transition between two
sharply defined levels.

ω
if

P
fi
(t,ω)

Δω=4π/t

P
max

~ W2 t2

0

Figure B.1: Plot of the probability Pfi(t, ω) as a function the Bohr frequency for a given time t.

2. Transition between non sharply defined initial and/or final states

In practical applications, the initial and/or the final states are generally not sharply defined. In
general, at least one of the two states consists of a range of closely spaced energy eigenstates, which
can be treated as a continuum with density of states g(E).
For example: no real incoming and outgoing beams in a scattering experiment are perfectly mono-
energetic, and no real photon beams in absorption experiments are perfectly mono-chromatic.
Let us assume, for simplicity, that the energy of the initial state Ei is sharply defined and the
energy of the final state spans a continuum of levels with density g(Ef ).
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The transition probability has to be modified in order to take into account the energy spread of
the incoming and/or outgoing beams:

P(1)
fi (T ) =

∣∣∣c(1)
fi (T )

∣∣∣2 =
4

h̄2

∫
dEf g(Ef ) |〈Φf |Hint |Φi〉|2

[
sin(ωfiT/2)

ωfi

]2

=
4

h̄2

∫
dωfi g(Ei + h̄ωfi) |〈Φf |Hint |Φi〉|2

[
sin(ωfiT/2)

ωfi

]2

(B.63)

For a sufficiently long interaction time T , the only significant transitions are those where the total
energy of the two interacting subsystems is conserved, Ef = Ei. The function [sin(ωfit/2)/ωfi]

2 is
sharply peaked around the value ωfi = 0. The matrix element and the density of states g(Ef ) are
comparatively much more slowly varying with frequency and can be extracted from the integral,
so that

P(1)
fi (T ) =

∣∣∣c(1)
fi (T )

∣∣∣2 =
4

h̄2 |〈Φf |Hint |Φi〉|2 g(Ef )

∫
dωfi

[
sin(ωfiT/2)

ωfi

]2

(B.64)

The integral is of the form ∫ +∞

−∞

sin2 αx

x2
= πα , (B.65)

where x = ωfi and α = T/2, so that finally

P(1)
fi (t) = |c(1)

fi (t)|2 = =
2π

h̄
t |〈Φf |Hint |Φi〉|2 g(Ef ) . (B.66)

The transition probability is now linearly dependent on time, and the transition rate

w
(1)
fi =

2π

h̄
|〈Φf |Hint |Φi〉|2 g(Ef ) . (B.67)

is time-independent.
This expression has been named Golden Rule by Enrico Fermi.

B.4.2 Sinusoidal perturbation and first-order approximation

Let us now consider an interaction Hamiltonian explicitly depending on time. For concreteness,
we consider a case of interest here, say the interaction of the electromagnetic field with an atomic
electron. We follow a semi-classical approach, where the atom is considered as a quantum system
and the electromagnetic field as a classical system. The stationary quantum states |φ〉 refer thus
only to the atom.

The interaction Hamiltonian

The interaction Hamiltonian is
Hint =

e

m
~A · ~p , (B.68)

where e > 0 is the elementary charge, ~A is the vector potential of the electromagnetic field and ~p
the generalized momentum of the electron (see § A.6).
The time and space dependence of the vector potential of a monochromatic electromagnetic wave
is given by

~A(~r, t) = A0ε̂ sin(ωt− ~k · ~r) =
1

2i
A0 ε̂

[
eiωte−i

~k·~r + e−iωtei
~k·~r
]
, (B.69)

where A0 is the amplitude and ε̂ is the polarisation unit vector.
The matrix element of the interaction hamiltonian between two stationary states of the unperturbed
hamiltonian H0 of the atomic system is

[Hint(t)]fi = 〈φf |Hint(t)|φi〉

=
e

2im
A0

[
〈φf |eiωte−i

~k·~r ε̂ · ~p |φi〉 − 〈φf |e−iωtei
~k·~r ε̂ · ~p |φi〉

]
(B.70)
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Transition amplitude

The first-order transition amplitude in the interaction picture, according to (B.44), is

c̃
(1)
fi (T ) =

1

ih̄

∫ T

0

dτ 〈φf |Hint(τ) |φi〉 exp(iωfiτ) (B.71)

where ωfi = Ef−Ei/h̄ is the Bohr frequency. Here Ef and Ei are the (generally different) energies
of two atomic levels and Hint(τ) is explicitly dependent on time.
Substituting the expression (B.70) of the interaction Hamiltonian and extracting from the integral
the time-independent part one gets

c̃
(1)
f (T ) = − eA0

2h̄m
(B.72)

×

[
〈φf |e−i

~k·~r ε̂ · ~p|φi〉
∫ T

0

eiωτeiωfiτdτ − 〈φf |ei
~k·~r ε̂ · ~p|φi〉

∫ T

0

e−iωτeiωfiτdτ

]
.

The two integrals can be easily calculated, leading to

c̃
(1)
f (T ) = − eA0

2h̄m

[
〈φf |e−i

~k·~r ε̂ · ~p |φi〉
1− ei(ωfi+ω)T

ωfi + ω
− 〈φf |ei

~k·~r ε̂ · ~p |φi〉
1− ei(ωfi−ω)T

ωfi − ω

]
. (B.73)

In (B.70), ω > 0 (external field frequency), and two potentially resonant terms are present:

a) the first term is resonant for ω = −ωfi, say ωfi = (Ef −Ei)/h̄ < 0 (emission of energy from
the atom to the external field);

b) the second term is resonant for ω = ωfi, say ωfi = (Ef − Ei)/h̄ > 0 (absorption of energy
from the external field).

For absorption processes, ωfi > 0: the first term in square parentheses is anti-resonant, the second
one is resonant. For ω sufficiently close to ωfi, we can neglect the anti-resonant term.

Transition probability for absorption

Let us consider here the case ωfi > 0 (absorption of radiation); if ω is not too different from
ωfi, the first term (emission) in the transition amplitude (B.73) can be neglected. The first-order
probability that at time T the atomic system is in the state |φf 〉, say that during the time interval
from 0 to T the transition |φi〉 → |φf 〉 took place, can be calculated as

Pfi(T, ω) =
|Wfi|2

4h̄2

∣∣∣∣1− ei(ωfi−ω)T

ωfi − ω

∣∣∣∣2 =
|Wfi|2

4h̄2

{
sin[(ωfi − ω)T ]/2

(ωfi − ω)/2

}2

, (B.74)

where

Wfi =
eA0

m

〈
φf

∣∣∣ei~k·~r ε̂ · ~p ∣∣∣φi〉 ,
The first-order probability Pfi(T, ω) depends on two factors:

a) the time-independent matrix element Wfi which has no time dependence,

b) a time-dependent factor, which depends on the frequency ω of the perturbation and on the
Bohr frequency ωfi.

Resonance condition

The behavior of the transition probability (B.74) is represented in Fig. B.2 as a function of ω for
a given value of interaction time T .
The function Pfi(t, ω) has a peak in correspondence of ω = ωfi (resonance condition) and progres-
sively weaker oscillations when ω becomes different from ωfi.. The resonance peak becomes higher
and narrower when interaction time T increases:
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Figure B.2: Plot of the absorption probability Pif (t, ω) as a function the perturbation frequency
ω for a given time t.

- the peak height depends on time as Pfi(T, ωfi) = (|Wfi|2/2h̄2)T 2

- the peak width is inversely proportional to the interaction time, ∆ω = 2π/T

Let us consider now the two relevant cases:

1. the sinusoidal perturbation induces a transition from a discrete state to another discrete
state,

2. the sinusoidal perturbation induces a transition from a discrete state to a state belonging to
a continuum.

1. Transitions to discrete states

We want to evaluate the transition rate from an initial discrete state |φi〉 to a final discrete state
|φf 〉 of the atomic system, induced by a sinusoidal perturbation of frequency ω. We focus again
the attention on the case of absorption, ωfi > 0.
According to Fig. B.2, when the interaction time T increases, the peak of the absorption probability
progressively narrows around the value ω = ωfi, and its value Pfi(T, ωfi) = (|Wfi|2/2h̄2)T 2

increases with the square of time T .
For a purely monochromatic perturbation, this means that the transition rate wfi = dPfi/dT
increases indefinitely with time.
This result is un-physically for long interaction times, since the probability of the final state cannot
exceed the value 1.
This problem depends on the inadequacy of the first-order approximation when long times are
considered. The first-order perturbation approximation can be considered suitable for interaction
times T included between the two limits

1

ω
� T � h̄

|Wfi|
(B.75)

Taking into account higher order perturbation terms, or using other kinds of approximation (e.g.
the secular equation), one can show that the system oscillates in time between the initial and final
states.

2. Transitions to continuum states. Golden Rule

Let us now consider the first-order probability per unit time of the transition from an initial atomic
discrete state |φi〉 to a final state belonging to a continuous distribution of energy values, induced
by a sinusoidal perturbation of frequency ω. The discrete value ωfi of Fig. B.2 becomes now a
continuous distribution of values.
Since the final state of energy Ef = h̄ωf belongs to a continuum, we can only evaluate the
probability that after an interaction time T the system is in a final state whose energy belongs to
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an interval ∆Ef centered on Ef ,

δPfi(T,Ef ) =
1

4h̄2

∫
∆Ef

|W̃fi|2 ρ(E)

{
sin[(ω̃ − ω)T ]/2

(ω̃ − ω)/2

}2

dE , (B.76)

where ρ(E) is the density of final states, ω̃ = (E − Ei)/h̄ and

W̃fi =
eA0

m

〈
φf (E)

∣∣∣ei~k·~r ε̂ · ~p ∣∣∣φi〉 ,
It is now convenient to consider the asymptotic behavior of the factor in curly brackets for T →∞.
Exploiting the properties of the delta function, one finds{

sin[(ω̃ − ω)T ]/2

(ω̃ − ω)/2

}2

−−−−→
T→∞

2πT δ(ω̃ − ω) , (B.77)

so that the probability of absorption becomes

δPfi(T,Ef ) =
π

2h̄
T

∫
∆Ef

|W̃fi|2 ρ(E) δ(E − Ei − h̄ω) dE , (B.78)

and calculating the integral one finds finally

δPfi(T,Ef ) =
π

2h̄
T |Wfi|2 ρ(Ef ) , (B.79)

where Ef = Ei + h̄ω and

Wfi =
eA0

m

〈
φf

∣∣∣ei~k·~r ε̂ · ~p ∣∣∣φi〉 ,
The probability (B.79) that the system is in one of the final states whose energy belongs to a small
energy interval ∆E around Ef increases proportionally to the time T (when T increases, the width
∆E decreases).

The transition rate is thus

wfi =
d

dT
δPfi =

π

2h̄
|Wfi|2 ρ(Ef )

=
πe2A2

0

2h̄m2
|〈φf |ei

~k·~r ε̂ · ~p|φi〉|2 ρ(Ef ) (B.80)

where ρ(Ef is the density of final states at the value E = Ef .

Equation (B.80) was called Golden rule by Enrico Fermi, in view of its widespread applications.

Non-monochromatic radiation No real radiation beam is perfectly monohromatic.

Let us now consider a non-monochromatic perturbation, such that the perturbation frequency ω
is distributed over an interval around a central value ω0, with density ρ(ω).

The problem is formally similar to that of the transition to a contiuuum of states. One can easily
see that (B.80) is modified to

wif =
π

2h̄
|Wfi|2 ρ(ω0) (B.81)

where h̄ω0 = Ef − Ei.

Note The expression of the transition rate (B.80) for a sinusoidal perturbation is 4 times smaller
than the expression for a time-independent perturbation (B.67). See also eq. C-36 and C-37 in
Chapter XIII of [Cohen-Tannoudji et al., 1973].
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B.5 Electric dipole approximation

Let us consider the interaction Hamiltonian responsible for the processes of one photon absorption
or stimulated emission

Hint =
e

m
~A · ~p (B.82)

an seek a conveniently approximate expression for the Golden Rule matrix element |〈φf |ei
~k·~r ε̂ ·

~p|φi〉|2.
A good starting point is the expansion of the exponential

ei
~k·~r = 1 + i~k · ~r − (~k · ~r)2

2!
... (B.83)

If we consider only the first term of the expansion, ei
~k·~r = 1 (electric dipole approximation) the

transition rate becomes

wfi =
πe2A2

0

2h̄m2
|〈φf |ε̂ · ~p|φi〉|2 ρ(Ef ) . (B.84)

The dipole approximation corresponds to considering the electromagnetic field constant over the
dimension of the interacting system.

Alternative expressions of the dipole operator

One can express the dipole operator in an alternative form with that appearing in (B.84). In the
alternative form the dipole operator is expressed in terms of the position operator of the electron
~r instead of the momentum operator ~p.
Let us first demonstrate the commutation relation

[~r,H0] =
ih̄

m
~p , (B.85)

where H0 is the unperturbed Hamiltonian of the atom and ~p is the generalised momentum (corre-

sponding to −ih̄~∇ in the coordinate representation).
The demonstration can be based on the following points:

a) In the Hamiltonian H0 we can retain only the kinetic term p2/2m, since the potential term
only depends on the position and thus commutes with ~r.

b) Since [ri, pj ] = 0 for i 6= j, we can separately consider the commutators of the three compo-
nents of the position and momentum vectors [rk, p

2
k].

c) One can easily verify that [rk, p
2
k] = 2ih̄pk, so that finally

[~r,H0] =

[
~r,
p2

2m

]
=

ih̄

m
~p .

Exploiting now the commutation relation (B.85), one can perform the following substitutions:

〈φf | ~p |φi〉 =
m

ih̄
〈φf |~rH0 −H0~r |φi〉

= im
Ef − Ei

h̄
〈φf |~r |φi〉

= imω 〈φf |~r |φi〉 , (B.86)

where ω is the Bohr angular frequency connecting the initial and final electron states, corresponding
to the angular frequency of the absorbed photon.
Substituting the matrix element of (B.86) in (B.84), one obtains the alternative expression of the
transition rate

wfi =
πe2A2

0ω

2h̄
| 〈φf | ε̂ · ~r |φi 〉 |2 S2

0 ρ(εf ) . (B.87)
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Expression as a function of the electric field

Taking into account that in the radiation gauge

~E = − ∂ ~A

∂t
(B.88)

and that we are considering a sinusoidal dependence on time of the vector potential, the dipole
transition rate can be written as

wfi =
πe2E2

0

2h̄
|〈φi|ε̂ · ~r|φf 〉|2 ρ(Ef ) (B.89)

B.6 Second-order approximation

The second-order transition amplitude is

c̃
(2)
fi =

(
1

ih̄

)2 ∫ +T/2

t1

dτ2

∫ t1

−T/2
dτ1∑

k
〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉 ei(Ef−Ek)τ2/h̄ ei(Ek−Ei)τ1/h̄ ,

(B.90)

with the restriction −T/2 ≤ τ1 ≤ τ2 ≤ +T/2.
The condition τ1 ≤ τ2 can be expressed by the Heaviside function

θ(τ2 − τ1) =

{
1 for τ2 > τ1
0 for τ2 < τ1

(B.91)

One can show that

e−iEk(τ2−τ1)/h̄ θ(τ2 − τ1) = lim
ε→0+

i

2π

∫ +∞

−∞

e−iE(τ2−τ1)

E + iε− Ek
dE (B.92)

As a consequence, one can re-write

c̃
(2)
fi =

(
1

ih̄

)2
i

2π

∫ +T/2

t−T/2
dτ2

∫ +T/2

−T/2
dτ1∫ +∞

−∞
dE

∑
k

lim
ε→0+

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

ei(Ef−E)τ2/h̄ ei(E−Ei)τ1/h̄ .

(B.93)

The integrals on τ1 and τ2 can be performed as for the first-order approximation, giving

c̃
(2)
fi =

(
1

ih̄

)2

2πi∫ +∞

−∞
dE

∑
k

lim
ε→0+

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

δ(T )(Ef − E) δ(T )(E − Ei) .
(B.94)

The two δ(T ) functions are different from zero in a narrow interval of width ' h̄/T .
In many cases, the fraction inside the integral varies comparatively slowly with respect to the δ(T )

functions, so that it can be extracted from the integral

c̃
(2)
fi ∝ lim

ε→0+

∑
k

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

∫ +∞

−∞
dE δ(T )(Ef − E) δ(T )(E − Ei) . (B.95)

One can show that ∫ +∞

−∞
dE δ(T )(Ef − E) δ(T )(E − Ei) = δ(T )(Ei − Ef ) (B.96)

so that

c̃
(2)
fi = −2πi

[
lim
ε→0+

∑
k

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

]
δ(T )(Ei − Ef ) . (B.97)



152 P. Fornasini - X-ray Absorption Spectroscopy

Transition probabilities

According to the above treatment, the total transition amplitude is, to second-order approximation,

c̃fi = δfi − 2πi δ(T )(Ef − Ei)
[
〈Φf |Hint |Φi〉+ lim

ε→0+

∑
k

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

]
(B.98)

We want to calculate the transition probability from an initials eigen-state of the unperturbed
Hamiltonian |Φi〉 to a different final eigen-state |Φf 〉.
Since δfi = 0, the transition probability is

P̃fi = 4π2
[
δ(T )(Ef − Ei)

]2 [
〈Φf |Hint |Φi〉+ lim

ε→0+

∑
k

〈Φf |Hint |Φk〉〈Φk|Hint |Φi〉
E + iε− Ek

]2

(B.99)



Appendix C

Theory of scattering

Basic references:

- [Merzbacher, 1970], Chapters 11 and 19.

- [Cohen-Tannoudji et al., 1973], Chapter 8

C.1 Scattering of a wave-packet

Let us consider a scattering potential V (r) centred at the origin of the reference frame, isotropic
and decreasing towards infinity faster than 1/r (of range a).

Hamiltonian and Schródinger equation

The Hamiltonian is

H = H0 + V (r) (C.1)

and the Schrödinger equation is [
−∇

2

2µ
+ V (r)

]
Ψ(~r) = EΨ(~r) (C.2)

It is convenient to substitute

E =
h̄2k2

2µ
; V (r) =

h̄2

2µ
U(r) (C.3)

so that the Schrödinger equation becomes[
∇2 + k2 − U(r)

]
Ψ(~r)] = 0 . (C.4)

Free-particle wave-packet

At time t = 0 an incoming wave-packet centred at position ~r0 is described by

Ψ(~r, 0) =
1

(2π)3/2

∫
φ(~k)ei

~k·(~r−~r0)d3k =
1

(2π)3/2

∫
φ(~k)ei

~k·~r e−i
~k·~r0d3k (C.5)

where φ(~k) is a smooth function of narrow width centred on ~k0.

Equation (C.5) corresponds to an expansion in plane waves exp(i~k · ~r), eigenfunctions of the
unperturbed Hamoltonian H0 = p2/2m.
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Scattered particle wave-packet

One can show that the Schrödinger equation for the full Hamiltonian H = H0 + V (r)

HΨ
(+)
~k

= EΨ
(+)
~k

(C.6)

is asymptotically (r →∞) satisfied by eigenfunctions

Ψ
(+)
~k

(~r) =
1

(2π)3/2

[
ei
~k·~r + f~k(r̂)

eikr

r

]
(C.7)

and that the wave-packet at time t = 0 can be expanded in terms of the wavefunctions (C.7) (in
place of plane waves)

Ψ(~r, 0) =
1

(2π)3/2

∫
φ(~k) e−i

~k·~r0 Ψ
(+)
~k

(~r) d3k (C.8)

The wave packet at time t is

Ψ(~r, t) =
1

(2π)3/2

∫
φ(~k) e−i

~k·~r0 Ψ
(+)
~k

(~r) e−iEt/h̄ d3k (C.9)

where E = h̄ω = h̄2k2/2m.

Substituting (C.7) into (C.9) one gets

Ψ(~r, t) =
1

(2π)3/2

∫
φ(~k) ei

~k·(~r−~r0) e−iEt/h̄ d3k

+
1

(2π)3/2

∫
φ(~k) e−i

~k·~r0 f~k(r̂)
eikr

r
e−iEt/h̄ d3k

(C.10)

where the first term on the right represents the incoming wave-packet and the the second term
represents the scattered wave-packet.

Approximately, (C.10) can be rewritten as for a particle moving with velocity ~v0 = h̄~k0/m

Ψ(~r, t) = Ψ(~r − ~v0t, 0) eiE0t/h̄

+
f~k0(r̂)

r
Ψ(rk̂0 − ~v0t, 0) eiE0t/h̄

(C.11)

The differential scattering cross section is connected to the scattering amplitude by

dσ

dΩ
= |f~k0(r̂)|2 . (C.12)

C.2 Green’s functionc in scattering theory

We need now to prove that

a) the wavefunctions (C.7) are solutions of the stationary Schrödinger equation (C.6)

b) the incoming wave packet (C.5) can be expanded into the basis of wavefunctions (C.7),
leading to (C.8)

To that purpose, the formalism of Green’s functions is particularly suitable. Let us consider here
only the first point (a). For point (b), refer to Merzbacher, Chapter 11.



