Elastic scattering from atomic aggregates Part 2

- Atomic aggregates
- Debye formula
- X-ray scattering from non-crystalline materials
- > X-ray scattering from crystals
 - Diffraction conditions
 - Experimental methods
 - The structure factor
 - ➤ The phase problem
 - Thermal effects
- Synchrotron Radiation and diffraction
- Neutron scattering

Paolo Fornasini University of Trento April 2017

X-ray scattering from crystals Diffraction conditions

Scattering from crystals: amplitude

Sum over lattice points

From amplitude to intensity

$$\begin{split} \left(\sum_{m} e^{i\vec{K}\cdot\vec{R}_{m}}\right) &\left(\sum_{n} e^{-i\vec{K}\cdot\vec{R}_{n}}\right) = \left(\sum_{m_{1}=0}^{N_{1}-1} e^{im_{1}\vec{K}\cdot\vec{a}_{1}}\right) \left(\sum_{n_{1}=0}^{N_{1}-1} e^{-in_{1}\vec{K}\cdot\vec{a}_{1}}\right) \times \cdots \times \cdots \\ &= \left(\frac{e^{iN_{1}\vec{K}\cdot\vec{a}_{1}}-1}{e^{i\vec{K}\cdot\vec{a}_{1}}-1}\right) \left(\frac{e^{-iN_{1}\vec{K}\cdot\vec{a}_{1}}-1}{e^{-i\vec{K}\cdot\vec{a}_{1}}-1}\right) \times \cdots \times \cdots \\ &= \frac{\sin^{2}\left(N_{1}\vec{K}\cdot\vec{a}_{1}/2\right)}{\sin^{2}\left(\vec{K}\cdot\vec{a}_{1}/2\right)} \times \cdots \times \cdots \\ e^{ix} = \cos x - i\sin x} \quad \sin^{2}\frac{x}{2} = \frac{1-\cos x}{2} \end{split}$$

Laue interference function (1-dim)

Interference conditions (3-dim)

$$I_{e.u.}(\vec{K}) = \prod_{i=1}^{3} \frac{\sin^{2}(N_{i}\vec{K} \cdot \vec{a}_{i}/2)}{\sin^{2}(\vec{K} \cdot \vec{a}_{i}/2)} |F(\vec{K})|^{2}$$

$$N^{2} \text{ if } \qquad (\textbf{0} \text{ otherwise})$$

$$\frac{N^{2} \text{ if }}{\sqrt{n^{2} \text{ if }}} \qquad (\textbf{0} \text{ otherwise})$$

$$\frac{1}{N^{2} \text{ if }} \qquad (\textbf{0} \text{ otherwise})$$

$$\frac{1}{N^{2} \text{ otherwise}}$$

$$\frac{1}{N^{2} \text{ if }} \qquad (\textbf{0} \text{ otherwise})$$

$$\frac{1}{N^{2} \text{ otherwise}}$$

$$\frac{1}{N^{2} \text{ other$$

Alternative derivation

Paolo Fornasini Univ. Trento

The scattered amplitude of a lattice is the FT of the lattice function

$$A_{\text{e.u.}}(\vec{K}) = \mathcal{F}[L(\vec{r})] = \sum_{\vec{T}} e^{i\vec{K}\cdot\vec{T}}$$

For an infinite crystal, the FT of the lattice function is a lattice in reciprocal space

$$\mathcal{F}[L(\vec{r})] = \frac{1}{V} \sum_{\vec{G}} \delta(\vec{K} - \vec{G})$$

 $\vec{K} = \vec{G}$

$$\left. \begin{array}{ccc} \vec{K} \cdot \vec{a}_1 = & 2\pi \, h \\ \vec{K} \cdot \vec{a}_2 = & 2\pi \, k \\ \vec{K} \cdot \vec{a}_3 = & 2\pi \, \ell \end{array} \right\} \quad (h, k, \ell \text{ integer})$$

The Bragg condition (a)

The Bragg condition (b)

The Ewald construction

Paolo Fornasini Univ. Trento

(2-dimensional projection)

The Ewald condition

Paolo Fornasini Univ. Trento

(2-dimensional projection)

