Elastic scattering from atoms

- Structural probes: X-rays, neutron, electrons
- Basics of scattering
- > X-ray Thomson scattering
- Interference
- Deviations from classical treatment
 - \checkmark electronic distribution
 - ✓ Compton effect
 - \checkmark electron binding
- Neutron and electron scattering

Paolo Fornasini University of Trento April 2017

Structural probes

Probes

infrared

visible

X-rays

Electrons

Positrons

Neutrons

lons

• UV

microwaves

Atomic-level structural probes

> Properties X-rays, neutrons, electrons

Plane waves equation – 1 dimension

Electromagnetic fields

$$A(x,t) = \operatorname{Re}\left\{A_{0} \exp\left[i\left(kx - \omega t\right)\right]\right\}$$
$$= \operatorname{Re}\left\{A_{0} \exp\left[i 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)\right]\right\}$$
$$= A_{0} \cos\left(kx - \omega t\right)$$

Matter wavefunctions

$$\Psi(x,t) = \Psi_0 \exp\left[i\left(kx - \omega t\right)\right]$$
$$= \Psi_0 \exp\left[i 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)\right]$$

Plane waves – 3 dimensions Paolo Fornasini Univ. Trento Ā $\vec{k} = \frac{2\pi}{\hat{s}} \hat{s}$ Wavevector Matter wavefunctions Electromagnetic fields $\vec{A}(\vec{r},t) = \operatorname{Re}\left\{A_0 \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]\right\}$ $\Psi(\vec{r},t) = \Psi_0 \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$ $= \operatorname{Re}\left\{A_{0} \exp\left[i2\pi\left(\frac{\hat{s}\cdot\vec{r}}{\lambda}-\frac{t}{T}\right)\right]\right\}$ $= \Psi_0 \exp \left| i 2\pi \left(\frac{\hat{s} \cdot \vec{r}}{\lambda} - \frac{t}{T} \right) \right|$

Particle properties

Paolo Fornasini Univ. Trento

Connection particle – wave properties

$$E = \hbar \omega = h \nu$$

$$\vec{p} = \hbar \vec{k} = (h/\lambda) \,\hat{s}$$

Particle and wave properties

Electromagnetic fields(non-relativistic)Matter
$$E = pc = \hbar kc$$
 $E_k = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$ $\omega = kc$ $E = \hbar \omega$ $\omega = \frac{\hbar k^2}{2m}$ in vacuum $v_{\phi} = \frac{\lambda}{T} = \frac{\omega}{k} = c$ Phase velocity $v_{\phi} = \frac{\lambda}{T} = \frac{\omega}{k} = \frac{\hbar k}{2m} = \frac{p}{2m}$ in vacuum $v_g = \frac{d\omega}{dk} = c$ Group velocity $v_g = \frac{d\omega}{dk} = \frac{\hbar k}{m} = \frac{p}{m} = v$

Wave – particle properties

Energy – wavelength relation

X-ray penetration

Interaction of x-rays with matter

Attenuation of X-Rays

Structural techniques

> Basics of scattering

Scattering angles

Nomenclature of scattering

Paolo Fornasini Univ. Trento

$$\vec{k} = \frac{2\pi}{\lambda} \hat{s}$$

$$E = \begin{cases} pc = \hbar kc = \hbar \omega & \text{X-rays photons} \\ \frac{p^2}{2m} = \frac{\left(\hbar k\right)^2}{2m} & \text{electrons, neutrons} \end{cases}$$

Exchanged energy

$$E = E_{\text{out}} - E_{\text{in}}$$
$$\hbar \vec{K} = \hbar \left(\vec{k}_{\text{out}} - \vec{k}_{\text{in}} \right)$$

Exchanged momentum

$$\vec{K} = \hbar \left(\vec{k}_{\text{out}} - \vec{k}_{\text{in}} \right)$$

Elastic scattering

$$E = 0, \quad E_{out} = E_{in}, \quad \left| \vec{k}_{out} \right| = \left| \vec{k}_{in} \right|$$

Inelastic scattering
 $E \neq 0, \quad E_{out} \neq E_{in}, \quad \left| \vec{k}_{out} \right| \neq \left| \vec{k}_{in} \right|$