C. Theory of scattering 155

C.2.1 The integral Schrödinger equation

Let us rewrite the stationary Schrödinger equation(
− h̄2

2m
∇2 + V

)
Ψ = EΨ (C.13)

as
(∇2 + k2) Ψ = U Ψ (C.14)

where k2 = 2mE/h̄2 and U = 2mV/h̄2.
Let us consider (C.14) as if it were an inhomogeneous differential equation (the inhomogeneity being
UΨ)). The solution of (C.14) is thus the sum of an arbitrary solution of the homogeneous equation
plus a particular solution of the “inhomogeneous” equation. One can verify, by substitution, that
the differential equation (C.14) is equivalent to the integral equation

Ψ~k(~r) =
1

(2π)3/2
ei
~k·~r − 1

4π

∫
G(~r, ~r′)U(~r′) Ψ~k(~r′) d3r′ (C.15)

where G(~r, ~r′) is a Green function, say a function satisfying the equation

(∇2 + k2)G(~r, ~r′) = −4π δ(~r − ~r′) . (C.16)

C.2.2 Choice of the Green’s function

A Green’s function fulfilling the boundary conditions of our problem is the outgoing Green’s func-
tion

G+(|~r − ~r′|) =
exp(ik |~r − ~r′|)
|~r − ~r′|

(C.17)

One can show that (C.17) is a solution of (C.16) by a procedure based on the Fourier transform

G+(~r) =
1

2π2

∫
ei
~k′·~r

k′2 − k2
d3k′

= lim
η→0

G+η(~r) =
1

2π2
lim
η→0

∫
ei
~k′·~r

k′2 − (k2 + iη)
d3k′ . (C.18)

Integrating over the angles,

G+(r) =
eikr

r
= lim

η→0
G+η(r) = − 1

πr

d

dr

∫ +∞

−∞

eik
′r

k′2 − (k2 + iη)
dk′ (C.19)

C.2.3 Scattering wavefuntions

Substituting (C.17) into the integral equation (C.15) on finds

Ψ
(+)
~k

(~r) =
1

(2π)3/2
ei
~k·~r − 1

4π

∫
exp(ik |~r − ~r′|)
|~r − ~r′|

U(~r′) Ψ
(+)
~k

(~r′) d3r′ (C.20)

If now the potential energy is short ranged, such that U(r′) 6= 0 only for r′ < a, and we consider
large distances r′ � a, (C.20) can be rewritten as

Ψ
(+)
~k

(~r) ' 1

(2π)3/2
ei
~k·~r − eikr

4πr

∫
e−i

~k′·~r′ U(~r′) Ψ
(+)
~k

(~r′) d3r′ (C.21)

where ~k′ = kr̂.
Equation (C.21) corresponds to (C.7)

Ψ
(+)
~k

(~r) ' 1

(2π)3/2

[
ei
~k·~r + f

(+)
~k

(r̂)
eikr

r

]
(C.22)

where

f
(+)
~k

(r̂) =
(2π)3/2

4π

∫
e−i

~k′·~r′ U(~r′) Ψ
(+)
~k

(~r′) d3r′ (C.23)
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C.3 Formal theory of scattering

We look at the scattering process as a transition from an unperturbed state to another unperturbed
state, both described as plane waves, eigenstates of the unperturbed Hamiltonian H0.
Let the total Hamiltonian be

H = H0 + V = p2/2m+ V . (C.24)

The stationary Schrödinger equation for the unperturbed Hamiltonian is

H0 |Ψs〉 = Es |Ψs〉 , (C.25)

where the stationary states |Ψs〉 correspond to plane waves.
The time-dependent Schrödinger equation for the total Hamiltonian

ih̄
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 (C.26)

has the general solution

|Ψ(t)〉 =
∑

s
cs(t) e

−iEst/h̄ |Ψs〉 . (C.27)

Inserting (C.27) into (C.26) one finds the time derivatives of the coefficients cr

ih̄
dcr
dt

=
∑

s
cs(t) 〈Ψr|V |Ψs〉 eiωrst , (C.28)

where

ωrs = (Er − Es)/h̄ . (C.29)

Equation (C.28) corresponds to (??) of Appendix B.

Perturbation theory versus formal theory of scattering

Within the time dependent perturbation theory, to first order the solution of (C.28) is given by
(??), which, for a constant potential V in the present notation, becomes

cr(t) = − i
h̄
〈Ψr|V |Ψs〉

∫ t

o

eiωrst
′
dt′ + δrs . (C.30)

In the formal theory of scattering, the first-order expression (C.30) is substituted by an exact
expression

cr(t) = − i
h̄
〈Ψr|T |Ψs〉

∫ t

o

eiωrst
′
eαt
′
dt′ + δrs , (C.31)

where

- the unknown transition matrix Trs substitutes the known matrix Vrs, to avoid the perturba-
tion approximation

- the quantity 1/α roughly measures the time duration of the interaction;
equation (C.31) correctly gives the values cr(t) only for times |t| � (1/α);
after the limit t0 → −∞ has been calculated, also the limit α→ 0 has to be taken.

Assuming the existence of the matrix Trs, upon integrating (C.31) one obtains

cr(t) =
〈Ψr|T |Ψs〉 eiωrsteαt

−(Er − Es) + ih̄α
+ δrs , (C.32)

since exp(αt0) = 0 for t0 → −∞ and α→ 0
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Transition operator

As we have seen in Appendix B, the first-order time-dependent perturbation theory leads, for a
constant potential, to the following expression for the transition rate (Golden Rule):

d

dt
|cr|2 =

2π

h̄
|〈Ψr|V |Ψs〉|2 δ(Er − Es) . (C.33)

In the formal scattering theory one assumes, by a similar procedure, that the transition rate can
be expressed exactly by a similar expression

d

dt
|cr|2 =

2π

h̄
|〈Ψr|T |Ψs〉|2 δ(Er − Es) , (C.34)

where the elements of the transition matrix Trs are connected to the elements of the potential
energy matrix Vrs by the following expression:

〈Ψr|T |Ψs〉 = 〈Ψr|V |Ψs〉 +
∑

n

〈Ψr|V |Ψn〉〈Ψn|T |Ψs〉
−(En − Es) + ih̄α

. (C.35)

Note: Equation (C.35) is valid only if the unperturbed states form a quasi-continuum. The present
treatment would fail for perfectly discrete states.

Lippman-Schwinger equation

To connect the formal theory of scattering with the wave-packet approach of §C.2, is is convenient

to introduce a set of states |Ψ(+)
s 〉 such that

〈Ψr|T |Ψs〉 = 〈Ψr|V |Ψ(+)
s 〉 =

∑
j
〈Ψr|V |Ψj〉〈Ψj |Ψ(+)

s 〉 . (C.36)

Substituting in (C.35) one obtains an exact expression containing only V

〈Ψr|V |Ψ(+)
s 〉 = 〈Ψr|V |Ψs〉 +

∑
n

〈Ψr|V |Ψn〉〈Ψn|V |Ψ(+)
s 〉

Es − En + ih̄α
. (C.37)

Since (C.37) must be true for all r, one gets

|Ψ(+)
s 〉 = |Ψs〉 +

∑
n

|Ψn〉〈Ψn|V |Ψ(+)
s 〉

Es − En + ih̄α

= |Ψs〉 +
∑

n

|Ψn〉〈Ψn|V |Ψ(+)
s 〉

Es −H0 + ih̄α
(C.38)

and, exploiting the completeness, on arrives at the Lippman-Schwinger implicit equation

|Ψ(+)
s 〉 = |Ψs〉 +

1

Es −H0 + ih̄α
V |Ψ(+)

s 〉 (C.39)

Lippman-Schwinger equation (C.39) and Green function formalism of §C.2

Let’s start from (C.38) and project it in the coordinate representation, where

〈~r|Ψs〉 =
1

(2π)3/2
ei
~k·~r ; 〈~r|Ψ(+)

s 〉 = Ψ(+)
s (~r) ; 〈~r′|V |~r′′〉 = V (~r)δ (~r′ − ~r′′) . (C.40)

If |Ψs〉 are momentum eigenfunctions, we can substitute the sum over the energy values by the
integral over the wavevectors k, and get the alternative expression of (C.39)

Ψ(+)
s (~r) =

1

(2π)3/2
ei
~k·~r − 1

(2π)3

∫ [∫
ei
~k′·(~r−~r′)

k′2 − (k2 + iη)
d3k′

]
2m

h̄2 V (~r′) Ψ(+)
s (~r′) d3r′ (C.41)
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Comparing with the definition of the Green’s function (C.18) and remembering that 2mV/h̄2 = U ,
one can see that (C.39) corresponds to (C.20).
The Green’s function G+(~r, ~r′) introduced in §C.2 corresponds thus, in the coordinate represen-
tation to the Green’ operator G+(E) appearing in the Lippman-Schwinger equation (C.39):

G+(~r, ~r′) = −i4πh̄
2

2m
〈~r|G+(E)|~r′〉 , (C.42)

where

G+(E) =
1

E −H0 + ih̄α
. (C.43)

Series expansion

The Lippman-Schwinger equation (C.39) can be rewritten, using the shorthand notation of the
Green’s operator (C.43), as

|Ψ(+)
s 〉 = |Ψs〉 + G+(E)V |Ψ(+)

s 〉 , (C.44)

say
|Ψ(+)
s 〉 [1−G+(E)V ] = |Ψs〉 , (C.45)

so that
|Ψ(+)
s 〉 = [1−G+(E)V ]

−1 |Ψs〉 . (C.46)

The power series expansion

[1−G+(E)V ]
−1

= 1 + G+(E)V + [G+(E)V ]2 + [G+(E)V ]3 + · · · (C.47)

leads to the series expansion of (C.46)

|Ψ(+)
s 〉 = |Ψs〉 + G+(E)V |Ψs〉 + G+(E)V G+(E)V |Ψs〉 + · · · (C.48)

The n-th Born approximation corresponds to truncating the series (C.48) after n terms.

Incoming and outgoing waves

The states |Ψ(+)
s 〉 form a complete set of orthonormal eigenstates of the total Hamitonian H,

corresponding to outgoing waves.
An alternative set of orthonormal eigenstates of the total Hamiltonian H is formed by the outgoing

wave states |Ψ(−)
s 〉, which obey the equation

|Ψ(−)
s 〉 = |Ψs〉 + G−(E)V |Ψ(−)

s 〉 , (C.49)

where G−(E) is the Green operator

G−(E) =
1

E −H0 − ih̄α
. (C.50)

Scattering matrix



Appendix D

Statistics

In this Appendix, we recall some basic concepts of statistical thermodynamics that are relevant
for the treatment of thermal disorder in EXAFS. Besides, we consider the most commonly used
procedures for calculating partition functions and average values.

The basic problem is to calculate average values of physical observables over a set of possible
configurations, due to thermal and structural disorder. Examples of observables are the EXAFS
function or the quantities which allow to parametrize its analytical expression, such as the cumu-
lants. Since low-temperature quantum effects are non negligible in accurate EXAFS analyses, we
will rely on a quantum approach.

D.1 The density operator

Linear superposition and statistical mixing

To evaluate the statistical properties of a quantum system, it is convenient to introduce
the statistical density operator, which operates on mixed quantum states [Messiah, 1970,
Cohen-Tannoudji et al., 1973].

Let us first recall the difference between a pure state, a linear superposition of pure states and a
statistical mixing of pure states.

A pure state is a linear superposition

|ψ(t)〉 =
∑
n

cn(t)|un〉 (D.1)

where the |un〉 form an orthonormal basis (here considered discrete for simplicity) and cn are
complex numbers representing probability amplitudes and satisfying the relation

∑
|cn(t)|2 = 1.

The knowledge of |ψ(t)〉 implies the full knowledge of the dynamical state of the system. The time
evolution is given by the Schrödinger equation; one can exactly predict the statistical distribution
of the results of measurements at any time.

A mixed state is a statistical mixing of pure states |ψk(t)〉, each one having a probability pk,
where pk ≤ 1 are real numbers such that

∑
pk = 1.

Mixed states describe statistical mixtures of pure states, when the dynamical state of a system is
known incompletely.

Density operator for a pure state

Let us consider again a pure state. Two alternative and equivalent approaches are possible to
evaluate the expectation value of an observable, one based on the vector state, one on the density
operator.
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In the first approach, the state of the system is described by the vector |ψ〉 of Eq. (D.1), with the
normalization condition ∑

n
|cn|2 = 1. (D.2)

The expectation value of an observable A is

〈A〉 = 〈ψ|A|ψ〉 =
∑
mn

c∗ncm〈un|A|um〉 =
∑
mn

c∗ncmAnm . (D.3)

Let us now introduce the alternative description, by observing that

c∗ncm = 〈un|ψ〉〈ψ|um〉 (D.4)

are the matrix elements in the base {|um〉} of the operator w = |ψ〉〈ψ|, which is called density
operator. The density matrix w, whose elements are

wnm = 〈un|w|um〉 = c∗ncm , (D.5)

characterizes the quantum state in an equivalent way as the vector |ψ〉.
The normalization condition (conservation of probability) is expressed in terms of the trace of the
density matrix: ∑

n
|cn|2 =

∑
n
wnn = Tr(w) = 1 . (D.6)

The expectation value of the observable A is

〈A〉 =
∑
mn

cmc
∗
nAnm =

∑
mn

〈um|w|un〉〈un|A|um〉

=
∑
m

〈um|wA|um〉 = Tr(wA) , (D.7)

say it is given by the trace of the product of the two matrices wA.

Statistical density operator

Let us now consider a statistical mixture of pure states |ψk〉, each one characterised by a probability
pk.
The expectation value of an observable A is now

〈A〉 =
∑
k

pk
∑
mn

(ck)m(ck)∗nAnm =
∑
k

pk
∑
mn

〈um|wk|un〉〈un|A|um〉

=
∑
m

〈um|w̃A|um〉 = Tr(w̃A) , (D.8)

where w̃ is the statistical density operator

w̃ =
∑
k

pk wk =
∑
k

pk |ψk〉〈ψk| . (D.9)

The density operator is hermitian and time-dependent. On can show that Tr(w̃A) = Tr(Aw̃) and
that Tr(w̃) = 1.

D.2 Systems in thermodynamic equilibrium

Let us consider a system in thermodynamic equilibrium with a reservoir at temperature T = 1/kBβ.
If the Hamiltonian H is independent of time, there are stationary states of energy En, eigenstate
|φn〉 and eigenfunction φn(x) (for simplicity, we consider here only non-degenerate states).
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D.2.1 Density operator and partition function

We follow here the approach by [Chen and Kotlarchyk, 1997], § 7.2.
The classical expression for entropy

S = −kB
∑

pi ln pi (D.10)

is substituted by the quantum expression in terms of the density operator

S = −kB Tr(w̃ ln w̃) (D.11)

If a basis is chosen where w̃ is diagonal, the entropy can be expressed as

S = −kB
∑
n

w̃nn ln w̃nn (D.12)

In order to find an explicit expression of the density operator, one maximises the entropy with the
constraints that the total probability is constant and equal to 1 and the total average energy 〈E〉
is constant (conditions for the canonical distribution).
By introducing the two Lagrange multipliers λ and β, the extremum condition for entropy becomes

δS = Tr [(1 + λ) + ln w̃ + βH] δw̃ = 0 (D.13)

The quantity within square parentheses is zero, due to the arbitrariness of δw̃, so that the statistical
density operator is

w̃ = e−(1+λ) e−βH =
1

Z
e−βH (D.14)

where the quantity Z is determined by the condition that

Tr (w̃) = 1 =
1

Z
Tr
(
e−βH

)
(D.15)

so that
Z = Tr

(
e−βH

)
= e−βF . (D.16)

Z is the Partition Function and F = U − TS is the Helmholtz free energy.

Energy representation

The partition function Z in the energy representation is given by

Z = Tr
(
e−βH

)
=
∑
n

〈φn| e−β H |φn〉 =
∑
n

〈φn|φn〉 e−βEn =
∑
n

e−βEn . (D.17)

The elements of the statistical density matrix are

w̃mn =
1

Z
〈φm| e−βH |φn〉 =

1

Z
e−βEn δmn. (D.18)

The average value of an operator A is

〈A〉 = Tr(w̃A) =
1

Z

∑
n

〈φn|Ae−βH |φn〉 =
1

Z

∑
n

e−βEn 〈φn|A|φn〉 =
1

Z

∑
n

Ann e
−βEn .

(D.19)
The probability density that a continuous observable X (e.g. a position coordinate) assumes a
value x in the pure state |Ψk〉 is ρk(x) = |〈x|Ψk〉|2 = 〈Ψk|x〉〈x|Ψk〉; otherwise stated, it is the
average value of the projector Px = |x〉〈x|. For a statistical mixture of pure states, the probability
density ρ(x) is the average value of the ρk(x), say the average value of the projector Px:

ρ(x) = Tr(w̃Px) =
1

Z

∑
n

〈φn|x〉〈x |e−βH |φn〉 =
1

Z

∑
n

|φn(x)|2 e−βEn . (D.20)
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Coordinate representation

Let us now consider the coordinate representation, for a system with one degree of freedom. The
partition function Z is given by

Z = Tr
(
e−βH

)
=

∫
dx 〈x| e−βH |x〉 =

∫
dx
∑
n

〈x|φn〉〈φn| e−βEn |x〉 =
∑
n

e−βEn . (D.21)

The elements of the statistical density matrix are

w̃(x, x′) =
1

Z
〈x| e−βH |x′〉 =

1

Z

∑
n

e−βEn φ∗n(x)φn(x′). (D.22)

The average value of an operator A is

〈A〉 = Tr(w̃A) =
1

Z

∫
dx 〈x|Ae−βH |x〉 =

1

Z

∑
n

e−βEn
∫
dxφ∗n(x)Aφn(x). (D.23)

By comparing Eq. (D.20) with Eq. (D.22) one can see that the probability density in coordinate
representation is

ρ(x) = w̃(x, x). (D.24)

Differential equation for the density operator

A non-normalised statistical density operator is sometimes introduced ([Feynman, 1972])

w̃∗ = e−βH . (D.25)

The density operator depends on temperature. One can demonstrate that the non-normalised
operator w̃∗ obeys the differential equation

∂w̃∗/∂β = −H w̃∗ (D.26)

with the initial condition
w̃∗(0) = 1, (D.27)

corresponding to a uniform distribution over all the available energy states for β = 0, say T =∞.
It is worth noting that Eq. (D.26) is formally similar to the time-dependent Schrödinger equation

ih̄∂|Ψ〉/∂t = Ĥ |Ψ〉, (D.28)

provided the substitution β → it/h̄ is made.
The integration of Eq. (D.26) with initial condition (D.27) allows one, in principle, to determine
the density matrix in coordinate representation w̃∗(x, x′;β), once the Hamiltonian is known. This
procedure is feasible in exact way only for particularly simple hamiltonians.
The normalised density matrix w̃(x, x′;β) = w̃∗(x, x′;β)/Z can then be recovered, since Z =
Tr(e−βH) = Tr(w̃∗).

D.3 Classical approximation

In the classical approximation (say for high enough temperature), the instantaneous state of a
one-dimensional system is defined by its position x and momentum p. For a system in thermal
equilibrium with a reservoir at temperature T = 1/kBβ, the probability density of the point (x, p)
in phase space is given by

ρ(x, p) =
e−βE(x,p)

Z
=

e−βE(x,p)∫
dx
∫
dp e−βE(x,p)

, (D.29)
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and the average value of a quantity A(x, p) is given by

〈A(x, p)〉 =
1

Z

∫
dx dpA(x, p) ρ(x, p). (D.30)

If the potential energy is independent of p, the total energy is E(x, p) = p2/2m + V (x), so that
the partition function Z can be calculated as

Z =

∫
dp e−βp

2/2m

∫
dx e−βV (x) =

√
2mπ/β

∫
dx e−βV (x). (D.31)

The probability density for a given value of position x is then

ρ(x) =

∫
dp e−βp

2/2m e−βV (x)

Z
=

e−βV (x)∫
dx e−βV (x)

, (D.32)

and the average value of a quantity A(x, p) is

〈A〉 =

∫
dxA(x) e−βV (x)∫
dx e−βV (x)

. (D.33)

D.4 Calculation techniques

The basic problem of quantum statistical thermodynamics is the calculation of partition function
(Eqs. D.16 or D.17 or D.21), average values (Eqs. D.19 or D.23) and probability distributions
(Eqs. D.20 or D.24) within a suitable representation.
The knowledge of the partition function as a function of temperature is sufficient to calculate the
thermodynamic functions; for example:

internal energy : U = kBT
2[∂(lnZ)/∂T ]V

entropy : S = (U/T ) + kB lnZ

Helmoltz free energy : F = −kBT lnZ

pressure : P = kBT [∂(lnZ)/∂V ]T

In the case of EXAFS in SS approximation, we want to calculate the distribution of distances ρ(r)
and its cumulants, which are the average values of suitable operators. This typically requires the
knowledge of the density matrix in coordinate representation and the calculation of integrals like
that in Eq. (D.23).
Different approaches are possible, depending on the complexity of the system under study and the
sought accuracy.

Exact analytical calculations

Exact analytical calculations of the density matrix are possible only for particularly simple systems.
In § D.5 we show the treatment for the harmonic oscillator, made in the energy representation: the
use of creation and annihilation operators allows one to calculate moments and cumulants from the
knowledge of energy eigenvalues and eigenvectors (Ref. [Cohen-Tannoudji et al., 1973] and Ch. 6
of Ref. [Feynman, 1972]).
An alternative treatment in the coordinate representation can be found in Ref. [Feynman, 1972],
Ch.2. It is based on the solution of Eq. (D.26) to determine the density matrix w(x, x′;β).