End of k_0 vector = origin of reciprocal space

Interference condition:

$$\vec{K} = \vec{G}$$

Scattering vector = reciprocal lattice vector

The condition is very difficult to fulfill even for one reflection

while

A large number of reflections is sought for structure determination

Ewald: single crystal

Paolo Fornasini Univ. Trento

Single crystal <u>Mono</u>chromatic radiation

The crystal orientation is varied 4-circles diffractometer

Single crystal <u>Poly</u>chromatic radiation

Ewald: powders

Paolo Fornasini Univ. Trento

Single crystal <u>Mono</u>chromatic radiation

Powders <u>Mono</u>chromatic radiation

Many single crystals randomly oriented

Powder diffraction rinciple

Ewald sphere and limiting sphere

(2-D projection) Limiting sphere **Ewald** sphere $\lambda = \frac{2\pi}{k_{\text{in}}} \implies G_{\text{max}} = 2k_{\text{in}} = \frac{4\pi}{\lambda} \implies d_{\text{min}} = \frac{2\pi}{G_{\text{max}}} = \frac{\lambda}{2}$

$$\vec{K} = \vec{G}$$

fulfilled only if $\vec{G} \in$ limiting sphere

Further limitation: K-dependent atomic scattering factor

X-ray scattering from crystals Experimental methods

Monochromatic single crystal diffraction

Paolo Fornasini Univ. Trento

4-circles diffractometer

The sample orientation is varied with respect to the incident radiation

"White-beam" single crystal diffraction

Paolo Fornasini Univ. Trento

Forward scattering or backward scattering

Laue photograph of a complex silicate

Laboratory Powder Diffraction - Diffractometer

Laboratory Powder Diffraction – Debye-Scherrer camera

S.R. Powder Diffraction – Debye-Scherrer method

Laboratory powder diffraction

Powder Diffraction – Lab.vs.Synchrotron

Powder diffraction detection methods

X-ray scattering from crystals The structure factor

Structure factor

Paolo Fornasini Univ. Trento

Crystalline solids

$$\frac{d\sigma}{d\Omega} = r_e^2 \prod_{i=1}^3 \underbrace{\sin^2(N_i \vec{K} \cdot \vec{a}_i / 2)}_{i=1} \left| F(\vec{K}) \right|^2$$
Laue interference function Structure factor

Non-crystalline systems

$$\frac{d\sigma}{d\Omega} = r_e^2 |f(K)|^2 S(K)$$

Structure factor

Structure factor and selection rules

$$F\left(\vec{K}\right) = \sum_{\alpha} f_{\alpha} e^{i\vec{K}\cdot\vec{R}_{\alpha}}$$

$$= \sum_{\alpha} f_{\alpha} \exp\left[2\pi i(xh+yk+zl)\right]$$

$$\vec{K} = \vec{G} = h\vec{b}_{1} + k\vec{b}_{2} + l\vec{b}_{3}$$

Example: Orthorhombic lattice, Bragg reflections from (001) planes

Selection rules for fcc structure

$$F(\vec{K}) = \sum_{\alpha} f_{\alpha} e^{i\vec{K}\cdot\vec{R}_{\alpha}} \qquad \vec{R}_{\alpha} = \vec{K}$$
$$= \sum_{\alpha} f_{\alpha} \exp[2\pi i(xh + yk + zl)] \qquad \vec{K} = \vec{G} = k$$

$$\vec{R}_{\alpha} = x\vec{a}_{1} + y\vec{a}_{2} + z\vec{a}_{3}$$
$$\vec{K} = \vec{G} = h\vec{b}_{1} + k\vec{b}_{2} + l\vec{b}_{3}$$

Selection rules for diamond and zincblende

cubic conventional cell, 8 atoms per cell

Calculated pattern of Germanium (a)

Paolo Fornasini Univ. Trento

From selection rules:

$\left F\right ^2 = -$	0	hkl	mixed	
	$\int 32f^2$	hkl	odd	
]0	hkl	even	$h + k + l \neq 4n$
	$\left[64f^2\right]$	hkl	even	h + k + l = 4n

Cu Kα, λ=1.5425 Å

K-dependence of atomic scattering factor

Paolo Fornasini Univ. Trento

Cu Kα, λ=1.5425 Å

Lorentz factor in powder diffraction

Paolo Fornasini Univ. Trento

The intersections of the G spheres with the Ewald sphere are different for different G values

Lorentz factor
Calculated pattern of Germanium (d)

Paolo Fornasini Univ. Trento

for un-polarized beam

120

160

80

2 θ (deg)