Scattering cross-sections

Paolo Fornasini Univ. Trento

Elastic scattering $dn_{\rm out} = \begin{cases} \Phi_{\rm in} \ \sigma(2\theta, \phi) \ d\Omega \\ \Phi_{\rm in} \left(\frac{d\sigma}{d\Omega}\right) \ d\Omega \end{cases}$ differential cross-section **Inelastic scattering** $dn_{\rm out} = \begin{cases} \Phi_{\rm in} \ \sigma(2\theta, \phi, E) \ d\Omega \ dE \\ \Phi_{\rm in} \left(\frac{d^2 \sigma}{d\Omega \ dE}\right) \ d\Omega \ dE \end{cases}$ double differential cross-section

 σ depends on incoming energy

Elastic scattering cross-section

Paolo Fornasini Univ. Trento

Differential cross-section $dn_{\text{out}} = \begin{cases} \Phi_{\text{in}} \ \sigma(\vartheta, \phi) \ d\Omega \\ \\ \Phi_{\text{in}} \ \left(\frac{d\sigma}{d\Omega}\right) \ d\Omega \end{cases}$

Total cross-section

$$\sigma_{\rm tot} = \int \sigma(\vartheta,\phi) \, d\Omega$$

The cross section can depend on the energy of incoming particles (say on wavelength).

Scattering vector

Paolo Fornasini Univ. Trento

Elasting scattering

$$\left| \vec{k}_{\rm in} \right| = \left| \vec{k}_{\rm out} \right| = \frac{2\pi}{\lambda}$$

 $\vec{K} = \vec{k}_{out} - \vec{k}_{in}$ $\left|\vec{K}\right| = 4\pi \frac{\sin \theta}{\lambda}$

Scattering vector (alternative convention)

Stationary states of elastic scattering

Paolo Fornasini Univ. Trento

Elastic scattering

Differential cross-section:

$$\left(\frac{d\sigma}{d\Omega}\right)^{2} = \left|f_{k}(2\theta,\phi)\right|^{2}$$

Elastic scattering, intrinsic cross-section

Scattering mechanisms

Elastic scattering of X-rays

1 Classical theory of scattering from a free electron (Thomson scattering)

2 Basic interference effects

3

Correction for quantum effects:

- 1. Probabilistic distribution of the electronic charge
- 2. Compton effect for free electrons
- 3. Effects of binding

> Thomson scattering

Electromagnetic wave impinging on a free electron

Negligible:

- magnetic effects
- proton acceleration

Incoming electric field
$$\vec{E}_{in}(t) = \vec{E}_0 \cos(\omega t)$$

Electron acceleration
$$\vec{a}(t) = \frac{-e}{m} \vec{E}_0 \cos(\omega t)$$

 π phase-shift

Dipole emission of radiation

Electric field polarization

More on σ polarization

Classical electron radius

Paolo Fornasini Univ. Trento

= Thomson scattering length

Incoming wave: input amplitude

Outgoing wave: scattered amplitude

Paolo Fornasini Univ. Trento

Scattering from one electron. Far-field limit, outgoing wave approximate as a plane wave.

Scattered amplitude

Paolo Fornasini Univ. Trento

Phase factor

Amplitude and intensity (1 electron)

Paolo Fornasini Univ. Trento

Amplitude (π polarisation) $A(\vec{K}) = -E_0 r_e \frac{e^{-ik_{\text{out}}R}}{R} e^{i\omega t} e^{i\vec{K}\cdot\vec{r}} = A_{\text{el}} e^{i\vec{K}\cdot\vec{r}}$ $E_{\rm out} = {\rm Re} \left\{ A \left(\vec{K} \right) \right\}$ Cannot be measured ! Intensity $E_0^2 r_e^2 \frac{1}{R^2}$ (π polarisation) $I = \left| A(\vec{K}) \right|^2 = \left| A_{\rm el} \right|^2$ $E_0^2 r_e^2 \frac{1}{R^2} \left| \frac{1 + \cos^2(2\theta_B)}{2} \right|$ un-polarized beam Is actually measured

Laboratory x-ray sources produce unpolarized beams.
Radiated power, unpolarized beam

$$r_e = \frac{e^2}{4\pi\varepsilon_0 c^2 m} = 2.8 \text{x} 10^{-15} \text{m}$$

Total electron cross-section (1)