Perturbative approaches

Approximate calculations of the density matrix can be done through a perturbative expansion
(general reference [Feynman, 1972], Ch. 2; for EXAFS [Frenkel and Rehr, 1993, Yokoyama, 1999]).
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Suppose that the hamiltonian can be expressed as

H = H0 +H1, (D.34)

where H1 can be considered as a small perturbation to the hamiltonian H0. Suppose further that
the differential equation (D.26) is exactly solvable for H0, so that the un-normalised statistical
density operator w̃∗0 = exp(−βH0) can be calculated. In our case, H0 is the Hamiltonian of the
harmonic oscillator, whose eigenvalues En and eigenfunctions |n〉 can be exactly calculated (§D.5).

One can demonstrate that the un-normalised statistical density operator w̃∗ = exp(−βH) obeys
the integral equation

w̃∗(β) = w̃∗0(β) −
∫ β

0

w̃∗0(β − β′)H1 w̃
∗(β′) dβ′. (D.35)

To first order approximation, Eq. (D.35) can be solved, by substituting w̃∗(β′) ' w̃∗0(β′) inside
the integral, so that

w̃∗(β) ' w̃∗0(β) −
∫ β

0

w̃∗0(β − β′)H1 w̃
∗
0(β′) dβ′, (D.36)

or equivalently [Frenkel and Rehr, 1993, Yokoyama, 1999]

w̃∗(β) = e−βH ' e−βH0

[
1−

∫ β

0

eβ
′H0 H1 e

−β′H0 dβ′

]

' e−βH0

[
1−

∫ β

0

H̃1 dβ
′

]
, (D.37)

where H̃1 = eβ
′H0H1e

−β′H0 .
The approximated density operator w̃∗ obtained through Eq. (D.36) can further be substituted
inside the integral of Eq. (D.35), to obtain a second order approximate equation. And so on.

The thermal average of a quantity A is given exactly by

〈A〉 = Tr(w̃A) =
1

Z
Tr
[
Ae−βH

]
, (H = H0 +H1) (D.38)

The first-order approximation gives [Yokoyama, 1999]

Tr
[
Ae−βH

]
' Tr

[
Ae−βH0

(
1−

∫ β

0

eβ
′H0 H1 e

−β′H0 dβ′

)]
(D.39)

and
1

Z
' 1

Z0

[
1 +

1

Z0
Tr

(
e−βH0

∫ β

0

eβ
′H0 H1 e

−β′H0 dβ′

)]
(D.40)

By calculating the integrals using En and |n〉 from H0, one obtains

〈A〉 ' 1

Z0

∑
n

e−βEn 〈n|A|n〉

+
1

Z0

∑
n,n′

e−βEn − e−βEn′
En − En′

〈n|A|n′〉〈n′|H1|n〉

+
β

Z2
0

∑
n

e−βEn 〈n|A|n〉
∑
n′

e−βEn′ 〈n′|H1|n′〉

(D.41)

where for n = n′ the 0/0 factor in the second term should be replaced by

e−βEn − e−βEn′
En − En′

= −β e−βEn . (D.42)
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Path-integral approach

An alternative approach for the calculation of the statistical density matrix can be made within
the framework of the path-integral techniques, first introduced by Feymnan. Here, to simplify
notation, we will consider only the one-dimensional case.
The un-normalised statistical density matrix in coordinate representation (Eq. D.22 multiplied by
Z)

w̃∗(x1, x2;β) =
∑
n

e−βEn φ∗n(x2)φn(x1). (D.43)

is formally similar to the expression for the propagator or kernel, say the probability amplitude
that a particle is in position x1 at time t1 and position x2 at time t2:

k(x1, t1;x2, t2) =
∑
n

e−(i/h̄)(t2−t1)En φ∗n(x2)φn(x1). (D.44)

The two equations can be exchanged by the substitution β ↔ (i/h̄) (t2 − t1) (already introduced
when discussing Eq. D.26), or equivalently

U = h̄β ↔ i (t2 − t1), (D.45)

where U is an imaginary time.
The kernel (D.44) can be calculated by a path-integral:

k(x1, t1;x2, t2) =

∫ x2

x1

exp

[
i

h̄

∫ t2

t1

L(x, ẋ, t) dt

]
Dx(t). (D.46)

In a formally analogous way, the un-normalised statistical density matrix (D.43) can be calculated
by the path-integral:

w̃∗(x1, x2;U) =

∫ x2

x1

exp

[
− 1

h̄

∫ U

0

{
(m/2)[ẋ(u)]2 + V [x(u)]

}
du

]
Dx(u). (D.47)

The exact evaluation of the path-integral is again possible only in a few cases for simple potentials.
However, the path-integral approach allows the development of new interesting approximations,
like the the one based on the Effective Potential.

Numerical techniques

Molecular Dynamics and Monte Carlo method.

D.5 The harmonic oscillator

The one-dimensional harmonic oscillator is an example of systems for which an exact analytical
calculation of the density matrix is possible [Cohen-Tannoudji et al., 1973]. The Hamiltonian
operator is

H0 =
P 2

2m
+

1

2
mω2

0 X
2 . (D.48)

Energy eigenvalues and eigenstates

The Hamiltonian operator is then

H0 =
P 2

2m
+

1

2
mω2

0 X
2 . (D.49)

It is convenient to introduce the a-dimensional reduced observables

X̂ =

√
mω0

h̄
X , P̂ =

1√
mh̄ω0

P , (D.50)
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so that the commutator is [X̂, P̂ ] = i and the reduced Hamiltonian is

Ĥ0 =
H0

h̄ω0
=

1

2
(X̂2 + P̂ 2) . (D.51)

It is further convenient to substitute X̂ and P̂ by their linear combinations, the (non hermitian)
operators of creation and destruction

a† =
1√
2

(X̂ − iP̂ ) , a =
1√
2

(X̂ + iP̂ ) , (D.52)

whose commutator is [a, a†] = 1.
It is easy to see that

a†a =
1

2
(X̂2 + P̂ 2 − 1) , (D.53)

so that

Ĥ0 = a†a+
1

2
= aa† − 1

2
. (D.54)

By defining the (hermitian) number operator

N = a†a, (D.55)

one finds
Ĥ0 = N + 1/2 : (D.56)

the eigenvectors of Ĥ0 are eigenvectors of N and viceversa. One can then first solve the eigenvalues
equation for N

N |φν〉 = ν |φν〉 (D.57)

One finds that the spectre of N is represented by non negative integer numbers

ν = 0, 1, 2, . . . n, . . . |φν〉 = |n〉 , (D.58)

the energy levels are non degenerate and the eigenvalues of the Hamiltonian H0 are

En = (1/2 + n) h̄ω (n = 0 . . .∞) (D.59)

The action of the creation and destruction operators on the eigenstates are the following

a† |n〉 =
√
n+ 1 |n+ 1〉, a |n〉 =

√
n |n− 1〉. (D.60)

As a consequence, the average displacement is zero:

〈X〉 =

√
h̄

2mω0
〈n| a† + a |n〉 = 0 . (D.61)

One can easily see that

〈x2〉 =
h̄

mω0

(
1

2
+ n

)
=

En
mω2

0

. (D.62)

Thermal equilibrium

If the oscillator is in equilibrium with a reservoir at temperature T , its state is a statistical mixture
of eigenstates |n〉, weighted by exp (−βEn), where β = 1/kBT .
The thermodynamical properties can be calculated from the density operator

ŵ = (1/Z0) e−βĤ0 , Z0 = Tr (e−βĤ0). (D.63)

In the energy representation, where Ĥ0 is diagonal, the harmonic partition function Z0 is

Z0 =

∞∑
n=0

〈n|e−βĤ0 |n〉 =

∞∑
n=0

e−(n+1/2)βh̄ω =
e−βh̄ω/2

1− e−βh̄ω
. (D.64)
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Average energy

The average energy is given by

〈Ĥ0〉 = Tr(Ĥ0ŵ) =
1

Z0
Tr(Ĥ0 e

−βĤ0) =
1

Z0

∞∑
n=0

(n+1/2)h̄ωe−β(n+1/2)h̄ω = h̄ω

[
1

2
+

1

eβh̄ω − 1

]
.

(D.65)
Let us study the temperature dependence of the average energy.

• For T → 0 (β → ∞), it easy to see that 〈H〉 → h̄ω/2 (zero point energy). The zero point
energy is proportional to the angular frequency ω.

• For T → ∞ (β → 0), one can show that 〈H〉 → kBT (classical approximation). The
demonstration is based on the expansion 1/(ex−1) ' [x+x2/2+. . .]−1 ' (1/x)[1−x/2+. . .],
where x = βh̄ω. The behaviour for T →∞ is independent of ω.

A characteristic temperature θ can be associated to the angular frequency: θ = h̄ω/kB = hν/kB .
Numerically, θ [K] = 48 ν [THz].

Distribution of positions and its moments

The probability density for the displacement x can be calculated, according to Eq. (D.20), as

ρ(x) =
1

Z0

∑∞

n=0
ρn(x) e−βEn , where ρn(x) = |φn(x)|2. (D.66)

One can demonstrate [Cohen-Tannoudji et al., 1973] that the distribution has a gaussian shape:

ρ(x) = (1/σ
√

2π) e−x
2/2σ2

(D.67)

where 〈x〉 = 0.
The moments of the distribution can be calculated by using the creation and destruction operators.
The position operator can be expressed as

x =
√
h̄/mω x̂ =

√
h̄/2mω (a† + a) = σ0 (a† + a), (D.68)

where the notation σ0 =
√
h̄/2mω has been introduced for convenience.

The momentum of order k can be calculated as

〈xk〉 =
1

Z0
Tr (xke−βH0) =

1

Z0

∞∑
n=0

〈n|xk|n〉 e−βEn . (D.69)

It is easy to verify that 〈n|x|n〉 = 0 for every n, so that the 1st moment is always zero,

〈x〉 = 0. (D.70)

One can also verify that 〈n|x2|n〉 = σ2
0 (2n+ 1) for every n; since 〈x〉=0, the 2nd central moment

(variance σ2) is in this case equal to the second initial moment 〈x2〉:

σ2 = 〈x2〉 =
σ2

0

Z0

∞∑
n=0

(2n+ 1) e−(n+1/2)βh̄ω. (D.71)

Defining z = exp(−βh̄ω) and remembering that σ2
0 = h̄/2mω, it easy to calculate σ2, which can

be expressed in different equivalent ways:

σ2 = σ2
0

1 + z

1− z
= σ2

0 coth

(
βh̄ω

2

)
=

h̄

mω

[
1

2
+

1

eβh̄ω − 1

]
. (D.72)

Comparing Eqs. (F.220) and (D.72) one can see that σ2 = 〈H〉/k0 = 〈H〉/mω2.
Let us study the temperature dependence of σ2.
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• For T → 0, σ2 → σ2
0 = h̄/2mω = h̄ω/2k0.

• For T →∞, σ2 → σ∞ = kBT/mω
2 = kBT/k0. The behaviour of σ2 for T →∞ depends on

ω; the slope of σ2(T ) is inversely proportional to the force constant k0.

One can at last verify that 〈n|x3|n〉 = 0 for every n; the 3rd central moment is in this case equal
to 〈x3〉 = 0.



Appendix E

Probability and Cumulants

E.1 Moments of a random variable distribution

References: Chapter 7 of [Gnedenko, 1976], Chapter 15 of [Cramér, 1966].

Let us consider the probability density function Φ(r) of the random variable r.

Initial moments

The initial moments αn of the distribution Φ(r) are defined as

αn = 〈rn〉 =
1

α0

∫ ∞
−∞

rn Φ(r) dr, (n = 1, 2, ...) (E.1)

where

a) α0 =
∫

Φ(r) dr is the normalisation integral. For a probability distribution, α0 = 1.
With reference to EXAFS,

i) for the real distribution ρ(r), α0 = 1;

ii) for the effective distribution P (r, λ) in general α0 6= 1.

b) α1 = m is the mean value, or expectation value, of the random variable r.

The initial moment αn only exists if the integral
∫
|rn| Φ(r) dr exists; if the moment α of order n

exists, all moments of order k < n exist too.

It is often important to know whether a distribution is uniquely determined by its moments. The
problem is far from trivial. A useful criterion is the following. Let α0, α1 . . . be the moments of
a distribution Phi(r), all of which are assumed to be finite. If the series

∑
ανr

ν/ν! is absolutely
convergent for some r > 0, then Φ(r) is the only distribution whose moments are α0, α1 . . ..

Central moments

The central moments µn of the distribution Φ(r) are defined as

µn = 〈(r − 〈r〉)n〉 =
1

α0

∫ ∞
−∞

(r − 〈r〉)n Φ(r) dr, (n = 1, 2, ...) (E.2)

whence

µ0 = 1 (E.3)

µ1 = 0 (E.4)

µ2 = α2 − α2
1 (E.5)

µ3 = α3 − 3α1α2 + 2α3
1 (E.6)

µ4 = α4 − 4α3α1 + 6α2
1α2 − 3α4

1 (E.7)

...
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Meaning of leading central moments:

µ2 = σ2 = 〈(r−〈r〉)2〉 is the variance of the distribution, the most common measure of dispersion.
Its square root σ is the standard deviation.

µ3 = 〈(r − 〈r〉)3〉 is the simplest measure of skewness or asymmetry.
The a-dimensional coefficient of skewness is γ1 = µ3/σ

3: for γ1 > 0 the long tail is on the
positive side with respect to mean.
An alternative measure of skewness, introduced by Pearson, is the difference between mean
and mode, divided by the standard deviation: (m− r0)/σ.

µ4 = 〈(r − 〈r〉)4〉 measures the flatness (or kurtosis or excess).
The a-dimensional coefficient of kurtosis is γ2 = µ4/σ

4 − 3. For a gaussian distribution
γ2 = 0. Positive values of γ2 indicate that the distribution is more tall and slim than a
gaussian distribution with the same mean and variance.

E.2 Characteristic function

The characteristic function of a distribution Φ(r) is its Fourier transform Ψ(t):

Ψ(t) =

∫ ∞
−∞

Φ(r) eitr dr = 〈eitr〉. (E.8)

Considering the application to EXAFS, let 2k be the conjugate variable and let us consider the
possibility of non-normalised distributions (such as the effective distribution), so that:

Ψ(2k) =

∫ ∞
−∞

Φ(r) e2ikr dr = α0 〈e2ikr〉. (E.9)

Properties of the characteristic function

1. Since |eitr| = 1, the integrals in (E.8) and (E.9) always exists.
General case: |Ψ(t)| ≤ 1, Ψ(0) = 1 and Ψ(−t) = Ψ∗(t).
EXAFS case: |Ψ(2k)| ≤ α0, Ψ(0) = α0 and Ψ(−2k) = Ψ∗(2k) (α0 = 1 for real distribution).

2. The characteristic function Ψ(t) is a complex function of a real variable:
Ψ(t) = |Ψ(t)| exp[iθ(t)].

3. There is a one-to-one correspondence between a distribution Φ(r) and its characteristic func-
tion Ψ(t). If two distributions are equal, so are their characteristic functions, and conversely.

E.2.1 Moments and characteristic function: normalised distribution

If all moments αn exist, the characteristic function 〈eitx〉 can be expanded in Mac Laurin series
around the origin t = 0:

Ψ(t) = 〈eitx〉 =

∞∑
n=0

(it)n

n!
αn = 1 +

∞∑
n=1

(it)n

n!
αn . (E.10)

One can easily verify that αn is connected to the n-th derivative of Ψ(t) at the origin t = 0:[
dnΨ(t)

dtn

]
t=0

= in αn . (E.11)

E.2.2 Moments and characteristic function: EXAFS case

In the EXAFS case (E.10) becomes

Ψ(2k) = α0 〈e2ikx〉 = α0

[
1 +

∞∑
n=1

(2ik)n

n!
αn

]
. (E.12)
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and (E.11) becomes [
dnΨ(2k)

d(2k)n

]
k=0

= in α0 αn , (E.13)

where α0 = 1 for the real distribution, α0 6= 1 for the effective distribution.

E.3 Cumulants of a distribution

References: Chapter 7 of [Gnedenko, 1976], Chapter 15 of [Cramér, 1966].

E.3.1 Cumulants for a normalised distribution

The second characteristic function is the logarithm of Ψ(t):

lnΨ(t) = ln|Ψ(t)| + iθ(t). (E.14)

The cumulants or semi-invariants Cn of Ψ(t) are the n-th derivatives of ln Ψ(t) calculated at the
origin k = 0 and divided by in: [

dn ln Ψ(t)

dtn

]
t=0

= in Cn . (E.15)

The second characteristic function can be expanded in Mac Laurin series around k = 0 as

ln Ψ(t) =

∞∑
n=1

(it)n

n!
Cn . (E.16)

The convergence interval of (E.16) depends on the properties of the distribution Φ(r).

Relations between cumulants and moments

The cumulants can be expressed as a function of the initial moments by comparing (E.16) with
the logarithm of (E.12), expanded according to

ln(1 + x) =

∞∑
n=1

(−1)n+1

n
x2 ; (E.17)

by equating the coefficients of the terms with the same power of k, one obtains

C1 = α1

C2 = α2 − α2
1

C3 = α3 − 3α2α1 + 2α3
1 (E.18)

C4 = α4 − 4α3α3 − 1α2
2 + 12α2α

2
1 − 6α4

1

C5 = α5 − 5α4α1 − 10α3α2 + 20α3α
2
1 + 30α2

2α1 − 60α2α
3
1 + 24α5

1

The connection between cumulants and central moments is [Cramér, 1966]

C2 = µ2

C3 = µ3

C4 = µ4 − 3µ2
2 (E.19)

C5 = µ5 − 10µ2µ3

C6 = µ6 − 15µ2µ4 − 10µ2
3 + 30µ3

2
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E.3.2 Cumulants for the EXAFS case

In the EXAFS case it is convenient to explicitly consider a conjugate variable t = 2k and to account
for the fact that the effective distribution is not normalised to one.
The second characteristic function is now the logarithm of Ψ(2k); from (E.9)

lnΨ(2k) = ln
[
α0 〈e2ikr〉

]
= C0 + ln〈e2ikr〉 , (E.20)

where

C0 = lnα0

{
= 0 for the a distribution normalised to one (e.g. the real distribution)
6= 0 for a not normalised distribution (e.g. the effective distribution)

The expansion (E.16) becomes

ln Ψ(2k) = C0 +

∞∑
n=1

(2ik)n

n!
Cn =

∞∑
n=0

(2ik)n

n!
Cn. (E.21)

The convergence interval of (E.21) depends on the properties of the distribution Φ(r).

The connection between the cumulants and the initial and central moments is again given by (E.18)
and (E.19), with the addition of C0 [Vaccari, 2006]

C0 = lnα0

C1 = α1

C2 = α2 − α2
1 = µ2

C3 = α3 − 3α2α1 + 2α3
1 = µ3

C4 = α4 − 4α3α3 − 1α2
2 + 12α2α

2
1 − 6α4

1 = µ4 − 3µ2
2

C5 = α5 − 5α4α1 − 10α3α2 + 20α3α
2
1 + 30α2

2α1 − 60α2α
3
1 + 24α5

1

(E.22)

The connections between cumulants and moments can be inverted [Vaccari, 2006]:

α1 = C1

α2 = C2 + C2
1

α3 = C3 + 3C2C1 + C3
1

α4 = C4 + 4C3C1 + 6C2C
2
1 + 3C2

2 + C4
1

α5 = C5 + 5C4C1 + 10C3C2 + 10C3C
2
1 + 15C2

2C1 + 10C2C
3
1 + C5

1

(E.23)

E.3.3 Cumulant expansion of EXAFS

An EXAFS signal is proportional to the configurational average

χ(k) ∝
〈

exp[−2r/λ(k)]

r2
exp(2ikr)

〉
=

∫ ∞
0

P (r, λ) exp(2ikr) dr , (E.24)

where P (r, λ) = ρ(r) exp(−2r/λ)/r2 is an effective distribution and ρ(r) is the real distribution.
The effective distribution is defined only for r > 0. The integral to the left of (E.24) can be
extended to −∞ and corresponds to the characteristic function of the effective distribution.
The expansion (E.21) in cumulant series gives

Ψ(2k) =

∫ ∞
−∞

P (r, λ) exp(2ikr) dr = exp

[ ∞∑
n=0

(2ik)n

n!
Cn

]
(E.25)

= exp

[
C0 − 2k2C2 +

2

3
k4C4 −

4

45
k6C6...

]
exp

[
2ikC1 −

4

3
ik3C3 +

4

45
ik5C5...

]
The Cn are the cumulants of the effective distribution.
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The EXAFS function for a coordination shell (or more generally for a scattering path) is thus

χs(k) =
S2

0

k
Ns Im

{
fs(k, π) e2iδ1 Ψ(2k)

}
(E.26)

By inserting the cumulant expansion (E.26) and substituting fs(k, π) e2iδ1 = |fs(k, π)| eiφ, (E.26)
becomes

χs(k) =
S2

0

k
Ns |fs(k, π)| exp

(
C0 − 2k2C2 +

2

3
k4C4...

)
sin

(
2kC1 −

4

3
k3C3...+ φ

)
(E.27)

Even and odd cumulants determine the amplitude and the phase of the EXAFS function, respec-
tively.

