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Preface

In the introductory courses on Physics it is customary to present the laws of Thermodynamics
and the connected physical quantities: temperature, interna energy and entropy. Examples and
exercises are generally limited to very simple systems, such as mono- and bi-atomic ideal gases. To
the majority of students Thermodynamics reduces to the science of thermal engines and entropy
remains a vague concept. The widespread areas of applications of Thermodynamics, the formal
elegance of its mathematical apparatus as well as the statistical interpretation of its basic concepts
are thus generally ignored.

The present lectures address university students already acquainted with the rudiments of Ther-
modynamics. Their aim is to go deeper into the basic concepts as well as to open a perspective on
the many possible applications of Thermodynamics.

The first three parts are devoted to the introduction of the basic concepts according to three dif-
ferent approaches: the classical approach based on cyclic transformations, the axiomatic approach
based on the coordinates and on the maximum entropy principle, and the statistical approach.

The fourth and fifth parts are devoted to applications that are particularly important from both the
scientific and technical points of view: magnetic systems, low temperatures and phase transitions.

The sixth part is an introduction to the Thermodynamics of irreversible processes.

The seventh part contains a collection of different applications, such as the kinetic model and the
statistics of ideal gases and the Thermodynamics of crystals.

In the Appendices the reader can find some notes on the historical development of Thermodynam-
ics, short biographical notes on relevant scientists as well as a number of useful tables.
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Part I

The laws of Thermodynamics
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This Part I is dedicate to the basic laws of Thermodynamics: zeroth law, first law and second
law (the third law will be considered later on, Part IV, Chapter 20). Correpondingly, the three
thermodynamical quantities temperature, internal energy and entropy are introduced.

The reader is supposed to be already familiar with the basics of Thermodynamics. This Part I
contains a critical revision and some extensions of concepts supposed already known, and represents
the phenomenological base for the axiomatic treatment of the Part II.



Chapter 1

Basic concepts

In this introductory chapter, we define the field of study of Thermodynamics, clarify the concept
of thermodynamic system and attempt a general classification of thermodynamic systems.
We emphasise the main differences between Mechanics and Thermodynamics in terms of systems
considered, methods of approach and physical quantities quantities

1.1 Thermodynamic systems and phenomena

The first question to be answered is: which physical systems are studied by Thermodynamics?
Historically, Thermodynamics was developed, in the first half of the XIX century, to give a con-
ceptual framework to the processes in which mechanical work is obtained from heat; hence the
very name Thermo-dynamics. In these applications, the thermodynamic system is typically a fluid
that, within a thermal engine, undergoes a series of cyclic transformations which allow the partial
conversion of heat into mechanical work.
Subsequently, the principles and methods of Thermodynamics were extended to a number of other
systems and phenomena, such as chemical reactions, phase transformations, diffusion phenomena,
magnetisation and electrical polarisation, and so on.
All these phenomena cannot be described, at least from a macroscopic point of view, in purely
mechanical terms. New quantities (such as temperature, internal energy, heat, entropy) and new
laws, the laws of Thermodynamics, have to be introduced, to which this Part?? is dedicated.

In the second half of the XIX century, the atomic structure of matter becomes more and more
evident. Correspondingly, one attempts at explaining thermodynamic phenomena in mechanical
terms, starting from the atomic structure of matter and the interactions between the atoms. The
microscopic approach, initiated with the kinetic model of ideal gases, finds its highest expression
with the general theory of statistical mechanics (which will be considered in Part III).

The knowledge of the atomic structure of matter allows us to answer the initial question: what is
a thermodynamic system?
Thermodynamics deals with the description of macroscopic systems containing a very large number
of elementary entities, like atoms or molecules, and of their transformations. The very presence
of a huge number of elementary constituents gives rise to the emergence of some properties that
cannot be described in purely mechanical terms at the macroscopic level (typically, the thermal
properties, which demand the introduction of a non-mechanical quantity, the temperature).
Statistical Thermodynamics explains how the thermodynamical properties are the average effect
of the mechanical behaviour of a large number of elementary constituents. The larger the number
of elementary constituents, the smaller are the fluctuations of some quantities with respect to their
average values. When the fluctuations are sufficiently small, the average macroscopic behaviour
can be conveniently described in terms of macroscopic Thermodynamics.