Powder diffraction: info from peaks position

- Lattice constants
- Fingerprint (phases identification)
- Thermal expansion
- Defect structure
- Residual stresses

Powder diffraction: info from intensities

Powder diffraction: info from profile shape

• Perfect infinite sample	Dirac delta	
• Particle size broadening	$\Delta(2\theta) = k\lambda/L\cos\theta$	L = average size, k = constant
 Microstrain broadening 	$\Delta(2\theta) = \eta \tan \theta$	$\eta = strain$

Powder diffraction and structure refinement

1st step:	Peaks Indexing $ ightarrow$ size and symmetry of the unit cell				
2nd step:	Measured intensities -> Structure factor				
3rd step:	Structure factor \rightarrow Structural model guess				
4th step:	Refinement of structural model				
	by fit to the entire powder profile (Rietveld method)				

Getting structural info from scattering The phase problem

Structure factor and electron density

Paolo Fornasini Univ. Trento

The structure factor is the F.T. of the electron density of a cell

$$F(\vec{K}) = \sum_{\alpha} f_{\alpha}(\vec{K}) e^{i\vec{K}\cdot\vec{R}_{\alpha}}$$

$$= \sum_{\alpha} \left[\int_{\alpha} \rho_{\alpha}(\vec{r}) e^{i\vec{K}\cdot\vec{r}} d\vec{r} \right] e^{i\vec{K}\cdot\vec{R}_{\alpha}}$$

$$= \int_{\text{cell}} \rho(\vec{r}) e^{i\vec{K}\cdot\vec{r}} d\vec{r}$$

$$F(-\vec{K}) = F^{*}(\vec{K})$$

$$F(-\vec{K})^{2} = \left|F(\vec{K})\right|^{2}$$
Friedel law

Discrete diffraction peaks

$$\rho(\vec{r}) = \frac{1}{V} \sum_{h,k,\ell=-\infty}^{+\infty} F(hk\ell) \exp[-2\pi i(xh+yk+z\ell)]$$

The phase problem

The Patterson method

Paolo Fornasini Univ. Trento

The Patterson function is the F.T. of the scattered intensity

$$P(\vec{R}) = \frac{1}{V} \sum_{h,k,\ell=-\infty}^{+\infty} I(hk\ell) \exp[-i\vec{K}\cdot\vec{R}],$$

and corresponds to the density-density autocorrelation function

$$P(\vec{R}) = \left\langle \rho_e(\vec{r}) \rho_e(\vec{R} - \vec{r}) \right\rangle$$

The Patterson map gives peaks in correspondence of all interatomic vector distances, translated at the origin of real space (3D RDF).

Effects of atomic vibrations

Static crystal approximation

Paolo Fornasin Univ, Trento

Beyond the static crystal approximation: atomic vibrations

• zero point thermal

Effect of atomic vibrations (monatomic crystal)

Average over instantaneous displacements

Debye-Waller factor (monatomic crystals)

Paolo Fornasini Univ. Trento

Two equal atoms

$$e^{-\frac{1}{2}\left\langle \left(\vec{K}\cdot\vec{u}_{m}\right)^{2}\right\rangle} e^{-\frac{1}{2}\left\langle \left(\vec{K}\cdot\vec{u}_{n}\right)^{2}\right\rangle} = e^{-2W(T,K)}$$

Partition of total scattering intensity

Laue scattering

Diffuse scattering

Paolo Fornasini Univ. Trento

Benzil, $C_{14}H_{10}O_2$

Wüstite, $Fe_{1-x}O$, viewed down [001],

Complex distribution of defect clusters (structural disorder)

Synchrotron Radiation and diffraction

Tunability

Possibility of selecting the beam energy

High energy > High K > useful for amorphous systems

Tunability and resonant scattering

Paolo Fornasini Univ. Trento

MAD (Multi-wavelength Anomalous Diffraction)

Possibility of distinguishing neighbouring elements (similar Z)

> Partial PDF in non-crystalline materials: M(M+1)/2

- > Angular accuracy, better indexing of patterns
- > Better extraction of intensities, structure solution
- In-situ dynamic measurements
- ➢ Grazing incidence → surface structure
- Pressure studies

High pressure studies

In-situ dynamic studies

Macromolecular crystallography (MX)

Paolo Fornasini Univ. Trento

High intensityTunabilityCollimation

A schematic representation of the structure of F1-ATPase, which contains the catalytic sites where ATP is synthesised.