Meaning of EXAFS cumulants

Fro EXAFS analysis one obtains directly the cumulants of the effective distribution P (r, λ).

a) C0 depends on the normalisation of the distribution P (r, λ).
P (r, λ) is not normalised to one due to the factor e−2r/λ/r2. For not too large distributions,

eC0 ' e−2C1/λ

C2
1

(E.28)

b) C1 is the average value of the distribution P (r, λ).

c) C2 is the variance of the distribution P (r, λ).

d) C3 measures the asymmetry (skewness) of P (r, λ): positive and negative values of C3 corre-
spond to distributions with the tail at high or low values of r, respectively.

The a-dimensional asymmetry coefficient is γ1 = C3/C
3/2
2 .

e) C4 measures the degree of flatness (kurtosis) of P (r, λ): positive and negative values of
C4 correspond to distributions more peaked of more flattened than a gaussian distribution,
respectively;
The a-dimensional flatness coefficient is γ2 = C4/C

2
2 .

If P (r, λ) is gaussian, the cumulants Cn with n > 2 are zero. The extent of C3, C4 ... thus
measures the deviation of P (r, λ) with respect to the normal behaviour. In particular, C3 is zero
for distributions symmetrical with respect to the average value C1.

Cumulants of the real distribution

The cumulants C∗n of the real distribution ρ(r) are different from the cumulants Cn of the effective
distribution.
Different procedures for connecting the cumulants of the real and of the effective distributions
(C∗n and Cn, respectively) have been proposed, limited to the first cumulant [Freund et al., 1989,
Bunker, 1983] or extended to higher order cumulants [Fornasini et al., 2001]. A relatively good
approximation for n ≥ 1 is obtained by the recursion formula [Vaccari, 2006, Vaccari et al., 2007]

C∗n ∼ Cn + 2Cn+1

(
1/C1 + 1/λ

)
for n = 1, 2, 3, . . . (E.29)

The difference between the first cumulants (n = 1) of the real and effective distributions is sig-
nificant and Eq. (4.11) is included in most data analysis packages. For higher order cumulants
(n ≥ 2), the difference is smaller and is frequently neglected.

The lowest-order EXAFS cumulants C∗n are related to the initial and central moments of the real
distribution by

C∗1 = 〈r〉 (E.30)

C∗2 = µ2 =
〈
(r − 〈r〉)2

〉
(E.31)

C∗3 = µ3 =
〈
(r − 〈r〉)3

〉
(E.32)

C∗4 = µ4 − 3µ2
2 =

〈
(r − 〈r〉)4

〉
− 3µ2

2 (E.33)



174 P. Fornasini - X-ray Absorption Spectroscopy

can thus be evaluated as averages over a canonical ensemble.
The meanings of the leading cumulants of the real distribution are:

a) C∗0 = 0 for the real distribution, which is normalised to one.

b) C∗1 = 〈r〉 is the average value of the distribution ρ(r).

c) C∗2 = µ∗2 =
〈
(r − 〈r〉)2

〉
is the variance of the distribution ρ(r).

d) C∗3 = µ∗3 =
〈
(r − 〈r〉)3

〉
measures the asymmetry (skewness) of ρ(r): positive and negative

values of C∗3 correspond to distributions with the tail at high or low values of r, respectively.
The a-dimensional asymmetry coefficient is γ1 = C∗3/(C

∗
2 )3/2.

e) C∗4 = µ∗4 − 3(µ∗2)2 measures the degree of flatness (kurtosis) of the distribution: positive
and negative values of C∗4 correspond to distributions more peaked of more flattened than a
gaussian distribution, respectively.
The a-dimensional flatness coefficient is γ2 = C∗4/(C

∗
2 )2.

If ρ(r) is gaussian, the cumulants C∗n with n > 2 are zero. The extent of C∗3 , C∗4 ... thus measures
the deviation of the distribution with respect to the normal behaviour. In particular, C∗3 is zero
for distributions symmetrical with respect to the average value C∗1 .

An experimental EXAFS spectrum, which is included between two values kmin and kmax, samples
only part of the full characteristic function. This limitation prevents from reconstructing the
effective distribution by direct Fourier transform of the EXAFS signal. In some cases, the cumulant
method allows one to extrapolate the EXAFS signal to k = 0 with enough accuracy to reconstruct
the distance distribution.
If the cumulant series is fast convergent, a limited number of cumulants C∗n is sufficient to recon-
struct the characteristic function Ψ(2k) and hence the distribution ρ(r) with good accuracy.

E.3.4 Alternative definitions

A - Real distribution of distances

〈exp(2ikr)〉 = exp

[ ∞∑
n=0

(2ik)n

n!
C∗n

]
(E.34)

Taking into account the relation between cumulants and central and initial moments and If only
longitudinal displacements are considered (∆u⊥ = 0):

C∗1 = 〈r〉 = R

C∗2 = 〈(r − 〈r〉)2〉 = 〈r2〉 − 〈r〉2 = 〈∆u2
‖〉

C∗3 = 〈(r − 〈r〉)3〉 = 〈r3〉 − 3〈r2〉〈r〉+ 2〈r〉3 = 〈∆u3
‖〉

(E.35)

B - Effective distribution of distances〈
exp[−2r/λ(k)]

r2
exp(2ikr)

〉
= exp

[ ∞∑
n=0

(2ik)n

n!
Cn

]
(E.36)

C1 ' C∗1 − (2C∗2/C
∗
1 ) (1 + C∗1/λ)

C2 ' C∗2
C3 ' C∗3

(E.37)

C - Distribution of deviations from average distance R = 〈r〉

〈
exp(2ik∆u‖)

〉
= exp

[ ∞∑
n=0

(2ik)n

n!
σ(n)

]
(E.38)
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If only longitudinal displacements are considered (∆u⊥ = 0),

σ(1) = 〈∆u‖〉 = 0 = C∗1 −R

σ(2) = 〈∆u2
‖〉 − 〈∆u‖〉

2 = 〈∆u2
‖〉 = C∗2

σ(3) = 〈∆u3
‖〉 − 3〈∆u2

‖〉〈∆u‖〉+ 2〈∆u‖〉3 = 〈∆u3
‖〉 = C∗3

(E.39)

D - Distribution of deviations from rest distance R0

〈exp(2ik∆α)〉 = exp

[ ∞∑
n=0

(2ik)n

n!
Mn

]
(E.40)

where ∆α = ∆u0
‖ [Fujikawa and Miyanaga, 1993].

If only longitudinal displacements are considered (∆u⊥ = 0), one can verify that

M1 = 〈∆α〉 = C∗1 −R0

M2 = 〈∆2
α〉 − 〈∆α〉2 = C∗2

M3 = 〈∆3
α〉 − 3〈∆2

α〉〈∆α〉+ 2〈∆α〉3 = C∗3

(E.41)

E.4 Distributions of two variables

References: [Ventsel, 1973, Gnedenko, 1976]

E.4.1 Theorems on moments of one-dimensional distributions

Let us consider any two continuous random variables X and Y with multivariate distribution f(x, y
of any form. One can demonstrate ([Ventsel, 1973], § 10.2):

1. The expectation value of the sum X + Y is always the sum of the expectation values:

m[X + Y ] =

∫∫ +∞

−∞
(x+ y) f(x, y) dx dy

=

∫∫ +∞

−∞
x f(x, y) dx dy +

∫∫ +∞

−∞
y f(x, y) dx dy

= m[X] + m[Y ] = mx +my . (E.42)

2. The expectation value of the difference Y − X is always the difference of the expectation
values:

m[Y −X] = m[Y ]−m[X] = my −mx . (E.43)

3. The variance D of the distribution of the sum X + Y is

D[X + Y ]

=

∫∫ +∞

−∞
[(x+ y)− (mx +my)]

2
f(x, y) dx dy

=

∫∫ +∞

−∞
[(x−mx) + (y −my)]

2
f(x, y) dx dy

=

∫∫ +∞

−∞

[
(x−mx)2 + 2(x−mx)(y −my) + (y −my)2

]
f(x, y) dx dy

= D[X] + 2σ[XY ] + D[Y ] = Dx + 2σxy +Dy , (E.44)
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where
σxy = 〈(x−mx) (y −my)〉 (E.45)

is the covariance of X and Y . If X and Y are statistically independent, σxy = 0.

4. The variance D of the distribution of the difference Y −X is

D[Y −X] = D[Y ]− 2σ[XY ] + D[X] = Dy − 2σxy +Dx , (E.46)

where again
σxy = 〈(x−mx) (y −my)〉 (E.47)

is the covariance of X and Y , and if X and Y are statistically independent, σxy = 0.

5. The third moment (equal to the third cumulant) of the difference Y −X is

µ3[Y −X]

=

∫∫ +∞

−∞
[(y − x)− (my −mx)]

3
f(x, y) dx dy

=

∫∫ +∞

−∞
[(y −my)− (x−mx)]

3
f(x, y) dx dy

= µ3[Y ]− 3m[(y −my)2(x−mx)] + 3m[(y −my)(x−mx)2] + µ3[X] (E.48)

If X and Y are statistically independent, the expectation values of the products are equal to
the products of the expectation values so that the second and third terms are zero and

µ3[Y −X] = µ3[Y ]− µ3[X] . (E.49)

The rendom variables of EXAFS (xa and xb or ua and ub) are not independent.

E.4.2 Composition of normal distributions

The normal distribution is stable: the composition of two normal distributions is again a normal
distribution.

Let us consider two normally distributed vriables X and Y :

fx(x) =
1

σx
√

2π
exp

[
− (x−mx)2

2σ2
x

]
; fy(y) =

1

σy
√

2π
exp

[
− (y −my)2

2σ2
y

]
. (E.50)

Distribution of the sum X + Y

Let Z = X+Y . One can show ([Ventsel, 1973], § 12.6) that Z is distributed according to a normal
distribution fz(z). The mean of the distribution fz(z) always is

mz = mx +my . (E.51)

For X and Y independent, the variance of the distribution fz(z) is

σ2
z = σ2

x + σ2
y . (E.52)

If X and Y are not independent, the variance of the distribution fz(z) is

σ2
z = σ2

x + σ2
y + 2σxy , (E.53)

where
σxy = 〈(x−mx) (y −my)〉 (E.54)

is the covariance of X and Y .



Appendix F

Vibrational dynamics

This Appendix contains a basic approach to vibrational dynamics.
A short review of the adiabatic approximation is given in Section F.1.
In Section F.2, the potential energy of a two-atomic system is expanded in powers of the atomic
displacements: the harmonic approximation is introduced and the effects of anharmonicity are
discussed.
In Section F.3, the power expansion is generalised to a many-atomic system (Born-von Karman
expansion). Attention is focused on the harmonic approximation. The dynamical matrix and its
solution in terms of eigenfrequency and eigenvectors are introduced.
The vibrational dynamics of crystals in the harmonic approximation is considered in Section F.4,
where the translational symmetry is exploited to introduce the Fourier transformed dynamical
matrix.
In Section F.5 the quantisation of normal modes is introduced.
In Section F.6 the mean square displacements and the mean square relative displacements are
expressed as a function of eigenfrequencies and eigenvectors of the dynamical matrix.
Section F.7 [not finished...] is dedicated to the anharmonic crystal.

F.1 Born-Oppenheimer adiabatic approximation

The stationary Schrödinger equation for a many-atomic system, such as a molecule or a crystal, is

H Ψtot = EΨtot , (F.1)

where the total wavefunction Ψtot depends on the coordinates of the n electrons and of the N
nuclei:

Ψtot = Ψtot(~r1, . . . , ~rn ; ~R1 . . . , ~RN ) = Ψtot(r,R) . (F.2)

In the last term of (F.2), r and R are short-hand notations for the full sets of electrons and nuclei
coordinates, respectively.

Ions and valence electrons

In many cases, instead of considering separately all the electrons, it is convenient to distinguish
the ions from the valence electrons:

a) ions = nuclei + core electrons (say electrons which don’t contribute to the inter-atomic
interaction),

b) valence electrons = external electrons, which contribute to the inter-atomic interaction.

In such cases, R and N refer to ions, and r and n refer to valence electrons in (F.2).

Note: The distribution of valence electrons is peculiar of the different crystal types. It can be
experimentally detected by refined analyses of high-accuracy X-ray diffraction spectra.
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F.1.1 Total Hamiltonian

The total Hamiltonian (neglecting relativistic terms) is

H = Tn + Vnn + Te + Vne + Vee . (F.3)

The total kinetic energy operator for nuclei (or for ions) is

Tn = −
∑
A

h̄2

2MA
∇2
A . (F.4)

The total kinetic energy operator for electrons (or for valence electrons) is

Te = −
∑
i

h̄2

2m
∇2
i . (F.5)

The total potential energy of the interaction between nuclei (or between ions) is

Vnn =
1

2

∑
A

∑
B 6=A

ZAZB

|~RA − ~RB |
, (F.6)

where ZA and ZB are the nuclear (or ionic) charges.
The total potential energy for the interaction between electrons (or between valence electrons) is

Vee =
1

2

∑
i

∑
j 6=i

e2

|~ri − ~rj |
. (F.7)

The total potential energy of electrostatic interaction between electrons and nuclei (or between
valence electrons and ions) is

Vne = −
∑
iA

eZA

|~ri − ~RA|
. (F.8)

F.1.2 Separation of nuclear and electronic motion

In principle, the time-independent Schrödinger equation for the full system contains all the infor-
mation on its stationary states. Its solution is however a prohibitive task.
The Born-Oppenheimer approximation consists in de-coupling the Schrödinger equation for elec-
trons from the Schrödinger equation for nuclei.
The physical basis of such an approximation is the fact that the mass of nuclei is from about
2× 103 to about 105 times larger than the electron mass. As a consequence, if the linear momenta
of electrons and nuclei are of the same order of magnitude, the motion of electrons is much faster
than the motion of nuclei, so that electrons can be considered as instantaneously following the
nuclei.

Factorisation of the total wave-function

The Born-Oppenheimer approximation assumes that the total wave-function can be factorised:

Ψtot = Ψe(r ;R) Φn(R) , (F.9)

where

a) the nuclear wave-function Φn(R) only depends on the nuclear coordinates R,

b) the electron wave-function Ψe(r ;R) depends directly on the electron coordinates r and para-
metrically on the nuclear coordinates R.

The electron wave-function can be a Slater determinant of spin-orbitals and is normalised within
the electrons configuration space, ∫

Ψ∗e Ψe dτ = 1 . (F.10)
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F.1.3 Electronic Schrödinger equation

Let us consider the nuclei at fixed positions R. The Schrödinger equation for the electrons is

He Ψe(r ;R) = [Te + Vne + Vee + Vnn] Ψe(r ;R) = Ee Ψe(r ;R) . (F.11)

Note that the Hamiltonian He in (F.11) includes the Vnn(R) potential energy term of the nuclei.
The eigenvalues of the Hamiltonian He

Ee =

∫
Ψ∗eHe Ψe dτ = Ee(R) (F.12)

parametrically depend on the set R of nuclear coordinates.

Adiabatic approximation

The meaning of the adiabatic approximation can be better grasped by considering a dynamical
situation, where the positive ions are in motion with respect to their equilibrium positions. Let
us suppose that, for a given set R of ion coordinates, the electrons system is in a given eigenstate
Ψe(r ;R) of the Hamiltonian He(R). When the values of the ion coordinates are modified, the
Hamiltonian He(R) and the wave-function Ψe(r ;R) are in turn modified. Within the adiabatic
approximation, the electron wavefunction Ψe(r ;R) evolves remaining at any time an eigenstate of
He(R).
The adiabatic approximation is valid if the nuclear motion is sufficiently slow with respect to the
relaxation time of the electron cloud.
When the adiabatic approximation is not valid, the electron wave-function is a linear combination
of eigenstates of the evolving Hamiltonian He(R).

Note: The term “adiabatic” is generally used in Thermodynamics to describe processes without
exchange of heat between system and environment. The quantum mechanical adiabaticity
considered here is closer to the thermodynamical concept of a quasi-static process, and has no
relation with heat exchange.

F.1.4 Schrödinger equation for ions

Let us consider again the total Schrödinger equation

H Ψtot = EΨtot , (F.13)

where now the Hamiltonian includes also the nuclear kinetic term, H = He + Tn, and the total
wave-function is Ψtot = Ψe(r ;R)Φn(R).
The Schrödinger equation can thus be rewritten as

He (ΨeΦn) + Tn (ΨeΦn) = E (ΨeΦn) , (F.14)

say, taking into account the results obtained for the electronic Schrödinger equation,

Ee(R) Ψe Φn + Tn (ΨeΦn) = EΨe Φn . (F.15)

In the first term, the electron wave-function Ψe can already be integrated over the electron con-
figuration space.
Let us consider in more detail the Tn term:

Tn (ΨeΦn) = −
∑

A

h̄2

2MA

(
~∇A · ~∇A

)
(ΨeΦn)

= −
∑
A

h̄2

2MA

[(
∇2
AΨe

)
Φn + 2

(
~∇AΨe

)(
~∇AΦn

)
+ Ψe

(
∇2
AΦn

)]
. (F.16)
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A further approximation consists in considering negligible the first and second terms within the
square parentheses, where the nuclear kinetic operators act on the electron wavefunctions. In
other terms, the interaction between electrons and atomic vibrations (electron-phonon interaction)
is neglected. Within this approximation, we only consider the third term, where the electronic
function Ψe is factorised.
When integrating the Schrödinger equation over the electrons configuration space, the electron
wave-function gives rise to the normalization value 1, while the nuclear wavefunction is unaffected.
We finally obtain the Schrödinger equation for the nuclei

[Tn + Ee(R)] Φn = E Φn (F.17)

or
[Tn + V (R)] Φn = E Φn , (F.18)

where V (R) = Ee(R).

F.1.5 The potential energy surface (PES)

The function V (R) = Ee(R) appearing in (F.17) and (F.18) is the ground-state energy of a system
of interacting electrons moving in the field of fixed (“clamped”) nuclei.
It is referred to as clamped ions energy or potential energy surface (PES) or Born-Oppenheimer
energy surface. It represents the potential energy for the nuclear dynamics.

a) The equilibrium ground-state of the system (at T = 0) corresponds to the absolute minimum
of the Born-Oppenheimer energy surface with respect to the set of nuclear coordinates.
Partial minima correspond to metastable equilibrium ground states.

b) The finite temperature dynamical properties of ions (atomic vibrations) depend on the be-
haviour of the Born-Oppenheimer energy surface in the vicinity of the equilibrium con-
figuration, say on its derivatives of second and higher order evaluated at the equilibrium
configuration.

PES calculation

The PES can in principle be obtained by solving the electronic Schrödinger equation (F.11) for
a convenient number of ionic configurations R. An exact solution of the Schrödinger equation is
out of question but for the simplest systems (harmonic oscillator, single particle in a central field,
squared-walled box). Numerical solutions are unmanageable even for relatively small molecules,
in view of the large number of variables involved to get a sufficiently accurate picture of the
wave-function in the configuration space.
The problem is generally solved according to the following guidelines.

1. The problem is simplified by taking into account the symmetry of the system. Symmetry
considerations don’t introduce approximations.

2. The approximation is made of treating each electron as moving independently in an average
field from the others. The ground state energy of the system is obtained self-consistently by
variational methods. Typical examples are based on the Hartree-Foch-Slater method or the
more recent Density Functional Theory (DFT).

F.1.6 Harmonic approximation and anharmonicity

Within the adiabatic approximation, the Schrödinger equation for nuclei is written as

[Tn + V (R)] Φn = E Φn , (F.19)

where V (R) = Ee(R) is the potential energy surface (PES) defined in the configuration space of
the nuclear coordinates R = {R1, R2, . . . , RN}.
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As we have seen, the static equilibrium properties of the system correspond to the minimum of the
PES. The vibrational properties depend on the local curvature of the PES near the equilibirum
position.
The study of the local curvature of the PES can be made at different levels of approximation.
The harmonic approximation is sufficient to account for the low-temperature behaviour of the
vibrational specific heat or for the temperature effect on diffraction patterns. The inclusion of
anharmonicity is necessary to account for thermal expansion and for the finite value of thermal
conductivity; anharmonicity gives also a contribution the the high-temperature specific heat.

F.2 Two-atomic system (one degree of freedom)

Two-atomic molecules are the simplest cases of vibrational dynamics which can be encountered
in physical systems. They are characterised by one degree of freedom, corresponding to the inter-
atomic distance r. As usual, the dynamics of the relative motion is described in terms of the
reduced mass µ = m1m2/(m1 +m2).
The treatment of the one-dimensional oscillator presented in this § F.2, besides being directly
applicable to two-atomic molecules, allows us to introduce in a relatively simple case some concepts
which are further developed in subsequent sections dedicated to the vibrational dynamics of crystals
(e.g. classical and quantum approaches, harmonic approximation and anarmonicity).

F.2.1 Power expansion of the potential energy

Let V (r) be the potential energy of a system of two atoms or of two ions, r being their instantaneous
distance. If only small variations of distance r with respect to the position r0 of the potential energy
minimum are considered, the potential energy is convenient expanded in a Taylor series:

V (r) = V (r0) +

(
dV

dr

)
0

(r − r0) +
1

2!

(
d2V

dr2

)
0

(r − r0)2 +
1

3!

(
d3V

dr3

)
0

(r − r0)3 + · · · (F.20)

- The first term V (r0) is the static binding energy.

- The second term is zero, because the first derivative of the potential energy is zero at the
minimum position.