Paolo Fornasini Univ. Trento

Un-polarized beam

$$\sigma_{\rm Th} = \int \sigma (2\theta_B, \phi) d\Omega = \frac{8}{3}\pi r_e^2 = 6.66 \,\mathrm{x} \, 10^{-29} \,\mathrm{m}^2$$

Total radiated power $P_{\rm rad} = \frac{8}{3}\pi r_e^2 P_{\rm in}$

Independent of radiation wavelength

Total electron cross-section (2)

Paolo Fornasini Univ. Trento

Un-polarized beam

$$\sigma_{e} = \int_{\Omega} \sigma(2\theta, \phi) \, d\Omega = r_{e}^{2} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin(2\theta) \frac{1 + \cos^{2}(2\theta)}{2} \, d(2\theta)$$
$$= 2\pi r_{e}^{2} \left[\frac{1}{2} \int_{0}^{\pi} \sin(2\theta) \, d(2\theta) + \frac{1}{2} \int_{0}^{\pi} \sin(2\theta) \cos^{2}(2\theta) \, d(2\theta) \right]$$
$$= \frac{8}{3} \pi r_{e}^{2}$$
$$= 66.6 \times 10^{-30} \text{m}^{2} = 66.6 \times 10^{-10} \text{ Å}^{2} = 66.6 \text{ fm}^{2} = 0.66 \text{ barn}$$

Independent of radiation wavelength

Beyond classical treatment

Paolo Fornasini Univ. Trento

Thomson scattering:

Free electron

 $r_e << \lambda$

Elastic scattering

Free electron \Rightarrow Inelastic scattering (Compton)

Electrons are bound in atoms

Probabilistic distribution of e- charge

Interference

Scattering from many electrons

Paolo Fornasini Univ. Trento

Depending on radiation wavelength

Interference: scattering from 2 electrons

1 electron
$$A(\vec{K}) = A_{el} e^{i\vec{K}\cdot\vec{r}}$$
 $I = |A(\vec{K})|^2 = |A_{el}|^2$

Thomson scattering by 2 electrons (a)

$$I(\vec{K}) = |A(\vec{K})|^{2} = (A_{1}(\vec{K}) + A_{2}(\vec{K}))(A_{1}^{*}(\vec{K}) + A_{2}^{*}(\vec{K}))$$

$$= A_{el}^{2} (e^{i\vec{K}\cdot\vec{r}_{1}} + e^{i\vec{K}\cdot\vec{r}_{2}})(e^{-i\vec{K}\cdot\vec{r}_{1}} + e^{-i\vec{K}\cdot\vec{r}_{2}})$$

$$= A_{el}^{2} [2 + 2\cos(\vec{K}\cdot\vec{r})] \qquad \vec{r} = \vec{r}_{2} - \vec{r}_{1}$$

Independent Interference

Thomson scattering by 2 electrons (c)

Thomson scattering by Z electrons

$$\begin{split} I(\vec{K}) &= \left| A(\vec{K}) \right|^2 = \left(\sum_i A_i(\vec{K}) \right) \left(\sum_j A_j^*(\vec{K}) \right) \\ &= A_{\rm el}^2 \left(\sum_i e^{i\vec{K}\cdot\vec{r}_i} \right) \left(\sum_j e^{-i\vec{K}\cdot\vec{r}_j} \right) \\ &= A_{\rm el}^2 \left[Z + \sum_i \sum_{j \neq i} \cos\left(\vec{K}\cdot\vec{r}_{ij}\right) \right] \\ &\downarrow \\ j = i \\ \end{split}$$
Independent scattering by single electrons
$$\begin{split} \vec{r}_{ij} &= \vec{r}_j - \vec{r}_i \end{split}$$

Paolo Fornasini Univ. Trento

 \vec{K}

Planar distribution of Z electrons

Paolo Fornasini Univ. Trento

Maximum intensity for $\vec{K} \perp \vec{r}_i$

$$I(\vec{K}) = A_{\rm el}^2 \left[Z + \sum_i \sum_{j \neq i} \cos\left(\vec{K} \cdot \vec{r}_{ij}\right) \right]$$
$$\vec{K} \perp \vec{r}_i$$
$$\cos\left(\vec{K} \cdot \vec{r}_{ij}\right) = 1$$