Macromolecular crystals

Production of single crystals from supersaturated solution

- Trial and error empirical approaches
- High purity requirements
- Nucleation, growth, end of growth
- Growth time varying from hours to months
- Improved quality under 'microgravity' conditions (in space)

Crystals of organic materials

- Volume < 0.1 mm³, lattice parameters > 100 Å
- Linear size 10-100 μm
- Weak interaction between molecules
- Stabilisation energy < protein folding energy
- Poor mechanical stability, high solvent content

Protein and virus crystals, grown on Space Stations

Diffraction by macromolecular crystals (1)

Paolo Fornasini Iniv. Trento

Sample

- Contained in thin-walled capillary, together with solvent
- Capillary mounted on goniometer head for orientation
- Cooling to LN to reduce radiation damage (fast freezing to avoid water cryst.)

Measurement set ups

- 1. Monochromatic X rays > rotation of the crystal
- 2. White beam Laue technique

Radiation damage

- Absorption of X-rays > free radicals (OH) > damage the proteins
- Lower for higher energies (reduced absorption)
- Reduced by cooling the sample

Diffraction by macromolecular crystals (2)

The phase problem

Various methods available > estimate of the electron density

Model building

Crystallographic refinement (least squares)

Neutron scattering

Elastic neutron scattering

Paolo Fornasini Univ. Trento

For each pair of positions m,n: $\langle b_m b_n \rangle$ = average over isotopes and nuclear spins

Neutron cross sections (a)

Neutron cross sections (b)

$$\frac{d\sigma}{d\Omega} = \sum_{m} \sum_{n} \langle b_{m} b_{n} \rangle e^{i\vec{k}\cdot\vec{k}_{mn}}$$
Alternative derivation
$$\left\langle b_{m} b_{n} \rangle = \begin{cases} \langle b^{2} \rangle & \text{if } m = n \\ \langle b_{m} \rangle \langle b_{n} \rangle = \langle b \rangle^{2} & \text{if } m \neq n \end{cases} \xrightarrow{\langle b_{m} b_{n} \rangle = \langle b \rangle^{2} + \delta_{mn} \left[\langle b^{2} \rangle - \langle b \rangle^{2} \right] \\ \text{mean variance} \end{cases}$$

$$\frac{d\sigma}{d\Omega} = \langle b \rangle^{2} \sum_{m,n} e^{i\vec{k}\cdot\vec{k}_{mn}} + N \left[\langle b^{2} \rangle - \langle b \rangle^{2} \right]$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{coherent}} + \left(\frac{d\sigma}{d\Omega} \right)_{\text{incoherent}}$$

Coherent and incoherent elastic scattering

An example: random spins

Examples for different isotopes

Paolo Fornasini Univ. Trento

Nuclide	σ_{coh}	$\sigma_{\sf inc}$	Nuclide	σ_{coh}	$\sigma_{\sf inc}$
¹ H	1.8	80.2	V	0.02	5.0
² H	5.6	2.0	Fe	11.5	0.4
С	5.6	0.0	Со	1.0	5.2
0	4.2	0.0	Cu	7.5	0.5
AI	1.5	0.0	³⁶ Ar	24.9	0.0

• Difference between hydrogen and deuterium

• Vanadium is used for containers

http://webster.ncnr.nist.gov/resources/n-lengths/

Silica: neutrons .vs. X-rays

Amorphous SiO₂

Basic references

Paolo Fornasini Univ. Trento

- J. Als-Nielsen and D. McMorrow: Elements of modern X-ray Physics, Wiley, 2011
- S. Mobilio, F. Boscherini, C. Meneghini editors: Synchrotron Radiation: basics, methods and applications, Springer 2014
- B.E. Warren: X-ray diffraction, 1969
- B.K. Vainshstein: Modern Crystallography, vol. 1, Springer 1981.
- S. Chen and M. Kotlarchyk: Interaction of photons and neutrons with matter. World Scientific, 1997
- International Tables for X-ray Crystallography, vol. 3 (Physical and Chemical Tables), D. Reidel Pub. Co., 1985
- B.T.M. Willis and C.J. Carlile: Experimental neutron scattering, Oxford Univ. Press, 2009