- The harmonic approximation consists in considering the expansion only up to the second-
order term.

- Higher order terms are called anharmonic terms.

For our purposes, it is further convenient to set V (r0) = 0 and rewrite (F.20) in terms of the ionic
displacements u = r − r0, introducing the force constants ki:

V (u) =
1

2
k0 u

2 + k3 u
3 + k4 u

4 + · · · (F.21)

Here k0 is the harmonic (second order) force constant, ki(i > 2) are the anharmonic force constants.
In general, the third-order force constant is negative, k3 < 0, corresponding to a repulsive branch
of the potential energy steeper than the attractive branch.

F.2.2 The harmonic approximation

Although no realistic potential energy is truly harmonic, the harmonic approximation V (u) =
k0u

2/2 is very important, for a number of reasons.

- The Schrödinger equation of the harmonic oscillator can be exactly solved, leading to the
quantisation of energy levels En = (n+ 1/2)h̄ω0, where ω0 =

√
k0/µ.

- The harmonic approximation allows a good reproduction of the main features of several
important thermal properties of matter, such as specific heats.
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- The harmonic approximation is a good starting point for treating anharmonic effects (quasi-
harmonic approximation, perturbative approaches).

In the following, we consider the classical and quantum description of a single harmonic oscillator
and then of a statistical ensemble of harmonic oscillators.

Classical harmonic oscillator

The dynamical state of a classical harmonic oscillator corresponding to a two-atomic system is
characterised by the time dependence of the displacement u

u(t) = A cos(ω0t) + φ , where ω0 =
√
k0/µ . (F.22)

The frequency ω0 is independent of the amplitude A and the total energy is

E =
1

2
µu̇2 +

1

2
µω2

0x
2 =

1

2
µω2

0A
2 . (F.23)

One can easily derive the two average values

〈u〉 = 0 , 〈u2〉 = E/µω2
0 . (F.24)

Since 〈u〉 = 0, the average distance is equal to the rest distance:

〈r〉 = r0 + 〈u〉 = r0 . (F.25)

Quantum harmonic oscillator

The dynamical state of a quantum harmonic oscillator is characterised by the eigenvector of the
Hamiltonian H0, which is contemporarily eigenvector of the number operator N = a†a

|n〉 (F.26)

where n is the number of energy quanta h̄ω0. The total energy of the state |n〉 is

En = (1/2 + n) h̄ω0 . (F.27)

One can show (see § F.8.1) that, as for the classical approximation,

〈u〉 = 0 , 〈u2〉 = En/µω
2
0 . (F.28)

Note: It is worth remembering that the true dissociation energy D of a two-atomic molecule is
determined by the joint effect of the static binding energy and of the zero-point energy:

D = −V (r0)− h̄ω0/2 = |V (r0)| − h̄ω0/2 . (F.29)

Classical statistics of the harmonic oscillator

In the classical approximation, the average energy of an harmonic oscillator is connected to the
temperature by the equipartition theorem:

〈E〉 = kBT = 1/β . (F.30)

The average displacement from the equilibrium position is

〈u〉 =

∫
u exp[−βV (u)] du∫
exp[−βV (u)] du

= 0 , (F.31)

where V (u) = k0u
2/2. The integral is zero because u is an odd function and V (u) is an even

function. Since 〈u〉 = 0, independent of temperature, the harmonic oscillator doesn’t exhibit
thermal expansion.
The mean square displacement is

〈u2〉 =

∫
u2 exp[−βV (u)] du∫

exp[−βV (u)] du
=
kBT

k0
=

E

k0
, (F.32)

proportional to the temperature (and to the energy) and inversely proportional to the force constant
k0.
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Quantum statistics of the harmonic oscillator

The hamiltonian operator is

H0 = T + V (u) = p2/2µ+ k0u
2/2 (F.33)

and its eigenvalues are
En = (1/2 + n) h̄ω0 (n = 0 . . .∞) (F.34)

The average energy is

〈H0〉 =
1

Z0
Tr(H0 e

−βH0) = h̄ω0

[
1

2
+

1

eβh̄ω0 − 1

]
, (F.35)

where β = 1/kBT and Z0 is the partition function

Z0 = Tr (e−βH0) =
e−βh̄ω0/2

1− e−βh̄ω0
. (F.36)

The probability density for the displacement u has a gaussian shape centred on 〈u〉 = 0:

ρ(u) = (1/σ
√

2π) e−u
2/2σ2

. (F.37)

The moments of the distribution can be calculated as

〈uk〉 =
1

Z0
Tr (uke−βH0) =

1

Z0

∞∑
n=0

〈n|uk|n〉 e−βEn . (F.38)

Making use of (F.38) one finds that there is no thermal expansion,

〈u〉 = 0 , (F.39)

and that the mean square displacement is

σ2 = 〈u2〉 =
h̄

µω0

[
1

2
+

1

eβh̄ω0 − 1

]
=
〈E〉
k0

. (F.40)

For T → ∞, σ2 tends to the classical limit kBT/k0. For T → 0, instead, the quantum behaviour
is at variance with the classical behaviour:

σ2 → σ2
0 = h̄/2

√
k0µ = h̄/2µω0 (F.41)

F.2.3 Anharmonicity effects

Approximate classical approach

An introductory idea of the main effects of anharmonicity can be gained by considering a single
oscillator with a weak third-order term in the potential energy

V (u) =
1

2
k0 u

2 + k3 u
3 , (F.42)

where k3 < 0, and looking for an approximate classical solution of the equation of motion.

Note: A purely cubic potential (F.42) would lead to system instability for large enough oscillations;
a suitable fourth-order term is necessary to guarantee stability. We consider here only the cubic
term for simplicity, with the basic assumption that oscillations are sufficiently weak to allow
stability.

The classical acceleration is

ü =
F

µ
= −k0

µ
u− 3k3

µ
u2 = −ω2

0 u− s ω2
0 u

2 (F.43)
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where s = 3k3/k0. The relevance of the cubic term of the potential energy increases when the
amplitude A of the vibrations increases. The assumed weakness of the cubic term corresponds to
the condition sA� 1.
The simplest correction to the harmonic oscillator solution is of the form

u(t) = u0 +A [cos(ωt) + η cos(2ωt)] , (F.44)

where the oscillation centre u0 and the frequency ω are a-priori unknown and the anharmonicity
is supposed to introduce a weak oscillating perturbation (η � 1) with frequency 2ω. By inserting
(F.44) into (F.43), taking into account that η � 1 and sA � 1 and considering only the leading
terms terms, one gets two important results:

1. The centre of oscillation u0 depends on the amplitude A according to

u0 = −3k3

2k0
A2 > 0 (F.45)

When the amplitude A increases, the average distance increases (k3 is negative), say there is
thermal expansion:

〈r〉 = r0 + 〈u〉 = r0 + u0 = r0 −
3k3

2k0
A2 (F.46)

2. The frequency of oscillations decreases when the amplitude A increases, according to

ω2 = ω2
0(1− s2A2) (F.47)

By substituting A2 from (F.45) in (F.47) one finds

ω2 = ω2
0

(
1 +

6k3

k0
u0

)
(F.48)

To first approximation, thus, the decrease of frequency is proportional to the thermal expansion
u0. In general, the relation between thermal expansion and frequency is not linear. For some
applications, one can consider the oscillator as if it where harmonic, the only effect of anharmonicity
being the variation of frequency (quasi-harmonic approximation).

Approximate quantum approach

The quantum approach is based on considering the anharmonic terms of the potential energy as a
perturbation with respect to the harmonic oscillator. Let us consider only the cubic term in the
potential energy ([Cohen-Tannoudji et al., 1973], Complement Axi).
The harmonic hamiltonian H0 is modified by adding the cubic perturbation W = σh̄ω0X̂

3.

H = H0 +W =
1

2
h̄ω0 (X̂2 + P̂ 2) + σh̄ω2

0X̂
3 . (F.49)

The energy values E0
n of the harmonic oscillator are modified according to the perturbation theory

as

En = E0
n + 〈n|W |n〉 +

∑
n 6=n′

|〈n′|W |n〉|2

En − En′
+ . . . (F.50)

Taking into account that X̂ = (a† + a)/
√

2 and that na† = a†(N + 1), one finds

X̂3 =
1

23/2

[
(a†)3 + a3 + 3(N − 1)a† + 3Na

]
, (F.51)

corresponding to the creation or destruction of three or of one quantum of energy.
The only non-zero matrix elements of Ŵ are thus those connecting states that differ for one or
three quanta:

n′ = n+ 1, n′ = n− 1, n′ = n+ 3, n′ = n− 3 . (F.52)
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The first-order term in the perturbation expansion is zero.
From the second-order term one finds

En =

(
n+

1

2

)
h̄ω0 −

15

4
σ2(n+ 1/2)2h̄ω0 −

7

16
σ2h̄ω0 + . . . (F.53)

The energy levels are reduced with respect to the unperturbed harmonic case.
The difference between the energies of adjacent levels is no more constant

En − En−1 = h̄ω0

[
1− 15

2
σ2 n

]
(F.54)

but depends on the value n.

At last, one can show that the eigenstates of the anharmonic oscillator are different from the
eigenstates |n〉 of the harmonic oscillator, being contaminated by the states |n + 1〉, |n − 1〉, |n +
3〉, |n− 3〉.
Basic results:

1. The energy levels are down-shifted with respect to the harmonic levels, the extent of the shift
increasing with the quantum number n. This fact corresponds to a reduction of the frequency
of the fundamental absorption or emission line, and to the appearance of less intense satellite
lines.

2. The eigenfunctions of the level En are now a linear combination of the harmonic oscillator
eigenfunctions |n〉, |n+ 1〉, |n− 1〉, |n+ 3〉, |n− 3〉.
As a consequence, the u and p operators can have non-zero matrix elements for eigenstates
of the Hamiltonian, which are superpositions of harmonic eigenstates with different quantum
numbers.
In particular, one can show that 〈u〉 6= 0.

Classical statistics of the anharmonic oscillator

For a canonical ensemble of classical anharmonic oscillators, the average values of 〈u〉 and 〈u2〉 are
calculated trhough (F.31) and (F.32), respectively, where now the potential energy V (u) is given
by (F.21). One finds that tthe average displacement is

〈u〉 = − 3k3

k2
0

kBT −
3k3

k4
0

(
45k2

3

k0
− 32k4

)
(kBT )2 + ... (F.55)

To first order, 〈u〉 is positive (k3 < 0): there is a positive thermal expansion which linearly depends
on temperature. The second-order correction is proportional to T 2, and is generally quite small.
The mean square displacement is

〈u2〉 =
kBT

k0

[
1 +

3

k2
0

(
12k2

3

k0
− 4k4

)
(kBT ) + ...

]
(F.56)

To first order, one recovers the same expression as for the harmonic oscillator,

〈u2〉 = 〈A2〉/2 = kBT/k0 . (F.57)

The frequency is again ω0 = (k0/µ)1/2.
The second order correction is proportional to T 2. Neglecting the contribution of k4, the second
order correction gives a softening of the force constant with respect to the harmonic value k0,
corresponding to a progressive reduction of the frequency when T increases:

ω2
0 → ω2 = ω2

0

[
1−

(
36k2

3

k3
0

)
kBT

]
(F.58)

Two important consequences of the third-order term in the potential energy expansion are thus
the following:

1. There is thermal expansion, positive if k3 < 0. Within the classical approximation, to first
order the thermal expansion is proportional to T .

2. The frequency of oscillations decreases when the temperature increases.
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Quantum statistics of the anharmonic oscillator

The hamiltonian operator for the anharmonic oscillator can be expressed as the sum

H = H0 +H1 , (F.59)

where

H0 = p2/2µ+ k0u
2/2 is the (unperturbed) harmonic Hamiltonian

H1 = k3u
3 + k4u

4 + . . . is the contribution of anharmonicity.

The statistical quantum approach to anharmonicity is based on considering the anharmonic part
H1 as a perturbation with respect to the unperturbed harmonic Hamiltonian H0.
The factor exp(−βH), which substitutes exp(−βH0) in (F.38), obeys the integral equation

e−βH ' e−βH0

[
1−

∫ β

0

e−(β′−β)H0 H1 e
−β′H dβ′

]
. (F.60)

To first order, imposing H = H0 in the last factor within the integral,

e−βH ' e−βH0

[
1−

∫ β

0

e−(β′−β)H0 H1 e
−β′H0 dβ′

]
. (F.61)

To first order, one finds that the thermal expansion expansion is

〈u〉 ' −3k3

k0

h̄

µω0

[
1

2
+

1

exp(h̄ω0/kBT )− 1

]
= −3k3

k0
σ2 . (F.62)

where σ2 is the variance of the harmonic oscillator.
As for the variance 〈u2〉, to first order one finds again the variance of the harmonic oscillator.

Important remark

In both the classical approximation and the quantum treatment one finds that the inclusion of
anharmonic terms

a) produces only slight variations of the energy and of the variance of the distribution; as a
consequence, the harmonic approximation is very effective in predicting the specific heats
and the mean square atomic displacements;

b) is necessary to account for thermal expansion.

A note on nomenclature

It is convenient, in view of the applications to many-atomic systems, to distinguish the three
different inter-atomic distances introduced above.

1. The rest distance r0 corresponds to the minimum of the static potential energy V (r);it is a
constant, independent of temperature.
The expression “rest distance” is conventional; it refers to a classical distance for T = 0.

2. The instantaneous distance r(t) is variable with time.

3. The average distance is 〈r(t)〉 = r0 + 〈u(t)〉.
- In the harmonic approximation, 〈u〉 = 0 and 〈r(t)〉 = r0, the average distance coincides

with the rest distance.

- As an effect of anharmonicity, the average distance is different from the rest distance
and depends on temperature.
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F.3 Many-atomic systems

Let us now consider a system composed of N atoms (a molecule, a nano-cluster, a crystal, a
non-crystalline solid). The potential energy surface V [{~r(m)}] is defined for the 3N -dimensional
configuration space (m = 1, 2, . . . ,N labels the single atoms).

Atoms oscillate around the average positions {~R(m)}, and the instantaneous positions are

~r(m) = ~R(m) + ~u(m) . (F.63)

F.3.1 Expansion of the potential energy

If the atomic displacements ~u(m) are small, the potential energy V [{~r(m)}] can be expanded as a
Taylor series about the average configuration (Born-von Karman expansion):

V [{~r(m)}] = V0 + V1 + V2 + V3 + · · · (F.64)

The zero-order term
V0 = V

[
{~R(m)}

]
(F.65)

is the potential energy corresponding to the average configuration {~R(m)}.
The first-order term is

V1 =
∑
αm

Φ(αm)uα(m) , (F.66)

where α = x, y, z labels the cartesian coordinates and the quantities

Φ(αm) =

[
∂V

∂uα(m)

]
{~R}

(F.67)

are the first-order coupling parameters. Here and below, the derivatives are calculated for the
average configuration {~R(m)}.
The second-order term is

V2 =
1

2

∑
αm
α′m′

Φ
( αm
α′m′

)
uα(m)uα′(m

′) (F.68)

where the quantities

Φ
( αm
α′m′

)
=

(
∂2V

∂uα(m) ∂uα′(m′)

)
{~R}

(F.69)

are the second-order coupling parameters or force constants.
As a consequence of the invariance of second partial derivatives with respect to the order of
derivation, the force constants are invariant with respect to the exchange of the indices:

Φ
( αm
α′m′

)
= Φ

(
α′m′

αm

)
(F.70)

The third-order term is

V3 =
1

3!

∑
αm
α′m′
α′′m′′

Φ

 α m
α′m′

α′′m′′

 uα(m)uα′(m
′)uα′′(m

′′) , (F.71)

where

Φ

 α m
α′m′

α′′m′′

 =

(
∂3V

∂uα(m) ∂uα′(m′) ∂uα′′(m′′)

)
{~R}

(F.72)

are the third-order coupling parameters.

And so on with higher order terms.
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F.3.2 Harmonic approximation

The harmonic approximation consists in truncating the Taylor expansion (F.64) at the 2nd-order
term V2 (quadratic in the atomic displacements).

In the harmonic approximation, the average atomic positions {~R(m)}, around which atoms vibrate,

are equal to rest positions {~R0(m)}, which correspond to the minimum of the potential energy
surface. As a consequence, the first order term (F.66) is zero, V1 = 0.

For an anharmonic system, the average positions ~R(m) are different from the rest positions

{~R0(m)} and are a priori unknown.

F.3.3 Dynamical equations and force constants

The vibrational contribution to the potential energy is V2 given by (F.68) for a generic many-atomic
system.

Hamiltonian function

The kinetic energy is

T =
1

2

∑
αm

Mm u̇
2
α(m) , (F.73)

where Mm is the mass of atom m, so that the Hamiltonian is

H = V0 +
1

2

∑
αm

Mm u̇
2
α(m) +

1

2

∑
αm
α′m′

Φ
( αm
α′m′

)
uα(m)uα′(m

′) . (F.74)

Forces

The force acting on atom m in direction α is

Fα(m) = − ∂V2

∂uα(m)
= −

∑
α′ m′

Φ
( αm
α′m′

)
uα′(m

′) . (F.75)

Equation (F.75) expresses the force acting on atom m as the sum of the contributions from the
interactions with all the other atoms.

Note: The expression (F.68) contains both quadratic terms , such as

1

2

∑
αm
αm

Φ
(αm
αm

)
u2
α(m) ,

1

2

∑
α′m′
α′m′

Φ

(
α′m′

α′m′

)
u2
α′(m

′)

and cross-product terms, such as

1

2

∑
αm
α′m′

Φ
( αm
α′m′

)
uα(m)uα′(m

′) ,
1

2

∑
α′m′
αm

Φ

(
α′m′

αm

)
uα′(m

′)uα(m) .

Because of the invariance (F.70) with respect to the exchange of indices, the cross terms are
two by two equal, so that the factors 1/2 disappear in (F.75).

Meaning of force constants

To grasp the physical meaning of the force constants, let us choose a central atom m at rest
and assume that all other atoms are at rest, with the exception of only one atom (m′), which is
displaced by uα′(m

′) along the α′ direction. From (F.75),

Fα(m) = −Φ
( αm
α′m′

)
uα′(m

′) . (F.76)
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Each force constant Φ
(
αm
α′m′

)
is thus the opposite of the force exerted on atom m in direction α

when the atom m′ is displaced a unit distance in direction α′, all other atoms remaining fixed.
According to (F.75), the force acting on a given atom depends on the contributions of all the
atomic displacements, including the displacement of the atom m itself.
If only atom m is displaced along the direction α′,

Fα(m) = −Φ
(αm
α′m

)
uα′(m) . (F.77)

Note: In principle, force constants connect each atom m with all other atoms m′ of the crystal.
Actyally, in real crystals only the force constants connecting neighbouring atoms are relevant.

Constraint of force constants

Let us consider a rigid movement of the system, where all atoms undergo the same displacement
~u of components uα′ . The force on the generic atom m induced by the equal displacements of all
the atoms has to be zero:

0 = Fα(m) = −
∑
α′m′

Φ
( αm
α′m′

)
uα′(m

′) = −
∑
α′

uα′
∑
m′

Φ
( αm
α′m′

)
(F.78)

Since the displacement uα′ is arbitrary, (F.78) gives∑
m′

Φ
( αm
α′m′

)
= 0 . (F.79)

From this equality, we can obtain, for the force constants where m′ = m:

Φ
(αm
α′m

)
= −

∑
m′ 6=m

Φ
( αm
α′m′

)
. (F.80)

Physically, (F.80) means that displacing the atom m by a unit distance in a given direction, all
other atoms staying at rest, has the same effect as displacing all the other atoms by an opposite
unit distance, the atom m staying at rest.

Dynamical equations

Solving the Hamilton equations one obtains that the classical dynamical equation for the α-th
component of the displacement of atom m is

Mm üα(m) = −
∑
α′m′

Φ
( αm
α′m′

)
uα′(m

′) (F.81)

There are 3N such dynamical equations, three for each atom m. Globally, they form a system of
3nN coupled equations corresponding to 3N coupled harmonic oscillators.

Solutions of the dynamical equations

The system of equations (F.81) describes the behaviour of 3N coupled harmonic oscillators. It is
thus reasonable to seek solutions of the oscillatory type

uα(m, t) =
1√
Mm

Re
[
wα(m) e−iωt

]
(F.82)

The amplitudes wα(m) are complex quantities, to account for the phase relationships between the
displacements of different atoms, and depend both on the dynamical equation and on the initial
conditions.
In (F.82), the mass Mm appears explicitly, for symmetry reasons that will be made clear below.
By substituting the values uα(m, t) of (F.82) into the dynamical equation (F.81) one gets

−
√
Mm ω

2 wα(m) e−iωt = −
∑
α′m′

Φ
( α m
α′ m′

) 1√
Mm′

wα′(m
′) e−iωt. (F.83)
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F.3.4 Dynamical matrix and normal modes

By introducing the mass-adjusted force constants

D0
( α m
α′ m′

)
=

Φ
(
α m
α′ m′

)
√
MmMm′

, (F.84)

equations (F.83) can be rewritten as

ω2 wα(m) −
∑
α′m′

D0
( α m
α′ m′

)
wα′(m

′) = 0 (F.85)

Equation (F.85) is representative of a system of 3N coupled equations.