 $I(\vec{K}) = A_{\rm el}^2 \left[Z + Z(Z-1) \right] = A_{\rm el}^2 Z^2$

Interference: continuous distribution

$$A(\vec{K}) = A_{\rm el} \int \rho_e(\vec{r}) e^{i\vec{K}\cdot\vec{r}} dV$$

$$A(\vec{K})$$
 = Fourier Tr. of $\rho(\vec{r})$

$$I(\vec{K}) = |A(\vec{K})|^{2}$$
$$= |A_{\rm el}|^{2} \left| \int \rho_{e}(\vec{r}) e^{i\vec{K}\cdot\vec{r}} dV \right|^{2}$$

(number density)

Amplitude and intensity (b)

<u>Amplitude</u>

$$A(\vec{K}) = A_{\rm el} \int \rho_e(\vec{r}) e^{i\vec{K}\cdot\vec{r}} dV$$

Intensity

Paolo Fornasini Univ. Trento

Cannot be measured !

Z randomly distributed point-like electrons

Paolo Fornasini Univ. Trento

$$I(\vec{K}) = A_{\rm el}^2 \left[Z + \sum_{i} \sum_{j \neq i} \cos\left(\vec{K} \cdot \vec{r}_{ij}\right) \right]$$

 \vec{K}

$$f_e(\vec{K}) = \int \rho_e(\vec{r}) \, e^{i\vec{K}\cdot\vec{r}} \, dV$$

$$=4\pi \int_0^\infty r^2 \rho_e(r) \frac{\sin Kr}{Kr} dr$$

Spherical random distribution of each point-like electron

$$I(\vec{K}) = A_{e1}^{2} \begin{bmatrix} Z + Z(Z-1)f_{e}^{2} \end{bmatrix}$$

ndependent scattering
by single electrons
$$Interference: Z(Z-1) \text{ terms}$$

> Deviations from classical treatment Electrons distribution

Atomic orbitals

Electron scattering factor – electronic units

Paolo Fornasini Univ. Trento

Electronic units $A_{\text{e.u.}}(\vec{K}) = \frac{A(\vec{K})}{A_{\text{el}}} = f_e(\vec{K}) \quad I_{\text{e.u.}}(\vec{K}) = \frac{\left|A(\vec{K})\right|^2}{\left|A_{\text{el}}\right|^2} = \left|f_e(\vec{K})\right|^2$

Hydrogen scattering factor

Spherical symmetry

$$f_{0}(\vec{K}) = \int \rho(\vec{r}) e^{i\vec{K}\cdot\vec{r}} dV$$

$$dV = (dr) (2\pi r \sin \alpha) (r d\alpha) \quad \vec{K}$$

$$= 2\pi r^{2} \sin \alpha dr d\alpha$$

$$0 \le r < \infty \text{ and } 0 \le \alpha < \pi.$$

$$f_0(\vec{K}) = 2\pi \int_0^\infty r^2 \rho(r) dr \int_0^\pi e^{iKr\cos\alpha} \sin\alpha d\alpha$$

$$= 2\pi \int_0^\infty r^2 \rho(r) dr \left[\int_0^\pi \cos(Kr\cos\alpha) \sin\alpha d\alpha + i \int_0^\pi \sin(Kr\cos\alpha) \sin\alpha d\alpha \right]$$

$$= 4\pi \int_0^\infty r^2 \rho(r) \frac{\sin(Kr)}{Kr} dr = f_0(K),$$

K-dependence

The atomic scattering factor

Scattering amplitudes

$$A_{\rm e.u.}\left(\vec{K}\right) = f_0\left(\vec{K}\right)$$

Scattering intensities

Scattering factors and electron densities

X-ray scattering intensity

X-ray scattering cross-section

> Deviations from classical treatment Compton scattering

Compton experiment (1922)

Compton scattering from free electrons (a)

Compton scattering from free electrons (b)

Klein-Nishina scattering cross section

Klein-Nishina cross-section at low energies

Scattering by atomic electrons

Paolo Fornasini Univ. Trento

Scattering from electrons bound to atoms:

- both Compton and Thomson scattering can coexist
- balance: ratio (electron binding energy)/(Compton ΔE)

For rest electrons

$$\Delta E_{\text{compton}} = \hbar \omega_0 - \hbar \omega' = hc \left[\frac{1}{\lambda_0} - \frac{1}{\lambda'} \right] \approx \hbar \omega_0 \frac{\Delta \lambda}{\lambda_0}$$

Modified scattering - 1 electron

Paolo Fornasini Univ. Trento

From Q.E.D. (Klein-Nishina at low energies):

Modified scattering - atoms

Paolo Fornasini Univ. Trento

Intensities in electronic units !