Example 1: Let us consider a nitrogen molecule N2 belonging to the air mass of a given room.
Our molecule continuously interacts with other molecules, so that its kinetic energy is con-

3
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tinuously changing. The instantaneous values of the kinetic energy are well defined , but the
fluctuations with respect to the average value due to the collisions are very large. There is no
thermodynamic description of the state of a molecule and we cannot speak of the temperature
of a molecule. A molecule is not a thermodynamic system.

Example 2: Let us now consider a copper block lying in the same room. The copper block
continuously exchange energy with the air, as a consequence of the collisions of air molecules.
However, due to the huge number of copper atoms constituting the block, the fluctuations
with respect to the average value of the energy are extremely small, practically negliglible.
One can thus give a thermodynamic description of the copper block, with a well defined value
of internal energy and temperature. The copper block is a thermodynamic system.

The larger is the number of atoms in the system, the more significant is its thermodynamic descrip-
tion. There is no neat border between thermodynamic systems and non-thermodynamic systems.
Statistical thermodynamics allows one to quantitatively study the extent of the fluctuations as a
function of the number of atoms. As a rule of thumb, one can consider as thermodynamic systems
the systems composed by a number of atoms of the order of the Avogadro number, say ∼ 1023.

Classification of thermodynamic systems

A thermodynamic system can interact with other systems, globally called its surroundings, ex-
changing matter and/or energy.

According to these properties, thermodynamic systems can be classified into three main categories.

(a) Isolated systems cannot exchange nor matter nor energy with their surroundings.
A gas enclosed in an impermeable vessel, with rigid and insulating walls (e.g. a Dewar flask)
is an example of isolated system.

(b) Closed systems can only exchange energy with their surroundings.
A gas enclosed in an impermeable metal cylinder with a movable piston is an example of a
closed non isolated system.

(c) Open systems can exchange both matter and energy with their surroundings.
A flux chemical reactor and a biological cell are examples of open systems.

A further classification can be done according to the system homogeneity. A multicomponent
system is

(a) Homogeneous if it contains only one phase, such as a gas within a bottle or a copper block.

(b) Inhomogeneous if it contains more than one phase, such as a liquid in equilibrium with its
vapour or an ice block in equilibrium with liquid water at zero degrees Celsius.

In this Chapter we try to better define the thermodynamic systems and their purely thermodynamic
properties by analyzing some relevant differences between the thermodynamic approach and the
macroscopic mechanical approach.

1.2 Thermodynamic state and thermodynamic coordinates

A first step to understand the peculiarities of Thermodynamics consists in studying the difference
between mechanical and thermodynamical states as well as between purely mechanical coordinates
and thermodynamical coordinates. Only classical Mechanics is here considered; the differences
between classical and quantum Mechanics are irrelevant for the present discussion.

As already stated, we are interested in systems composed of a very large number of atoms, of the
order of Avogadro number.
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1.2.1 Inadequacy of mechanical description

In classical mechanics, the dynamical state of a macroscopic system composed of a large number
of atoms is described by a small number of parameters (macroscopic mechanical coordinates).

Example 1a: The dynamical state of a rigid body is defined by the position of the center of mass
~rcm, by the three Euler angles α, β, γ that give the spatial orientation, by the center of mass
velocity ~vcm and by a vectorial angular velocity ~ω. In total 12 scalar quantities. The volume
V of the rigid body is constant.

Example 2a: Let us consider a homogeneous gas contained in a rigid metal vessel. The macroscopic
dynamical state is defined by position and velocity of the center of mass, by the spatial
orientation of the vessel as well as by a possible angula velocity vector. The volume V is
constant.

According to common experience, many phenomena exist that cannot be simply described by the
dynamical coordinates.

Example 1b: Let us consider a solid body, such as a metal block. In some cases the solid can be
considered as a rigid body and its dynamical state can be described by the 12 scalar quantities
considered in the Example 1a. In other cases, however, the solid doesn’t behave as a rigid
body and undergoes modifications that cannot be described by the 12 scalar quantities of
the Example 1a. For example, the volume V can be varied if the solid is in contact with a
heat source or if the hydrostatic pressure p of the surrounding air is modified. One can also
observe that the relation between pressure p and volume V can be modified if the solid is put
in contact with different heat sources.