By considering

- the terms wα(m) as elements of a 3N -size column vector U ,

- the terms D0
(
α m
α′ m′

)
as elements of a 3N × 3N matrix, the (mass-adjusted) real-space dy-

namical matrix D0,

the system of dynamical equations (F.85) can be synthesised as a matrix equation:

ω2 U = D0 U (F.86)

or more explicitly

ω2


· · ·

wα(m)
· · ·
· · ·

 =


· · · · · · · · · · · ·
· · · · · · D0

(
α m
α′m′

)
· · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·




· · ·
· · ·

wα′(m
′)

· · ·

 (F.87)

Eigenfrequencies and eigenvectors

The solution of (F.87) is a typical eigenvalue problem. By imposing that the secular determinant
is zero, det[D0 − ω2I] = 0, one obtains an algebraic equation, whose solution gives in principle

→ 3N eigenfrequencies ωj (j = 1, 2, . . . , 3N ), corresponding to 3N independent normal modes.
The number of normal modes is three times the number of atoms in the system.

The invariance of the force constants with respect to the exchange of indices (F.70) ensures that the
real-space dynamical matrix D0 is symmetric, and the eigenvalues are real. The physical meaning
requires that the eigenvalues ω2 are positive quantities too.

For each eigenfrequency ωj , say for each normal mode, (F.87) gives an eigenvector Uj with 3N
components describing the relative amplitudes and the phase relationships of the atomic motions
corresponding to the normal mode.

In total there are thus

→ 3N eigenvectors Uj , each one with 3N components.

By this treatment, the coupled motions of N atoms are described in terms of 3N independent
harmonic oscillators.

The practical solution of (F.87) is difficult for a large number N of atoms, e.g. for large molecules
or nanoclusters. It represents an impossible task for a crystal: a dramatic improvement is however
obtained if one takes into account the translational symmetry of the crystal, as we see in the next
section F.4.
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F.4 Harmonic dynamics in crystals

References: [Leibfried and Ludwig, 1961, Maradudin et al., 1971, Willis and Pryor, 1975,
Brüesch, 1982].

For crystals, in order to exploit the translational symmetry, it is convenient to factorize the total
number N of atoms as N = Nn, where N is the number of primitive cells, n is the number of
atoms per primitive cell.
The positions of atoms are labelled by two indices, ` for the primitive cells and κ for the positions
inside the cell:

~R(m) = ~R(`κ) = ~R((`) + ~R(κ) (F.88)

1. The positions of the primitive cells are given by the Bravais lattice vectors

~R(`) = `1~a1 + `2~a2 + `3~a3 (F.89)

where `1, `2, `3 are integer numbers. The index ` labels the primitive cells: ` = 1, . . . , N .

2. The positions of the atoms inside a primitive cell are given by

~R(κ) = x1~a1 + x2~a2 + x3~a3 (F.90)

where x1, x2, x3 are fractional coordinates. The index κ (the Greek letter kappa) is unneces-
sary for Bravais crystals, say for crystals with one atom per primitive cell (such as Cu, Ag,
Au or the noble gas solids).

Note: When studying the effects of atomic vibrations (“lattice dynamics”), one considers only
primitive cells, not conventional cells.

Crystal potential energy

The potential energy of the crystal V [{~r(`κ)}] is defined in a 3nN -dimensional configuration space.

Atoms oscillate around the average positions {~R(`κ)}, and the instantaneous positions are

~r(`κ) = ~R(`κ) + ~u(`κ) . (F.91)

We again rely on the potential energy expansion (F.64).

The second-order term (the only one relevant in the harmonic approximation) is expressed as

V2 =
1

2

∑
α`κ
α′`′κ′

Φ

(
α ` κ

α′`′κ′

)
uα(`κ)uα′(`

′κ′) (F.92)

where the second-order coupling parameters are

Φ

(
α ` κ

α′`′κ′

)
=

(
∂2V

∂uα(`κ) ∂uα′(`′κ′)

)
{~R}

. (F.93)

F.4.1 Constraints on force constants

As for any system, the force constants are invariant with respect to the exchange of the indices:

Φ

(
α ` κ

α′`′κ′

)
= Φ

(
α′`′κ′

α ` κ

)
. (F.94)

The constraint due to the invariance of the potential energy with respect to translations of the
whole system (F.79) becomes ∑

`′κ′

Φ

(
α ` κ

α′`′κ′

)
= 0 . (F.95)

For the consequences of the invariance with respect to rotations see [Maradudin et al., 1971].

In crystals, further constraints are present, depending
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a) on general lattice invariance properties, such as invariance under lattice translation;

b) on the symmetry properties of a given crystal.

We introduce here the constraint due to translational invariance.
For an infinite crystal, lattice translations shift primitive cells: `→ `+ T , `′ = `′ + T and atomic
positions are modified accordingly

(`, κ) −→ (`+ T, κ) (`′, κ′) −→ (`′ + T, κ′) (F.96)

The force constants must be invariant with respect to lattice translations:

Φ

(
α, `+ T, κ

α′, `′ + T, κ′

)
= Φ

(
α ` κ

α′ `′ κ′

)
(F.97)

In particular, for T = −` and for T = −`′, respectively, (F.97) becomes

Φ

(
α ` κ

α′ `′ κ′

)
= Φ

(
α, 0, κ

α′, `′ − `, κ′

)
= Φ

(
α, `− `′, κ
α′, 0, κ′

)
(F.98)

The force constants only depend on the differences `− `′, say on the relative positions of primitive
cells, not on their absolute positions.
For finite crystals, the same conclusions hold, provided suitable boundary conditions are imposed
(see below).
By substituting L = `− `′, (F.79) is more conveniently written as:

Φ

(
α ` κ

α′ `′ κ′

)
= Φ

(
α, 0, κ

α′, −L, κ′

)
= Φ

(
α, L, κ

α′, 0, κ′

)
. (F.99)

F.4.2 Periodic boundary conditions

To take advantage of the translational symmetry properties for a finite crystal, it is convenient to
introduce the periodic boundary conditions.
Let us consider a crystal of parallelepiped shape. The lengths of the three edges of the parallelepiped
are N1a1, N2a2, N3a3, respectively. There are N = N1N2N3 primitive cells.
The periodic boundary conditions on the atomic displacements impose that

~u(~r +Nα~aα) = ~u(~r) (α = 1, 2, 3) . (F.100)

According to (F.100), the displacement of an atom sitting on one face of the parallelepiped is equal
to the displacement of the corresponding atom on the opposite face.

Irreducible representations and boundary conditions

In group theory one cans show that for a one-dimensional linear chain there are N one-dimensional
irreducible representation of the group of translations, whose simplest basis functions are

eiqx , q =
2π

a

m

N
(−N/2 < m ≤ N/2) , (F.101)

where the values q are confined within the first Brillouin Zone.
A translation T = sa is represented, in the basis eiqx (say for a given q) by the complex number(

eisa
)q

= eiqsa = eiqT . (F.102)

For a three-dimensional crystal with periodic boundary conditions, one can build up N = N1N2N3

one-dimensional irreducible representations whose basis functions are

ei~q·~r , qi = bi
mi

Ni
(−Ni/2 < mi ≤ Ni/2) , (F.103)
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where bi is the magnitude of the ~bi primitive vector of reciprocal space. A translation ~T is repre-
sented, in the basis ei~q·~r (say for a given ~q) by the complex number

ei~q·
~T . (F.104)

The vectors ~q form a grid of equally spaced points within the first Brillouin Zone of the reciprocal
space. They label the N irreducible representations of the translation group. When the crystal size
increases, the number N = N1N2N3 of primitive cells in the real space increases, and the density
of ~q points in reciprocal space increases accordingly.
The basis functions (F.103) are plane waves, of wavelength λ = 2π/q.

F.4.3 Spatial periodicity of eigenvectors

For an irreducible representation characterised by the wavevector ~q, the effect of a translation ~T
on an eigenvector wα(`κ) is the multiplication by (F.104).

By identifying ~T = ~R(`), one can thus express each eigenvector, in the ~q representation, as a
product

wα(`κ) = wα(κ) ei~q·
~R(`). (F.105)

Note: For the monatomic one-dimensional linear chain, (F.105) reduces to w(`) = w exp[iqR(`)].

The atomic displacement (F.82) becomes

uα(`k, t) =
1√
Mκ

Re
[
wα(κ) ei~q·

~R(`) e−iωt
]
. (F.106)

F.4.4 The Fourier-transformed dynamical matrix

By substituting (F.105) into (F.85) for a given value of ~q, one gets

ω2 wα(κ) ei~q·
~R(`) −

∑
α′`′κ′

D0

(
α ` κ

α′ `′ κ′

)
ei~q·

~R(`′) wα′(κ
′) = 0 . (F.107)

Moving ei~q·
~R(`) to the right of (F.107), substituting L = ` − `′ as in (F.99) and summing over L

one obtains

ω2 wα(κ) −
∑
α′κ′

{∑
L

D0

(
α L κ

α′ 0 κ′

)
e−i~q·

~R(L)

}
wα′(κ

′) = 0 . (F.108)

For each one of the N wavevectors ~q, one can define a quantity

D~q

( ακ
α′κ′

)
=
∑
L

D0

(
α L κ

α′ 0 κ′

)
e−i~q·

~R(L) (F.109)

corresponding to the term included in curly brackets in (F.108).
For each one of the N wavevectors ~q there is thus a system of 3n× 3n coupled equations

ω2 wα(κ) =
∑
κ′α′

D~q

( ακ
α′κ′

)
wα′(κ

′). (F.110)

By considering

- the terms wα(κ) as elements of a 3n-sized column vector U~q,

- the terms D~q

(
ακ
α′κ′

)
as elements of a 3n × 3n matrix, the Fourier transformed dynamical

matrix D~q (frequently simply referred to as dynamical matrix),
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the system of equations (F.110) can be synthesised as a matrix equation:

ω2 U~q = D~q U~q (F.111)

or more explicitly

ω2


· · ·

wα(κ)
· · ·
· · ·

 =


· · · · · · · · · · · ·
· · · · · · D~q

(
α κ
α′κ′

)
· · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·




· · ·
· · ·

wα′(κ
′)

· · ·

 (F.112)

Note: In principle, to evaluate the Fourier transformed dynamical matrix for a given ~q one should
evaluate the sum (F.109) over all values of L. Actually, due to the short range of most
interactions, in general only a few terms of the sum are significant.

Eigenfrequencies and eigenvectors of the FT dynamical matrix

The solution of (F.112) is again an eigenvalue problem.

A) By imposing that the secular determinant be zero, one obtains an algebraic equation, whose
solution gives

3n eigenvalues or eigenfrequencies ω(~q, s) which are labeled by the wavevector ~q and by
the branch index s = 1, 2, . . . , 3n, which correspond to 3n independent normal modes
of wavevector ~q.

The Fourier-transformed dynamical matrix D~q has complex elements. One can show that it
is Hermitian

D~q

(
α′κ′

ακ

)
= D∗~q

( ακ
α′κ′

)
, (F.113)

so that its eigenvalues are real. The stability of the lattice further requires that the eigenvalues
ω2 are positive quantities too.
The functions ωs(~q) can be considered as the 3n branches of a multivalued function ω(~q).
The relation ωs(~q) is the dispersion relation of branch s.

B) For each one of the 3n eigenfrequency ω(~qs), say for each normal mode, (F.112) gives an
eigenvector U~qs with 3n components that describe the relative amplitudes and the phase
relationships of the atomic motions corresponding to the normal mode.
In total, for a given wavevector ~q, there are thus

3n eigenvectors U~qs, each one with 3n components uα(κ|~qs).

F.4.5 Atomic displacements and normal coordinates

The displacement of each atom (`κ) is the sum of the contributions of all the 3nN independent
normal modes. The contribution of a normal mode (~qs) to the displacement of atom (`κ) is

uα(`κ, t | ~qs) =
1√
Mκ

Re
[
wα(κ|~qs) ei~q·~R(`) e−iω(~qs)t

]
. (F.114)

This contribution is determined from the knowledge of the dynamical matrix only to within a
factor; actually, the eigenvector components wα(κ|~qs) depend on the energy stored in the normal
mode.
It is convenient to factorize the quantities wα(κ|~qs), separating the information on the magnitude
of the relative motion of atoms inside the primitive cell from the contributions due to the total
energy (which depends on temperature).
To this effect, (F.114) is rewritten as

uα(`κ, t | ~qs) =
1
√
mκ

Re

[
eα(κ|~qs) Q(~qs, t)√

N
ei~q·

~R(`)

]
(F.115)

where:



F. Vibrational dynamics 195

a) The factor eα(κ|~q, s) is a component of the normalized eigenvector e(~q, s), which describes
the displacement patterns of the n atoms inside each primitive cell.

b) The quantity

Q(~qs, t) = Q0(~qs) exp[−iω(~qs)t] (F.116)

is the normal coordinate of mode (~qs); the amplitude Q0 is a complex quantity, which depends
on the initial conditions and on the energy stored in the normal mode (~qs). One can show
that Q(−~qs, t) = Q∗(~qs, t).

c) The factor 1/
√
N can be justified as follows. The number of primitive cells N is proportional

to the number of normal modes 3nN . The energy stored in each normal mode, proportional
to the square of the normal coordinate (see below) is independent of N . The energy of the
normal mode is distributed over all the atoms, whose number is proportional to N .

The total displacement of atom (`κ) can be calculated by summing up the contributions of all
normal modes within the first B.Z.:

uα(`κ, t) =
1√
N mκ

∑
~qs

[
eα(κ|~qs) ei~q·~R(`)Q(~qs, t)

]
(F.117)

Any pair of values ~q and −~q in the first B.Z. correspond to two plane waves traveling in opposite
direction and sharing the same frequency.

The displacement uα(`κ, t) is a real quantity, since Q(−~qs, t) = Q∗(~qs, t).

Properties of eigenvectors and eigenfrequencies

One can demonstrate [Maradudin et al., 1971] that the eigenvectors satisfy the orthonormality and
closure relations ∑

κα

e∗α(κ|~qs) eα(κ|~qs′) = δss′ , (F.118)

∑
s

e∗α(κ′|~qs) eα′(κ|~qs) = δαα′ δκκ′ . (F.119)

The Fourier transformed dynamical matrix satisfy

D−~q

( ακ
α′κ′

)
= D∗~q

( ακ
α′κ′

)
, (F.120)

and as a consequence

ω2
j (−~q) = ω2(~q) . (F.121)

Alternative eigenvectors

For the solution of particular dynamical problems (e.g. long wavelength modes) it is convenient to
introduce an alternative dynamical matrix

C~q

( ακ
α′κ′

)
= ei~q·

~R(κ)D~q

( ακ
α′κ′

)
e−i~q·

~R(κ) . (F.122)

The two matrices share the same eigenfrequencies.

The eigenvectors of the new matrix C are connected to the eigenvectors of the matrix D by

w̃α(κ|~qs) = eα(κ|~qs) e−i~q·~R(κ) . (F.123)
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F.4.6 Acoustic and optic branches

One can show that, for ~q = 0, three of the 3n dispersion relations ωs(~q) go to zero, ω(0) = 0
(acoustic branches); the frequencies of the remaining 3n−3 branches don’t vanish (optic branches).

Actually, for ~q = 0, the Fourier transformed dynamical matrix (F.109) becomes

D~q=0

( ακ
α′κ′

)
=
∑
L

D0

(
α L κ

α′ 0 κ′

)
=
∑
L

Φ
(
α L κ
α′ 0 κ′

)
√
mκmκ′

. (F.124)

The coupled equations (F.110) can thus be rewritten, for the normalised eigenvectors eα(κ|0s) and
for ~q = 0, as

ω2(0s)
eα(κ|0s)
√
mκ

=
∑
α′Lκ′

Φ

(
αLκ

α′0κ′

)
1

mκ

eα′(κ
′|0s)

√
mκ′

. (F.125)

Let us consider two cases:

1. The ratio eα′(κ
′|0s)/√mκ′ is independent of κ′.

The ratio can be factorized with respect to the sum, so that the constraint (F.95) imposes
ω = 0. This condition leads to three acoustic branches, one for each value of α = x, y, z.

2. The ratio eα′(κ
′|0s)/√mκ′ depends on κ′.

In this case it cannot be factorized and (F.95) cannot be applied.

We can thus distinguish:

a) In primitive crystals there is n = 1 atom per cell and 3n = 3 branches. The three branches
are acoustic.

b) In non-primitive crystals there are n > 1 atoms per cell and a total of 3n > 3 branches.
The condition that the ratio eα′(κ

′|0s)/√mκ′ is independent of κ′ is fulfilled only if all atoms
in the cell move in phase, say for three acoustic branches α = x, y, z.
For the remaining 3n− 3 branches (acoustic branches) ω2(0s) 6= 0.

F.4.7 On the 1st Brillouin Zone

Periodic boundary conditions

The periodic boundary conditions on the atomic displacements impose that

~u(~r +Nα~aα) = ~u(~r) (α = 1, 2, 3) . (F.126)

We want now to show that (F.126) is automatically fulfilled by the choice of wavevectors ~q of
(F.103), say qα = bαmα/Nα. To this purpose let us express the contributions to the two displace-
ments of (F.126) due to a given normal mode of wavevector ~q according to (F.114):

uα(~R, t) =
1√
M

Re
{
wα(κ|~q) exp

[
i~q · ~R

]
exp(−iωt)

}
(F.127)

uα(~R+Nα~aα, t) =
1√
M

Re
{
wα(κ|~q) exp

[
i~q · (~R+Nα~aα)

]
exp(−iωt)

}
(F.128)

Since ~q is a vector of the reciprocal space, such that

~q = (m1/N1)~b1 + (m2/N2)~b2 + (m3/N3)~b3 , (F.129)

and recalling the relation between primitive vectors of real and reciprocal space:

~ai ·~bj = 2π δij (F.130)

one can easily show that (F.128) is equal, to (F.127).
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Eigenfrequencies and eigenvectors

One can demonstrate that the frequencies and eigenvectors corresponding to any wavevector ~q
are unmodified if a reciprocal lattice vector ~G is added to ~q. Actually, the Fourier transformed
dynamical matrices corresponding to ~q + ~G and to ~q are identical

D~q+~G

( α κ
α′κ′

)
=
∑
L

D0

(
α L κ

α′ 0 κ′

)
exp

{
i
[
~q + ~G

]
· ~R(L)

}
= D~q

( α κ
α′κ′

)
(F.131)

because exp(i ~G · ~R) = 1.

1st Brillouin Zone and crystal symmetry

The 1st B.Z. is invariant with respect to all the symmetry operations of the point group of the
crystal.
If we apply all the point symmetry operations different from identity to a vector ~q belonging to
the 1st B.Z., we obtain distinct vectors still belonging to the 1st B.Z. (This wouldn’t be the case
for other choices of primitive cells of the reciprocal space).

If h is the number of symmetry elements of the point group of the crystal, the 1st B.Z. can be
divided into h irreducible elements of volume Vb/h.
The application of any symmetry operation (different from the identity) to any vector ~q belonging
to a given irreducible element leads to a vector outside the given irreducible element.
The frequencies of normal modes have the point symmetry of the crystal. As a consequence, an
irreducible element of teh 1st B.Z. contains all the information on the dispersion relations.

F.5 Energy of normal modes. Phonons

As is evident in (F.117), from the classical point of view each normal mode (~qs) is a travelling wave
of wavevector ~q, whose frequency is obtained by diagonalising the Fourier transformed dynamical
matrix D~q.

F.5.1 Energy and normal coordinates

The kinetic energy is

T =
1

2

∑
α`κ

mκ u̇
2
α(`κ) (F.132)

The harmonic part of the potential vibrational energy is

V2 =
1

2

∑
α`κ
α′`′κ′

Φ2

(
α ` κ

α′`′κ′

)
uα(`κ)uα′(`

′κ′) (F.133)

We want now to express the kinetic and potential energies in terms of the normal coordinates,
substituting the expression (F.117) of atomic displacement in (F.132) and (F.133).

Useful relation

As a preliminary step, it is convenient to introduce the relation∑
`

ei~q·
~R(`) =

{
N for ~q = 0 or ~q = ~G ,
0 otherwise .

(F.134)

Relation (F.223) is a consequence of the lattice periodicity; actually, the sum on the left is un-

changed if an arbitrary ~R(`′) is added to ~R(`) in the sum, so that:∑
`

ei~q·
~R(`) =

∑
`

ei~q·[
~R(`)+~R(`′)] =

[∑
`

ei~q·
~R(`)

]
ei~q·

~R(`′) . (F.135)
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Eq. (F.224) requires that ei~q·
~R(`′) = 1, which is possible only if condition (F.223) is fulfilled.

As a consequence of (F.223),∑
`

ei(~q+~q
′)·~R(`) =

{
N for ~q + ~q ′ = 0 or ~q + ~q ′ = ~G ,
0 otherwise .

(F.136)

It can be convenient to rewrite (F.223) as [Maradudin, 1974]

∆(~q) =
1

N

∑
`

ei~q·
~R(`) =

{
1 for ~q = 0 or ~q = ~G
0 otherwise .

(F.137)

and (F.225) as

∆(~q + ~q ′) =
1

N

∑
`

ei(~q+~q
′)·~R(`) =

{
1 for ~q + ~q ′ = 0 or ~q + ~q ′ = ~G
0 otherwise .