Thomson .vs. Compton

Connection with Thomson theory

Paolo Fornasini Univ. Trento

Scattering from Z independent electrons (see above)

Total equal electrons
$$I_{tot}(\vec{K}) = \left| \sum_{m=1}^{Z} e^{i\vec{K}\cdot\vec{r}_{m}} \right|^{2} = Z + Z(Z-1) f_{e}^{2} = Z + Z^{2}f_{e}^{2} - Zf_{e}^{2}$$
different orbitals
$$I_{tot}(\vec{K}) = \left| \sum_{m=1}^{Z} e^{i\vec{K}\cdot\vec{r}_{m}} \right|^{2} = Z + \left| \sum_{n=1}^{Z} f_{n} \right|^{2} - \sum_{n=1}^{Z} |f_{n}|^{2}$$
Unmodified
$$I_{unmod}(\vec{K}) = I_{coherent}(\vec{K}) = \left| \sum_{n=1}^{Z} f_{n} \right|^{2}$$

$$I_{mod}(\vec{K}) = I_{incoherent}(\vec{K})$$

$$= I_{tot}(\vec{K}) - I_{coherent}(\vec{K})$$

$$= Z - \sum_{n=1}^{Z} |f_{n}|^{2}$$

Compton profile

Paolo Fornasini Univ. Trento

The electrons are not at rest initially. Compton radiation is scattered around the nominal wavelength.

Info on electron momentum distribution. The profile is wider, the more strongly the electron is bound.

Scattering of X-rays from an electron

> Deviations from classical treatment Electron binding

Classical oscillator model (a)

Oscillator model of bound electron

Classical oscillator model (b)

Complex displacement amplitude

Phaseshift

Paolo Fornasini Univ. Trento

Displacement .vs. electric field phaseshift

$$\tan\phi = \frac{2\gamma\omega}{\omega^2 - \omega_0^2}$$

Polarizability – 1 electron

Macroscopic electric field
$$P = \varepsilon_0 \chi E$$
 Electric susceptibility

Microscopic local electric field $p = \varepsilon_0 \alpha E$ Electric polarisability of an atom

Polarisation
$$\vec{p}(t) = -e\vec{r}(t) = \vec{p}_0 e^{i\omega t}$$

Free electron

Bound electron:

$$\vec{p}_{0} = -\left(\frac{e^{2}}{\varepsilon_{0}m}\frac{1}{\omega^{2}}\right)\vec{E}_{0} = \alpha(\omega)\vec{E}_{0} \qquad \vec{p}_{0} = -\left(\frac{e^{2}}{\varepsilon_{0}m}\frac{1}{\omega^{2}-\omega_{0}^{2}-2i\gamma\omega}\right)\vec{E}_{0} = \alpha(\omega)\vec{E}_{0}$$
$$\alpha(\omega) = -\frac{e^{2}}{\varepsilon_{0}m}\frac{1}{\omega^{2}} \qquad \alpha(\omega) = \frac{e^{2}}{\varepsilon_{0}m}\left(\frac{1}{\omega_{0}^{2}-\omega^{2}+2i\gamma\omega}\right)$$

Polarizability – many electrons

Dielectric constant and refractive index

Refractive index and phase velocity

Dielectric constant and absorption

Complex dielectric constant

$$\varepsilon_r(\omega) = 1 + \chi(\omega) = 1 + \frac{ne^2}{\varepsilon_0 m} \sum_i \frac{f_i}{\omega_i^2 - \omega^2 + 2i\gamma\omega}$$

Imaginary part

$$\varepsilon_{\text{imag}}(\omega) = \sum_{i} \frac{e^2}{\varepsilon_0 m} \frac{\gamma \omega f_i}{\left(\omega_i^2 - \omega^2\right)^2 + 4\gamma^2 \omega^2}$$