Example 2b: Let us consider again, as in the Example 2a, a gas contained in a rigid metal vessel
(constant V ) and rub the external walls of the vessel for a sufficiently long time. Notwithstand-
ing the position and velocity of the center of mass are unaltered, and no macroscopic rotation
with respect to the center of mass is present, the state of the system undergoes a modification.
The change escapes a description in terms of macroscopic dynamical coordinates, but can be
described by considering the variations of the pressure p of the gas. If we now consider as a
vessel a cylinder with a movable piston, say a vessel with variable volume, one can observe
that the rubbing can give rise to variations of both the volume V and the pressure p.

The properties that have been described in Examples 1b and 2b can be connected to the microscopic
structure of systems at the atomic level. In principle, one could think of resorting to a purely
mechanical description, based on the dynamical coordinates of each microscopic entity. Such a
description, however, in view of the large number of microscopic consituents (of the order of 1023)
is practically impossible, and, even if possible, would be devoid of any real usefulness.

Example: A cubic centimeter of air at T = 300 K and p = 1 bar contains about 2.7×1019 molecules,
with average velocity 〈v〉 ' 500 m s−1 and mean free path λ ' 10−7 m; each molecule undergoes
about 5× 109 collisions per second.

1.2.2 Thermodynamical description

Thermodynamics specifically deals with phenomena that depend on the very large number of
elementary constituents of a system and cannot be described in terms of macroscopic mechanical
coordinates.

The motion of the center of mass has no relevance for Thermodynamics. The thermodynamic
behaviour of a system is thus studied within the reference frame of the center of mass. Also the
motion of the whole system with respect to the center of mass, like the rotation of a rigid body,
has no thermodynamic relevance.

The thermodynamic state of a system is described by a limited number of quantities, called ther-
modynamic coordinates. The simplest systems can be described by two independent thermody-
namical coordinates; for example, the thermodynamical state of a simple substance, such as those
considered in the examples 1b and 2b, can be described by the values of pressure p and volume V .
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The choice of thermodynamical coordinates for a given system is not univocal; different choices
can be best suited to different situations fo the same system. Different choices can give rise to
different approaches of Thermodynamics (§ 1.4).
It is convenient to distinguish two types of thermodynamic coordinates:

(a) Extensive coordinates, whose value depends on the system size (a typical example is volume);
more precisely, te value of extensive coordinates is proportional to the mass of the system;

(b) Intensive coordinates, whose value does not depend on the system size (a typical example is
pressure)

If a system is divided in two equal parts, the values of the extensive coordinates of each part are
one half of the value of the entire system, while the values of the intensive coordinates of the two
parts are equal to the value of the entire system.
Extensive and intensive coordinates can be grouped into pairs of conjugate variables.

Example: For a gas, volume V and pressure p are conjugate variables; for an elastic spring, length
` and tension τ are conjugate variables; for a magnet, magnetization M and magnetic field H
are conjugate variables.

Note: It is worth noting that a set of solely intensive coordinates in insufficient to describe the
thermodynamic state of a system, since it does contain information on the system size.

1.2.3 Micro-macro connection

The thermodynamic coordinates of a system depend on the microscopic structure at the atomic
and subatomic levels. As already noted, one cannot establish a rigorous quantitative connection be-
tween the macroscopic thermodynamic coordinates and all the dynamic coordinates of microscopic
constituents.
However, just because of the very large number of microscopic constituents (' 1023), one can
obtain an effective quantitative connection through a probabilistic approach. To this effect, the
microscopic behaviour is considered perfectly random, provided some constraints are taken into
account, such as the conservation of energy or of the number of particles. Because of the very
large number of constituents, the mean value of some quantities is particularly stable, and can be
connected to the macroscopic thermodynamic coordinates.
The kinetic model of ideal gases allows one to express the pressure and temperature as a function
of the mean kinetic energy of the molecular translational motion. Statistical thermodynamics, to
be considered in Part III, is a more general approach, that allows one to connect the macroscopic
coordinates to the energy distribution of the microscopic constituents for any system.

The larger the system, the more precise is its description and the less significnt are the details
neglected by limiting the number of coordinates (thermodynamic limit).

Note 1: The kinetic model of ideal gases is charactrised by the proportionality of temperature to
average kinetic energy, so that the two quantities are equivalent. The equivalence is not true
for other systems.

Note 2: The term “microscopic” is here conventionally used to indicate objects and phenomena at
atomic or molecular scale. Elsewhere, “microscopic” refers to objects of micro-meter size and
“nanoscopic” to objects of nano-meter size.