(F.138)

Kinetic energy

Substituting the atomic displacements (F.117), since only the normal coordinates depend on time,
the kinetic energy becomes

T =
1

2

1

N

∑
ακ

∑
~qs

∑
~q ′s

eα(κ|~qs) eα(κ|~q ′s′) Q̇(~qs) Q̇(~q ′s′)
∑
`

ei(~q+~q
′)·~R(`) . (F.139)

Taking into account that according to (F.225) the last sum is N if ~q = −~q ′, otherwise it is zero,
and considering the orthonormality relation of eigenvectors, one gets

T =
1

2

∑
~qs

Q̇(~qs) Q̇(−~qs) =
1

2

∑
~qs

Q̇(~qs) Q̇∗(~qs) . (F.140)

Potential energy

Let’s start from the harmonic potential energy (F.92) expressed as a function of atomic displace-
ments

V2 =
1

2

∑
α`κ
α′`′κ′

Φ2

(
α ` κ

α′`′κ′

)
uα(`κ)uα′(`

′κ′) (F.141)

Substituting the atomic displacements with their expressions (F.117) in terms of the normal coor-
dinates, the potential energy becomes

V2 =
1

2N

∑
~qs
~q ′s′

Q(~qs) Q(~q ′s′)
∑
α`κ
α′`′κ′

Φ2

(
α ` κ
α′`′κ′

)
√
mκmκ′

ei~q·
~R(`) ei~q

′·~R(`′) eα(κ|~qs) eα′(κ
′|~q,′ s′) (F.142)

Lets first eliminate the sums over ` and `′. To that purpose, multipliying (F.228) by

1 = ei~q
′·[~R(`)−~R(`)]

and recalling the definition of Fourier transformed dynamical matrix,

∑
`

ei(~q+~q
′)·~R(`)

∑
`′

ei~q
′·[~R(`′)−~R(`)]

Φ2

(
α ` κ
α′`′κ′

)
√
mκmκ′

= N ∆(~q + ~q ′)D~q ′

( ακ
α′κ′

)
so that (F.228) becomes

V2 =
1

2

∑
~qs
~q ′s′

Q(~qs) Q(~q ′s′)
∑
ακ
α′κ′

D~q ′

( ακ
α′κ′

)
∆(~q + ~q ′) eα(κ|~qs) eα′(κ

′|~q ′s′) (F.143)
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The values ~q and ~q ′ are not independent; they are confined within the first Brillouion zone and
must fulfill (F.138), so that necessarily ~q ′ = −~q, so the sum over ~q ′ can be eliminated.
One can further eliminate the sum over α′ and κ′ by making use of (F.110) and introducing the
mode frequency ω(~qs):

V2 =
1

2

∑
~qs
~s′

Q(~qs) Q(−~qs′)
∑
ακ

ω2(~qs) eα(κ|~qs) eα(κ| − ~qs′) (F.144)

At last, by substituting

eα(κ| − ~qs) = e∗α(κ|~qs) , Q(−~qs) = Q∗(~qs)

and considering the orthonormality relation of eigenvectors (F.118)∑
κα

e∗α(κ|~qs) eα(κ|~qs′) = δss′

one obtains the final expression

V2 =
1

2

∑
~qs

ω2(~qs)Q(~qs)Q∗(~qs) . (F.145)

A classical normal mode (~qs) can be considered as an independent harmonic oscillator of frequency
ω(~qs), whose amplitude and time dependence are described by the normal coordinate Q(~qs, t) =
Q0(~qs) eiω(~qs)t. The dimensions of the normal coordinate are [Q] = [M1/2L].

F.5.2 Classical Lagrangian and Hamiltonian

The Lagrange function of the system of vibrating atoms is thus

L =
1

2

∑
~qs

[
Q̇(~qs)Q̇∗(~qs)− ω2(~qs)Q(~qs)Q∗(~qs)

]
, (F.146)

It is interesting to compare each term of the Lagrange function (F.146) with the Lagrange function
of a harmonic oscillator: L = mv2/2−mω2x2/2.
Each classical normal mode (~qs) can be considered as an independent harmonic oscillator of fre-
quency ω(~qs), whose amplitude and time dependence are described by the normal coordinate
Q(~qs, t) = Q0(~qs) eiω(~qs)t.
The normal coordinates correspond to generalised coordinates of the Lagrangian formalism.

Introducing the conjugate momenta P (~qs) = ∂L/∂Q̇(~qs) = Q̇∗(~qs), one obtains the Hamiltonian

H =
1

2

∑
~qs

[
P (~qs)P ∗(~qs) + ω2(~qs)Q(~qs)Q∗(~qs)

]
. (F.147)

The classical energy stored in the normal mode (~qs) is

E(~qs) =
1

2
ω2(~qs)Q2

0(~qs) . (F.148)

F.5.3 Quantization of normal modes

To quantise the normal modes, the classical normal coordinates and momenta are replaced by
operators, and the same procedure is followed as for the one-dimensional harmonic oscillator.
By introducing the operators (annihilation and creation)

a(~qs) =
1√

2h̄ω(~qs)
[ω(~qs)Q(~qs) + iP ∗(~qs)] (F.149)

a†(~qs) =
1√

2h̄ω(~qs)
[ω(~qs)Q∗(~qs)− iP (~qs)] (F.150)
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the Hamiltonian can be rewritten as

H =
∑
~qs

[
a†(~qs) a(~qs) +

1

2

]
h̄ω(~qs) =

[
n(~qs) +

1

2

]
h̄ω(~qs) . (F.151)

This leads to the quantization of the energy of normal modes:

E(~qs) =

[
n(~qs) +

1

2

]
h̄ω(~qs) . (F.152)

F.5.4 Statistical thermodynamics of normal modes

A crystal can exchange heat with its surroundings. Let us consider here a non-metallic crystal,
where thermal energy is only stored by lattice vibrations (in metals, electrons can store energy too).
In principle, within the harmonic approximation, normal modes are distinguishable independent
oscillators. To account for the possibility of exchanging energy, we have to consider normal modes
as not completely independent, but weakly interacting objects.
A total energy level of the crystal can be expressed as

Ej = V0 +
∑
~qs

[
n(~qs) +

1

2

]
h̄ω(~qs) (F.153)

The partition function of the whole crystal is the sum over all total energy levels

Z =

∞∑
j=1

exp [−βEj ] , (F.154)

where β = 1/kBT . By substituting (F.153) into (F.154), after some simple calculations, one finds

Z = exp [−βV0]
∏
~qs

exp [−βh̄ω(~qs)/2]

1− exp [−βh̄ω(~qs)]
. (F.155)

The internal energy of the crystal is

U = 〈E〉 = kBT
2

(
∂

∂T
lnZ

)
= V0 +

∑
~qs

1

2
h̄ω(~qs) +

∑
~qs

h̄ω(~qs)

exp[h̄ω(~qs)/kBT ]− 1
. (F.156)

Three contributions are singled out in (F.156):

1. the static cohesive energy V0

2. the vibrational zero-point energy

3. the vibrational thermal energy (dependent on temperature)

The average vibrational energy stored in normal mode (~qs) at temperature T is thus

〈E(~qs|T )〉 =

{
1

2
+

1

exp[h̄ω(~qs)/kBT ]− 1

}
h̄ω(~qs) (F.157)

Equivalent alternative expressions are:

〈E(~qs|T )〉 =
h̄ω(~qs)

2
coth

h̄ω(~qs)

2kBT
=

h̄ω(~qs)

2

1 + z

1− z
, (F.158)

where z = exp[−h̄ω(~qs)/kBT ].
At high temperatures, the average energy tends to the classical value 〈E〉 → kBT , independent of
frequency. At low temperatures, the larger is the frequency, the larger is the average energy.



F. Vibrational dynamics 201

F.5.5 Phonons

The quanta of energy of the normal modes are called phonons, by analogy with photons, the quanta
of the electromagnetic field. The number n(~qs) appearing in (F.152) is the number of phonons of
mode (~qs).
The quantum state of a normal mode is characterised by the number n(~qs) of phonons, say by
its energy content. The vibrational quantum state of a crystal is characterised by the numbers of
phonons for each normal mode. A phonon is characterized by a frequency ω, a wavevector ~q and
an eigenvector w(~qs).
The number of phonons is not constant. The weak exchange of energy between normal modes
and with the surrounding environment, which guarantees the thermodynamic equilibrium, corre-
sponds to the creation and annihilation of phonons. Phonons are created or annihilated when the
temperature of a crystal increases or decreases, respectively.

The average energy of a normal mode can be expressed as

〈E(~qs)〉 =

[
〈n(~qs)〉+

1

2

]
h̄ω(~qs) . (F.159)

By comparing with (F.157), the average value of n(~qs) is given by

〈n(~qs)〉 =
1

exp[h̄ω(~qs)/kBT ]− 1
. (F.160)

This expression corresponds to the Bose-Einstein distribution of a set of indistinguishable objects
whose total number is variable. Actually phonons of the same frequency are indistinguishable and
can be created and destroyed.
A number of phenomena, such as thermal conductivity, can be interpreted by considering phonons
as quasi-particles. One often speaks of “phonon gas”.

Temperature dependence of normal coordinates

As a consequence of (F.148) and (F.157), the amplitude of the normal coordinate of mode (~qs)
depends on temperature according to

〈Q2
0(~qs|T )〉 =

{
1

2
+

1

exp[h̄ω(~qs)/kBT ]− 1

}
2h̄

ω(~qs)
. (F.161)

Equivalent expression:

〈Q2
0(~qs|T )〉 =

h̄

ω(~q, s)
coth

h̄ω(~q, s)

2kBT
. (F.162)

F.6 Mean square displacements

F.6.1 Atomic displacement factors

Let us now consider the mean square displacement (MSD) of atom κ along a given direction α
induced by mode (~qs):

MSDα = 〈u2
α(κ|~qs)〉 . (F.163)

By taking into account the expression (F.115) of the atomic instantaneous displacement and the
time average of the normal coordinates (F.158), one gets

〈u2
α(κ|~qs)〉 =

1

NMκ
[eα(κ|~qs)]2 〈Q2

0(~qs|T )〉

=
2

NMκ
[eα(κ|~qs)]2 〈E(~qs|T )〉

ω2(~qs)
. (F.164)

The MSD along the direction α depends on the orientation of the normalized eigenvector e and
on temperature. The dependence on temperature of the MSD induced by two sets of N normal
modes of different frequencies is shown in Fig. F.1 (right).
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Figure F.1: Left: average energy as a function of temperature for two normal modes of 3 and 7
THz frequencies, respectively; the straight dotted line is the classical approximation. Right: MSD
induced on an ion of mass 70 µ along a given direction by N modes of 3 and 7 THz frequencies,
respectively.

Debye-Waller factor of diffraction

The MSD along a given direction ŝ is responsible for the Debye-Waller factor reducing the intensity
of the Bragg peaks due to the family of planes perpendicular to ŝ. The Debye-Waller factor can
be expressed in different forms:

exp
[
−k2〈u2

s(κ)〉/2
]

= exp[−Ms(κ)] = exp
[
−Bs(κ) sin2 θ/λ2

]
, (F.165)

where k = 4π sin θ/λ is the magnitude of scattering vector.

F.6.2 Mean square relative displacements

At last, let us consider the mean square relative displacement (MSRD) of atom κ′ relative to atom
κ along a given direction α induced by a normal mode (~qs). One can easily see that

〈[uα(κ′|~qs)− uα(κ|~qs)]2〉 =
1

N
〈Q2

0(~qs|T )〉

∣∣∣∣∣eα(κ′|~qs)ei~q·~R√
m(κ′)

− eα(κ|~qs)√
m(κ)

∣∣∣∣∣
2

(F.166)

The total MSRD of an atomic pair is the sum of the contribution of all normal modes. The MSRD
gives rise to the damping of the EXAFS signal.

F.7 The anharmonic crystal

Our goal is to find an expression of the total Hamiltonian in terms of normal coordinates, in order
to make possible the transition to the quantum treatment.
We take advantage of the work already done for the harmonic case.

F.7.1 The potential energy

Let’s again consider the expansion of the potential energy V [{~r(`κ)}] about the average configu-
ration:

V [{~r(`κ)}] = V0 + V1 + V2 + V3 + · · · (F.167)

If anharmonicity is not negligible, we need to consider also the terms of order different from the
second one. We follow here the treatment of [Leibfried and Ludwig, 1961], who inserts the har-
monic atomic displacements (F.117) in the expressions of the anharmonic coupling constants (force
constants), and of [Barron and Klein, 1974]. We use the eigenvectors e of [Maradudin et al., 1971]
instead of the eigenvectors w of [Leibfried and Ludwig, 1961].
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First-order term

The first-order term is
V1 =

∑
α`κ

Φ1(α`κ)uα(`κ) , (F.168)

with

Φ1(α`κ) =

[
∂V

∂uα(`κ)

]
{~R}

(F.169)

The derivatives are always calculated for the average configuration {~R(`κ)}.
By substituting the harmonic atomic displacements (F.117) in (F.168), taking into account that
the invariance with respect to lattice translations imposes that

Φ1(α`κ) = Φ1(α0κ) (F.170)

and making use of the sum rule (F.223), one obtains the first-order term as a function of normal
coordinates:

V1 =
√
N
∑
s

Q(0s)
∑
ακ

Φ1(α0κ)
√
mκ

eα(κ|0s) . (F.171)

Note that in the harmonic approximation Φ1 = 0.

Second-order term

The second-order term

V2 =
1

2

∑
α`κ
α′`′κ′

Φ2

(
α ` κ

α′`′κ′

)
uα(`κ)uα′(`

′κ′)

has already been treated in § F.5 in the harmonic approximation, and was shown to be expressed
as a function of normal coordinates as

V2 =
1

2

∑
~qs

ω2(~qs)Q(~qs)Q∗(~qs) .

Third-order term

The third-order term is

V3 =
1

3!

∑
α`κ
α′`′κ′
α′′`′′κ′′

Φ3

 α ` κ
α′ `′κ′

α′′`′′κ′′

 uα(`κ)uα′(`
′κ′)uα′′(`

′κ′′) , (F.172)

where

Φ3

 α ` κ
α′ `′κ′

α′′`′′κ′′

 =

(
∂3V

∂uα(`κ) ∂uα′(`′κ′) ∂uα′′(`′′κ′′)

)
{~R}

(F.173)

are the third-order coupling parameters.

By substituting the harmonic atomic displacements (F.117) in (F.172) one finds an expression in
terms of the normal coordinates:

V3 =
1

3!N3/2

∑
~q~q ′~q ′′
ss′s′′

Q(~qs)Q(~q ′s′)Q(~q ′′s′′) (F.174)

×
∑
α`κ
α′`′κ′
α′′`′′κ′′

Φ3√
mκmκ′mκ′′

ei[~q·
~R(`)+~q ′·~R(`′)+~q ′′·~R(`′′)] eα(κ|~qs)eα′(κ′|~q ′s′)eα′′(κ′′|~q ′′s′′) .
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To eliminate the sums over atomic coordinates we proceed in a similar way as we did for the
second-order term in § F.5. See § 39 of [Born and Huang, 1998].
We exploit the identities

~R(`′) = ~R(`′)− ~R(`) + ~R(`) = ~R(`′ − `) + ~R(`) , (F.175)

~R(`′′) = ~R(`′′)− ~R(`) + ~R(`) = ~R(`′′ − `) + ~R~(`) (F.176)

and the invariance of the coupling parameters with respect to lattice translations

Φ3

 α ` κ
α′ `′ κ′

α′′ `′′ κ′′

 = Φ3

 α 0 κ
α′ `′ − ` κ′

α′′ `′′ − ` κ′′

 (F.177)

We further simplify the summation indices `′ − ` → `′ and `′′ − ` → `′′, so that (F.174) can be
rewritten as

V3 =
1

3!N1/2

∑
~q~q ′~q ′′
ss′s′′

Q(~qs)Q(~q ′s′)Q(~q ′′s′′) ∆(~q + ~q ′ + ~q ′′) (F.178)

×


∑
ακ

α′`′κ′
α′′`′′κ′′

Φ3√
mκmκ′mκ′′

ei[~q
′·~R(`′)+~q ′′·~R(`′′)] eα(κ|~qs)eα′(κ′|~q ′s′)eα′′(κ′′|~q ′′s′′)

 ,

where, similarly to (F.138),

∆(~q + ~q ′ + ~q ′′) =
1

N

∑
`

ei(~q+~q
′+~q ′′)·~R(`) =

{
1 for ~q + ~q ′ + ~q ′′ = 0 or ~G
0 otherwise .

(F.179)

One can show [Born and Huang, 1998] that the sum in curly brackets in (F.178) is symmetric with
respect to the indices (~qs, ~q ′s′, ~q ′′s′′); it is generally expressed in condensed form

Ψ

(
~q ~q ′ ~q ′′

s s′ s′′

)
=

∑
ακ

α′`′κ′
α′′`′′κ′′

Φ3√
mκmκ′mκ′′

ei[~q
′·~R(`′−`)+~q ′′·~R(`′′−`)] eα(κ|~qs)eα′(κ′|~q ′s′)eα′′(κ′′|~q ′′s′′) ,

(F.180)
so that (F.178) becomes

V3 =
1

3!N1/2

∑
~q~q ′~q ′′
ss′s′′

Ψ

(
~q ~q ′ ~q ′′

s s′ s′′

)
Q(~qs)Q(~q ′s′)Q(~q ′′s′′) ∆(~q + ~q ′ + ~q ′′) (F.181)

Generalisation

Eq. (F.181) can be generalised to higher-order terms, so that the anharmonic contribution to the
total Hamiltonian can be expressed as a sum of terms [Barron and Klein, 1974]

Hanh =

∞∑
n=3

1

n!N (n/2−1)

∑
~q1...~qn
s1...sn

Ψ

(
~q1 . . . ~qn
s1 . . . sn

)
[Q(~q1s1) . . . Q(~qnsn)] ∆(~q1 + . . .+ ~qn) (F.182)

The term of order n is the product of n normal coordinates corresponding to normal modes whose
n wavevectors are constrained by the ∆ function.

F.8 Complements and demonstrations

F.8.1 The one-dimensional quantum harmonic oscillator

The Hamiltonian operator for the quantum harmonic oscillator is

H0 =
P 2

2m
+

1

2
mω2

0 X
2 , (F.183)
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where X and P are the position and momentum operators, whose commutator is [X,P ] = ih̄. It
is convenient to introduce the a-dimensional reduced observables

X̂ =

√
mω0

h̄
X , P̂ =

1√
mh̄ω0

P , (F.184)

whose commutator is [X̂, P̂ ] = i; the reduced Hamiltonian is

Ĥ0 =
H0

h̄ω0
=

1

2
(X̂2 + P̂ 2) . (F.185)

It is further convenient to substitute X̂ and P̂ by the (non hermitian) operators defined by the
linear combinations

a† =
1√
2

(X̂ − iP̂ ) , a =
1√
2

(X̂ + iP̂ ) . (F.186)

so that

X̂ =
1√
2

(a† + a) , P̂ =
i√
2

(a† − a) (F.187)

From [X̂, P̂ ] = i one can easily verify that the commutator is [a, a†] = 1 and that

a†a =
1

2
(X̂2 + iX̂P̂ − iP̂ X̂ + Ŷ 2) =

1

2
(X̂2 + P̂ 2 − 1) . (F.188)

The reduced Hamiltonian can then be expressed as

Ĥ0 = a†a+
1

2
= aa† − 1

2
. (F.189)

By defining the (hermitian) number operator

N = a†a, (F.190)

the reduced Hamiltonian becomes
Ĥ0 = N + 1/2 : (F.191)

the eigenvectors of Ĥ0 are eigenvectors of N and viceversa.
One can then solve the eigenvalues equation for N

N |φν〉 = ν |φν〉 (F.192)

One finds (see Quantum Mechanics textbooks) that the spectrum of N is represented by non
negative integer numbers

ν = 0, 1, 2, . . . n, . . . |φn〉 = |n〉 , (F.193)

the energy levels are non degenerate and the eigenvalues of the Hamiltonian H0 are

E0
n = (1/2 + n) h̄ω0 (n = 0 . . .∞) (F.194)

The energy difference between any two levels is

En − En−1 = h̄ω0 . (F.195)

The action of the a† and a operators on the eigenstates is as follows:

a† |n〉 =
√
n+ 1 |n+ 1〉, a |n〉 =

√
n |n− 1〉. (F.196)

They are called creation and destruction operators, respectively, since they create or destroy a
quantum of energy.
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From (F.196) and from

X̂ =
1√
2

(a† + a) (F.197)

one can easily see that the average displacement 〈X〉 is zero in the eigenstates |n〉:

〈X〉 =

√
h̄

2mω0
〈n| a† + a |n〉 =

√
h̄

2mω0

[
〈n| a†|n〉+ 〈n| a|n〉

]
= 0 . (F.198)

One can further see that

〈X2〉 =
h̄

2mω0

〈
n|(a† + a)2|n

〉
=

h̄

2mω0

〈
n|a†a+ aadag|n

〉
(F.199)

=
h̄

mω0

(
1

2
+ n

)
=

En
mω2

0

. (F.200)

F.8.2 The one-dimensional quantum anharmonic oscillator

Let us consider here for simplicity only the cubic term in the potential energy.

The harmonic hamiltonian H0 is modified by adding a weak cubic term W = k3X3.