Refractive index

$$n = n_{\text{real}} + i\beta$$
$$\beta(\omega) \approx \frac{\varepsilon_{\text{imag}}(\omega)}{2n_{\text{real}}}$$

Attenuation coefficient

$$\mu(\omega) = \frac{2\beta(\omega)\omega}{c} = \frac{4\pi\beta(\omega)}{\lambda}$$

Acceleration and emitted field

Paolo Fornasini Univ. Trento

Free electron

$$\vec{r}(t) = \frac{e\vec{E}_0}{m} \frac{1}{\omega^2} e^{i\omega t}$$

Bound electron:

$$\vec{r}(t) = \frac{e\vec{E}_0}{m} \frac{1}{\omega^2 - \omega_0^2 - 2i\gamma\omega} e^{i\omega t}$$

$$\vec{a}(t) = -\frac{e\vec{E}_0}{m}e^{i\omega t} \quad \textbf{Acceleration} \quad \vec{a}(t) = -\frac{e\vec{E}_0}{m} \frac{\omega^2}{\omega^2 - \omega_0^2 - 2i\gamma\omega}e^{i\omega t}$$

$$\vec{E}_{out} = -\frac{\vec{E}_0}{r} r_e$$
 r_e Out field $\vec{E}_{out} = -\frac{\vec{E}_0}{r} r_e \frac{\omega^2}{\omega^2 - \omega_0^2 - 2i\gamma\omega}$

$$r_e = \frac{e^2}{4\pi\varepsilon_0 c^2 m}$$

Scattering amplitude (one point-like electron)

Resonant terms (one point-like electron)

$$A = A_{el} \left[\frac{\omega^2}{\omega^2 - \omega_0^2 - 2i\gamma\omega} \right]$$

$$= A_{el} \left[1 + \frac{\omega_0^2 + 2i\gamma\omega}{\omega^2 - \omega_0^2 - 2i\gamma\omega} \right] \approx A_{el} \left[1 + \frac{\omega_0^2}{\omega^2 - \omega_0^2 - 2i\gamma\omega} \right]$$

$$= A_{el} \left[1 + \frac{\omega_0^2(\omega^2 - \omega_0^2) + 2i\gamma\omega\omega_0^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2} \right]$$

$$= A_{el} \left[1 + \frac{\omega_0^2(\omega^2 - \omega_0^2)}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2} + i \frac{2\gamma\omega\omega_0^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2} \right]$$
Thomson term Real resonant term limaginary resonant term

Resonant terms (one point-like electron)

Paolo Fornasini Univ. Trento

connection with refractive index

$$\propto 2 - \varepsilon_{\rm real} = 2 - n_{\rm real}^2$$

Resonant absorption (one point-like electron)

Absorption coefficient (imaginary part of the refractive index)

$$\mu(\omega) = \frac{2\omega}{c}\beta(\omega) \approx \frac{2\omega}{c}\frac{\varepsilon_{imag}(\omega)}{2} \propto \frac{\gamma\omega^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2}$$
Imaginary part of scattering amplitude
$$A_{imag} \propto \frac{2\gamma\omega\omega_0^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2}$$

$$4_{imag} \propto \frac{2\gamma\omega\omega_0^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2}$$

$$4_{imag} \propto \frac{2\gamma\omega\omega_0^2}{(\omega^2 - \omega_0^2)^2 + 4\gamma^2\omega^2}$$

Paolo Fornasini Univ. Trento

4

5

0

 ω/ω

Total cross-section (one point-like electron)

One-electron atomic scattering factor

Many-electrons atoms, quantum picture

Paolo Fornasini Univ. Trento

Classical oscillator frequencies

Oscillations damping

Bohr frequencies, transitions between stationary states > large number of bound and > infinite free states

Photo-electric absorption

$$\mu(\omega) \propto \sum_{s} g(\omega_{s}) \delta(\omega - \omega_{s})$$

X-rays: resonance for localised inner shells, peaked density $\rho(r)$

$$f_e''(\omega,Z)$$

 $f'_e(\omega,Z)$

largely independent of K

Resonant scattering factor (a)

Paolo Fornasini Univ. Trento

Atom = assembly of oscillators at different frequencies

Resonant scattering factor (b)

> Thermal neutrons and electron scattering

X-rays and electrons

Paolo Fornasini Univ. Trento

X-rays (neglecting polarisation factor)

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = r_{e}^{2} \left|f_{0}\left(\vec{K}, Z\right)\right|^{2}$$
$$= \left|f_{X}\left(\vec{K}, Z\right)\right|^{2}$$

Radiation – matter interaction

$$f_0(\vec{K}) = \int \rho_e(\vec{r}) \, e^{i\vec{K}\cdot\vec{r}} dV$$

Electrons

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \left|f_{\rm el}\left(\vec{K}, Z\right)\right|^{2}$$

Central potential scattering – Born approx.

$$f_{\rm el}(\vec{K}) \approx \int \Phi(\vec{r}) \, e^{i\vec{K}\cdot\vec{r}} dV$$

Scattering lengths (form factors)

Fourier transforms

Electron scattering: Poisson equation

Paolo Fornasini Univ. Trento

Poisson equation:

$$\nabla^2 \Phi(\vec{r}) = -\left[\frac{\rho_+(\vec{r})}{\varepsilon_0} - \frac{\rho_-(\vec{r})}{\varepsilon_0}\right]$$

... for spherical symmetry:

$$\frac{\partial^2 \Phi(r)}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi(r)}{\partial r} = -\frac{1}{\epsilon_0} \left[\rho_+(r) - \rho_-(r) \right]$$

Potential:

 $\Phi(r) = \Phi_+(r) + \Phi_-(r)$

Boundary condition:

$$\Phi(r) \to 0 \quad \text{for} \quad r \to \infty \,.$$

Potential energy

$$E_p(r) = -e\Phi(r).$$

Electron scattering: potential energy

Paolo Fornasini Univ. Trento

Nuclear positive charge

$$\rho_+(r) = +Ze\,\delta(r)$$
$$\Phi_+(r) = \frac{1}{4\pi\epsilon_0}\,\frac{Ze}{r}\,.$$

Electron scattering: Mott-Bethe formula

Thermal neutrons: interaction with matter

Thermal neutrons as structural probe

Nuclear scattering intensity

Paolo Fornasin Univ. Trento

For one isotope:

$$I(\vec{K}) \propto \left|b\right|^2 = b^* b$$

Differential cross section
$$\frac{d\sigma}{d\Omega}$$

Total cross section

$$\frac{d\sigma}{d\Omega} = \left|b\right|^2 = b^* b$$

1.12

$$\sigma_{\rm tot} = 4\pi \left| b \right|^2$$

1

For different isotopes of the same atomic species randomly distributed within the material.

$$I(\vec{K}) \propto \left\langle b_i b_j \right\rangle$$

i,j label atomic sites (including i=j)

$$K = Q = \frac{4\pi\sin\theta_B}{\lambda}$$
Neutron scattering lengths

Paolo Fornasini Univ. Trento

lsotope	Z	А	b (10 ⁻¹⁵ m)
Hydrogen	1	1	-3.74
Deuterium	1	2	+6.67
Tritium	1	3	+4.94
Silicon	14	28	+4.11
Germanium	32	70	+8.4
Lantanum	57	139	+8.2
Gold	79	197	+7.63

 $b<0 \Rightarrow$ no π phase change on scattering

Scattering lengths (n.vs. X)

Atomic cross sections

X-rays, electrons, neutrons

Comparisons

Basic references

- J. Als-Nielsen and D. McMorrow: Elements of modern X-ray Physics, Wiley, 2011
- S. Mobilio, F. Boscherini, C. Meneghini editors: Synchrotron Radiation: basics, methods and applications, Springer 2014
- B.E. Warren: X-ray diffraction, 1969
- B.K. Vainshstein: Modern Crystallography, vol. 1, Springer 1981.
- S. Chen and M. Kotlarchyk: Interaction of photons and neutrons with matter. World Scientific, 1997
- International Tables for X-ray Crystallography, vol. 3 (Physical and Chemical Tables), D. Reidel Pub. Co.,1985
- B.T.M. Willis and C.J. Carlile: Experimental neutron scattering, Oxford Univ. Press, 2009