H = H0 +W =
1

2
mω2

0 X
2 +

1

2m
P 2 + k3X3 . (F.201)

Introducing again the a-dimensional reduced observables X̂ and P̂ and expressing the third order

term as W = σh̄ω0X̂
3, where σ = k3h̄1/2/m3/2ω

5/2
0 (a-dimensional), the Hamiltonian becomes

H = H0 +W =
1

2
h̄ω0 (X̂2 + P̂ 2) + σh̄ω0X̂

3 . (F.202)

If the third order term is sufficiently weak, one can consider it as a perturbation to the harmonic
Hamiltonian.

Energy levels

According to the stationary perturbation theory, the energy eigenvalues En of the anharmonic
oscillator are obtained from the energy eigenvalues E0

n of the harmonic oscillator as

En = E0
n + 〈n|W |n〉 +

∑
n 6=n′

|〈n′|W |n〉|2

E0
n − E0

n′
+ . . . (F.203)

Taking into account that X̂ = (a† + a)/
√

2, one finds

X̂3 =
1

23/2

[
(a†)3 + a†aa† + aa†a† + aaa† + a†a†a+ a†aa+ aa†a+ a3

]
, (F.204)

and exploiting the commutation relations of a†, a and N = a†a

X̂3 =
1

23/2

[
(a†)3 + 3Na† + 3(N + 1)a+ a3

]
, (F.205)

where each term corresponds to the creation or destruction of three quanta or of one quantum of
energy.

The first-order term in the perturbation expansion, where the final state is equal to the initial
state, is thus zero.
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The only non-zero matrix elements of W are those connecting states that differ for one or three
quanta:

|〈n+ 3|W |n〉|2

E0
n − E0

n+3

=
(σh̄ω0)2

8

(n+ 1)(n+ 2)(n+ 3)

−3h̄ω0
= −σ2h̄ω0

n3 + 6n2 + 11n+ 6

24
(F.206)

|〈n− 3|W |n〉|2

E0
n − E0

n−3

=
(σh̄ω0)2

8

n(n− 1)(n− 2)

+3h̄ω0
= +σ2h̄ω0

n3 − 3n2 + 2n

24
(F.207)

|〈n+ 1|W |n〉|2

E0
n − E0

n+1

=
(σh̄ω0)2

8

9(n+ 1)3

−h̄ω0
= −σ2h̄ω0

9n3 + 27n2 + 27n+ 9

8
(F.208)

|〈n− 1|W |n〉|2

E0
n − E0

n−1

=
(σh̄ω0)2

8

9n3

+h̄ω0
= +σ2h̄ω0

9n3

8
(F.209)

By adding to the harmonic energy the sum of the four perturbation terms (mind the signs) one
finds

En =

(
n+

1

2

)
h̄ω0 − σ2 h̄ω0

30n2 + 30n+ 11

8
(F.210)

or equivalently

En =

(
n+

1

2

)
h̄ω0 −

15

4
σ2

(
n+

1

2

)2

h̄ω0 −
7

16
σ2h̄ω0 + . . . (F.211)

The energy levels are lowered with respect to the unperturbed harmonic case.
The difference between the energies of adjacent levels is not constant (as for the harmonic oscilla-
tor), but depends on the value n:

En − En−1 = h̄ω0

[
1− 15

2
σ2 n

]
. (F.212)

Eigenstates

At last, one can show that the eigenstates of the anharmonic oscillator are different from the
eigenstates |n〉 of the harmonic oscillator, being contaminated by the states |n + 1〉, |n − 1〉, |n +
3〉, |n− 3〉.

F.8.3 Statistics of the one-dimensional harmonic oscillator

Let us consider an harmonic oscillator in equilibrium with a reservoir at temperature T = 1/kBβ.

Classical statistics

In the classical approximation, the instantaneous state of a one-dimensional system is defined by its
position x and momentum p. For a system in thermal equilibrium with a reservoir at temperature
T = 1/kBβ, the probability density of the point (x, p) in phase space is given by

ρ(x, p) =
e−βE(x,p)

Z
=

e−βE(x,p)∫
dx
∫
dp e−βE(x,p)

, (F.213)

and the average value of a quantity A(x, p) is given by

〈A(x, p)〉 =
1

Z

∫
dx dpA(x, p) ρ(x, p). (F.214)

If the potential energy is independent of p, the total energy is E(x, p) = p2/2m + V (x), so that
the partition function Z can be calculated as

Z =

∫
dp e−βp

2/2m

∫
dx e−βV (x) =

√
2mπ/β

∫
dx e−βV (x). (F.215)
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The probability density for a given value of position x is then

ρ(x) =

∫
dp e−βp

2/2m e−βV (x)

Z
=

e−βV (x)∫
dx e−βV (x)

, (F.216)

and the average value of a quantity A(x, p) is

〈A(x)〉 =

∫
dxA(x) e−βV (x)∫
dx e−βV (x)

. (F.217)

For the harmonic oscillator, V (x) = k0x
2/2.

Quantum statistics

If the oscillator is in equilibrium with a reservoir at temperature T , its state is a statistical mixture
of eigenstates |n〉, weighted by exp (−βEn), where β = 1/kBT .

The thermodynamical properties can be calculated from the statistical density operator

ŵ = (1/Z0) e−βĤ0 , Z0 = Tr (e−βĤ0). (F.218)

In the energy representation, where Ĥ0 is diagonal, the harmonic partition function Z0 is

Z0 =

∞∑
n=0

〈n|e−βĤ0 |n〉 =

∞∑
n=0

e−(n+1/2)βh̄ω =
e−βh̄ω/2

1− e−βh̄ω
. (F.219)

The average energy is given by

〈Ĥ0〉 = Tr(Ĥ0ŵ) =
1

Z0
Tr(Ĥ0 e

−βĤ0) =
1

Z0

∞∑
n=0

(n+1/2)h̄ωe−β(n+1/2)h̄ω = h̄ω

[
1

2
+

1

eβh̄ω − 1

]
.

(F.220)

a) For T → 0 (β → ∞), it easy to see that 〈H〉 → h̄ω/2 (zero point energy). The zero point
energy is proportional to the angular frequency ω.

b) For T → ∞ (β → 0), one can show that 〈H〉 → kBT (classical approximation). The
demonstration is based on the expansion 1/(ex−1) ' [x+x2/2+. . .]−1 ' (1/x)[1−x/2+. . .],
where x = βh̄ω. The behaviour for T →∞ is independent of ω.

The probability density for the displacement x has a gaussian shape centred on 〈x〉 = 0:

ρ(x) = (1/σ
√

2π) e−x
2/2σ2

. (F.221)

The moments of the distribution can be calculated as

〈xk〉 =
1

Z0
Tr (xke−βH0) =

1

Z0

∞∑
n=0

〈n|xk|n〉 e−βEn . (F.222)

F.8.4 Normal coordinates and energy

We want to express the kinetic and potential energies in terms of the normal coordinates.



F. Vibrational dynamics 209

Useful relation

As a preliminary step, it is convenient to introduce the relation∑
`

ei~q·
~R(`) =

{
N for ~q = 0 or ~q = ~G ,
0 otherwise .

(F.223)

Relation (F.223) is a consequence of the lattice periodicity; the sum is unchanged if an arbitrary
~R(`′) is added to ~R(`) in the sum:

∑
`

ei~q·
~R(`) =

∑
`

ei~q·[
~R(`)+~R(`′)] =

(∑
`

ei~q·
~R(`)

)
ei~q·

~R(`′) . (F.224)

This is possible only if conditions (F.223) are fulfilled.

As a consequence of (F.223),

∑
`

ei(~q+~q
′)·~R(`) =

{
N for ~q + ~q ′ = 0 or ~q + ~q ′ = ~G ,
0 otherwise .

(F.225)

Kinetic energy

Substituting the atomic displacements (F.117) in the expression of the kinetic energy, since only
the normal coordinates depend on time, the kinetic energy becomes

T =
1

2

1

N

∑
ακ

∑
~qs

∑
~q ′s

eα(κ|~qs) eα(κ|~q ′s′) Q̇(~qs) Q̇(~q ′s′)
∑
`

ei(~q+~q
′)·~R(`) . (F.226)

Taking into account that according to (F.225) the last sum is N if ~q = −~q ′, otherwise it is zero,
and considering the orthonormality relation of eigenvectors, one gets

T =
1

2

∑
~qs

Q̇(~qs) Q̇(−~qs) =
1

2

∑
~qs

Q̇(~qs) Q̇∗(~qs) . (F.227)

Potential energy

Substituting the atomic displacements (F.117) in the expression for the potential energy, the po-
tential energy becomes

V2 =
1

2N

∑
~qs
~q ′s′

∑
α`κ
α′`′κ′

Φ
(
α m
α′ m′

)
√
mκmκ′

ei~q·
~R(`) ei~q

′·~R(`′) eα(κ|~qs) eα′(κ
′|~q,′ s′) Q(~qs) Q(~q ′s′) (F.228)

Multipliying by

1 = ei~q
′·[~R(`)−~R(`)]

and recalling the definition of Fourier transformed dynamical matrix, (F.228) becomes

V2 =
1

2N

∑
~qs
~q ′s′

∑
ακ
α′κ′

D~q ′

( ακ
α′κ′

)[∑
`

ei(~q+~q
′)·~R(`)

]
eα(κ|~qs) eα′(κ

′|~q ′s′) Q(~qs) Q(~q ′s′) (F.229)

Taking again into account that according to (F.225) the sum in square parentheses is N if ~q = −~q ′,
otherwise it is zero and making use of the eigenvalue equation of e∗α(κ|−~qs) = eα(κ|~qs), one obtains

V2 =
1

2

∑
~qs
~s′

∑
ακ

ω2(~qs) eα(κ|~qs) e∗α(κ|~qs′) Q(~qs) Q(−~qs′) (F.230)
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At last, considering the orthonormality relation of eigenvectors, one finds taht the potential vibra-
tional energy can be expressed as

V2 =
1

2

∑
~qs

ω2(~qs)Q(~qs)Q(−~qs) =
1

2

∑
~qs

ω2(~qs)Q(~qs)Q∗(~qs) . (F.231)

A classical normal mode (~qs) can be considered as an independent harmonic oscillator of frequency
ω(~qs), whose amplitude and time dependence are described by the normal coordinate Q(~qs, t) =
Q0(~qs) eiω(~qs)t. The dimensions of the normal coordinate are [Q] = [M1/2L].



Appendix G

Historical milestones

G.1 X-rays

1895 The evening of eighth of November, W. K. Röntgen, while studying the electric discharges in
rarefied gases in his laboratory in Würtzburg, discovers a new radiation, which he designates
as “X-rays”.

1896 First medical applications of x-ray radiography.

1909–1912 C. G. Barkla, in England, systematically studies absorption and emission spectra of
x-rays, discovering absorption edges and characteristic emission lines, and classifying them
within different series, K, L, M . . .

1912 Friedrich and Knipping, under the suggestion of Max von Laue, experimentally demonstrate
that x-rays can be diffracted by crystals, thus showing that x-rays are waves and that crystals
are composed by regular arrays of atoms.

1913 First diffraction spectrum from crystals (W.H. Bragg & W.L. Bragg).

Maurice de Broglie (big brother of Louis de Broglie) performs systematic spectroscopy ex-
periments with a rotating crystal monochromator.

Bohr develops its atomic theory.

H.G.J. Moseley expresses the frequencies of x-rays according to the Bohr theory; the
Mendeleev table is interpreted as a unique sequence of atoms based on the atomic num-
ber Z.

1922 Quantum interpretation of the Compton effect.

G.2 Synchrotron radiation

1944 Ivanenko e Pomeranchuk understand the importance of radiative losses in the performance
of electron accelerators.

1947 R.F. Elder for the first time sees the electromagnetic radiation emitted by a synchrotron, at
the 70 MeV synchrotron of General Electric in Schenectady (USA).

19446-1953 A number of theorists (among them J. Schwinger, D. Ivanenko, A.A. Solokov, I.M.
Ternoc) contribute to the development of the classical theory of synchrotron radiation.

1952 Firs synchrotron beamline, Cornell

1956 Tamboulian e Hartman perform the first experiments with synchtron radiation from the 320
MeV synchrotron of Cornell (angular and spectral distribution, transmission measurements
on Be and Al).

211



212 P. Fornasini - X-ray Absorption Spectroscopy

1961. . . Construction of parasitic Synchrotron Radiation beamlines from accelerators dedicated
to high energy physics. Some examples:

1961 SURF at the National Bureau of Standards (180 MeV, λc=335 Å);

1962 First S.R. beamline at the Frascati synchrotron (1.15 GeV);

1962 750 MeV synchrotron INS-SOR in Tokyo;

1964 S.R. at DESY, Hamburg;

1966 S.R. at the Glasgow synchrotron, 0.33 GeV;

1971 S.R. from the ACO storage ring in Orsay;

1979 S.R. from the Adone storage ring in Frascati (PULS).

1966 The 240 MeV storage ring TANTALUS I of the University of Wisconsin-Madison is the first
dedicated source of Synchrotron Radiation (2nd generation source).

1981 SRS in the UK is the first dedicated X-ray storage ring

1994 The 6 GeV storage ring of ESRF, Grenoble (France) is the first 3rd generation source of
Synchrotron Radiation, followed by

1995 APS in Chicago (7 GeV),

1997 SPRING-8 in Kobe (8 GeV).

G.3 XAFS

A detailed history of XAFS has been written by R. Sturm von Bordwehr
[Stumm von Bordwehr, 1989]. A shorter account hs been given by Stern [Stern, 1988].
We will here remember only the most relevant facts.

1918–1919 W. Stenström and H. Fricke independently observe the fine structure at the absorption
edges (M edges of Cd and Th, K edge of Cl and P, respectively) while working in the Siegbahn
laboratory in Lund [Fricke, 1920].

1920 W. Kossel gives an interpretation of XAFS as due to transitions of the photoelectron from
core to shallow levels. This interpretation was actually sound only for near-edge structures,
which for a long time have been called “Kossel structures”. [W. Kossel, Z. Phys. 1, 119
(1920), Z. Phys. 2, 470 (1920)]

1930 Kievit and Lindsay measure the fine structure in the X-ray absorption spectra of the K series
of the elements calcium to gallium [Kievit and Lindsay, 1930]

1931 Ralph Kronig attributes the EXAFS in solids to the alternation of allowed and forbidden
bands in the density of electronic states, beginning the quantitative development of LRO
(long range order) theories. [R. de Laer Kronig, Z. Phys. 70, 317 (1931)]

1931 J.D. Hanawalt observes the temperature dependence of the XAFS. [Z. Phys. 70, 20 (1931)
and Phys. Rev. 37, 715 (1931)]

1932 Again Kronig attributes the EXAFS in molecules to the scattering of photoelectrons by
neighbouring atoms, introducing the SRO (short range order) theories. [R. de Laer Kronig,
Z. Phys. 75, 468 (1932)]

1932-36 Kronig’s student Petersen calculates the EXAFS of the molecules Cl2 and GeCl4 and
adds the idea of phaseshifts. [H. Petersen, Z. Phys. 76, 768 (1932); 80, 258 (1933); 98, 569
(1936)]

1957 M. Sawada et al. calculate the lifetime of the excited photoelectron and core hole through
a mean free path. [T. Shiraiva, T. Ishimura, M. Sawada, J. Phys. Soc. Jpn. 12, 788 (1957)]
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1961-1963 V. V. Shmidt introduces the Debye-Waller factor to describe the effects of thermal
and structural disorder. [Bull. Acad. Sci. USSR, Phys. Ser. 25, 998 (1961); 27, 392 (1963)]

1971 The EXAFS spectra of Cu, Fe and Ge, measured at 77 K with a laboratory apparatus, are
reproduced by a theory where the photo-electron spherical wave is scattered by neighbors of
the absorber, treated as point scatterers; photoelectron mean free path and thermal effects
are taken into account [Sayers et al., 1971a].
In another paper by the same Authors, it is shown that the Fourier transform of
EXAFS with respect to photoelectron wavevector directly gives structural information
[Sayers et al., 1971b].
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Appendix H

Useful tables

H.1 Physical constants and conversions

Table H.1: Values of some fundamental constants, taken from the 2014 compilation of CODATA
(CODATA Recommended Values of the Fundamental Physical Constants: 2014, by P. J. Mohr, D.
B. Newell and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)).

Constant Symbol Value Unit

Speed of light in vacuum c 299 792 458 m s−1

Planck constant h 6.626 070 040(81)×10−34 J s
4.135 667 662(25)×10−15 eV s

Planck constant reduced h̄ = h/2π 1.054 571 800(13)×10−34 J s
6.582 119 514(40)×10−16 eV s

Elementary charge e 1.602 176 6208(98)×10−19 C
Electron mass me 9.109 383 56(11)×10−31 kg

0.510 998/,9461(13) MeV/c2

Atomic mass unit u 1.660 539 040(20)×10−27 kg
Avogadro number NA 6.022 140 857(74)×1023 mol−1

Boltzmann constant kB 1.380 648 52(79)×10−23 J K−1

8.617 3303(50)×10−5 eV K−1

Table H.2: Conversions.

Energy 1 eV = 1.602 176 6208(98)×10−19 J
θ [K] = 47.992 447 ν [THz]
ν [THz] = 0.241 798 926 E [meV]
E [meV] = 4.135 667 662 ν [THz]
E [meV] = 0.086 173 303 θ [K]

Phoho-elctron wavenumber k [Å−1] = 0.512 316 25
√
ε [eV] , ε = h̄ω − Eb

Einstein model θE [K] = 47.992 447 νE [THz]
k0 [eV/Å2] = 4.091 649 625× 10−3ν2

E [THz2]µ[amu]
Force constant k0 1 eV/Å2 = 16.021 766 208 N/m
Force constant k3 1 eV/Å3 = 16.021 766 208× 1010 N/m2
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H.2 Interatomic distances in crystals

H.2.1 From coordinates to distances

Let

• a, b, c be the cell edges

• α, β, γ be the cell angles

Let the fractional coordinates of two atoms within the cell be (x1, y1, z1) and (x2, y2, z2), respec-
tively.
The distance between the two atoms is given by

d2 = (x2 − x1)2 a2 + (y2 − y1)2 b2 + (z2 − z1)2 c2

+ 2 (x2 − x1) (y2 − y1) ab cos γ

+ 2 (y2 − y1) (z2 − z1) ab cosα

+ 2 (z2 − z1) (x2 − x1) ab cosβ

(H.1)

H.2.2 Distances and coordination numbers

Table H.3: Simple cubic structure (sc).

i Ni Ri

1 6 a R1

2 12 a
√

2 R1

√
2

3 8 a
√

3 R1

√
3

4 6 a
√

4 R1

√
4

5 24 a
√

5 R1

√
5

6 24 a
√

6 R1

√
6

7 12
8 30

Table H.4: Face centred cubic structure
(fcc).

i Ni Ri

1 12 a /
√

2 R1

2 6 a R1

√
2

3 24 a
√

1.5 R1

√
3

4 12 a
√

2 R1

√
4

5 24 R1

√
5

6 8 R1

√
6

7 48 R1

√
7

8 6 R1

√
8

Table H.5: Body centred cubic structure
(bcc).

i Ni Ri

1 8 a
√

3 /2 R1

2 6 a R1

√
4/3

3 12 a
√

2 R1

√
8/3

4 24 a
√

11/2 R1

√
11/3

5 24 a
√

3 2R1

6 6 2 a R1

√
16/3

7 24 R1

√
19/3

8 24 R1

√
20/3

Table H.6: Diamond and zincblende struc-
tures.

i Ni Ri

1 4 a
√

3 /4 R1

2 12 a/
√

2 R1

√
8/3

3 12 a
√

11/4 R1

√
11/3

4 6 a R1

√
16/3

5 12 a
√

19/4 R1

√
19/3

6 24 a
√

6/2 R1

√
8

7 16 3R1

8 12 R1

√
32/3
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Table H.7: NaCl structure.

i Ni Ri

1 6 a/2 R1

2 12 (a/2)
√

2 R1

√
2

3 8 (a/2)
√

3 R1

√
3

4 6 a 2R1

5 24 (a/2)
√

5 R1

√
5

6 24 (a/2)
√

6 R1

√
6

H.3 Nomenclature of core-level (and related) spectroscopies

H.3.1 Excitation spectroscopies

Table H.8: Excitation spectroscopies

XAS X-ray Absorption Spectroscopy
EELS Electron Energy Loss Spectroscopy (inelastic electron scattering)
XRS X-ray Raman Scattering (inelastic X-ray scattering)

XPS X-ray Photoemission Spectroscopy (core-electrons excitation)
PES (Valence) Photoemission Spectroscopy (valence-electrons excitation)

IPES Inverse PES
or BIS or Bremsstrahlung Isochromat Spectroscopy

H.3.2 Core decay spectroscopies

Table H.9: Core-hole decay spectroscopies

XES X-ray Emission Spectroscopy shallow-core to deep-core transitions
valence to deep-core transitions

AES Auger Electron Energy Spectroscopy final state: 2 shallow core holes
final state: 1 shallow core and 1 valence hole
final state: 2 valence holes

H.3.3 Resonant spectroscopies

Atomic excitation is always accompanied by decay processes.
Close to an XAS absorption edge, the decay processes are different from off-resonance excitations.
A major effect is the coherence between excitation and decay.
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Table H.10: Resonance spectroscopies

RPES Resonant Photoemission Spectroscopy
RXPS Resonant X-ray Photoemission Spectroscopy
RAES
RIPES
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