1.2.4 Energy

The law of Physics are assumed to be invariant with respect to time, say they are not modified by
the flow of time. As a consequence of this symmetry with respect to time translations, one can
demonstrate that the four fundamental interaction forces (gravitational, electromagnetic, strong
nuclear and weak nuclear) are conservative.

In a mechanical microscopic description, the interactions between the atoms of a system are due to
conservative forces (it is generally sufficient to consider electromagnetic forces). In a transformation
of a given system from an initial to a final state the conservation law holds:
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(a) if the system is isolated: ∆Ek + ∆Ep = 0

(b) if the system is not isolated: ∆Ek + ∆Ep = W

where the symbol ∆ means variation, Ek is the sum of the kinetic energies of the atoms, Ep are
the total potential energy due to all the interatios within the system of the system, and W is the
total work made on the system by the environment.

It should be anyway noted that it is generally very difficult, if not impossible, to take rigorously
into account all the interactions present in a system.

Let us now consider the mechanical macrosopic description of system composed by a large number
of atoms. The kinetic and potential energies are now expressed as a function of the macroscopic
coordinates (position and velocity of the center of mass and so on). When the system undergoes
a transformation from an initial to a final state, macroscopic nonconservative forces, like friction,
have always to be taken into account. The conservation of mechanical energy has to be considered
only as an approximation, valid in the absence of friction. Strictly speaking, for macroscopic
systems:

(a) For an isolated system ∆Ek + ∆Ep 6= 0

(b) For a non-isolated system, ∆Ek + ∆Ep 6= W

Example: Let us consider a spring within a perfectly isolated vessel. Initially the spring is elongated
beyond its equilibrium length. Once left free, the spring oscillates, but the amplitude of
oscillations is progressively reduced to zero. Notwithstanding that the system is isolated,
the macroscopic mechanical energy is not conserved due to the presence fo non-conservative
friction forces.

In the thermodynamic description, the concepts of macroscopic energy of a system and of energy
transport are somewhat enlarged with respect to a purely mechanical description, in order to allow
the assumption of conservation of energy for any transformation of a macroscopic isolated system
(first law of thermodynamics, Chapter 3).

The conservation of energy in Thermodynamics is anyway depending on the conservative character
of the fundamental interaction forces at the microscopic level.

1.3 Equilibrium

1.3.1 Mechanical equilibrium

For a conservative mechanical system, the conditions of mechanical equilibrium and its stability
are related to the shape of the hypersurface Ep(qi) of the potential energy as a function of the
generalized coordinates qi. For the sake of simplicity, let us refer here to a system depending on
one coordinate x (for example, think of the rail of a roller-coaster, where x is the distance along
the projection on the horizontal plane, and Ep = mgh).

One gets mechanical equilibrium when dEp/dx = 0, so that the force is zero. If the body is at rest,
one has the condition of static equilibrium.

The equilibrium is said to be stable if the function Ep(x) has a minimum, total or local; a dis-
placement from the position of stable equilibrium gives rise to a force that tends to restore the
equilibrium situation. For the points of local minimum one often speaks of metastable equilibrium.

The equilibrium is said to be unstable in the points of maximum or of inflection of the function
Ep(x); a displacement from the position of unstable equilibrium gives rise to a force that tends to
further increase the displacement.

For a system out of mechanical equilibrium, the laws of dynamics allow one to describe the me-
chanical behaviour of the system. The laws of mechanics represent a deterministic criterion of
evolution.
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One finds experimentally that a system, in spite of being in a state of mechanical equilibrium, can
undergo modifications related to a change of its thermodynamic coordinates. Let us consider here
some examples.

Example 1: A cylinder is divided in two parts by a movable piston. Initially the iston is fixed and
the two parts of the cylinder contain a gas at different pressures. When the piston is left free
to move, the system undergoes a transformation towards a final stte where the two pressures
are equal. The state of mechanical macroscopic equilibrium is not altered.

Example 2: A metal block placed on a heating surface maintains its mechanical equilibrium, but
undergoes a modification of its state because of the heat exchange.

Example 3: A volume of water into which an ink drop is poured maintains its mechanical equi-
librium, but undergoes a modification of its state, because of the ink diffusion, corresponding
to a microscopic transport of matter.

Example 4: During a chemical reaction, a system can maintain its mechanical equilibrium, but
its state is somewhat modified

1.3.2 Thermodynamical equilibrium

A state of thermodynamic equilibrium is a state where three different types of equilibrium are
contemporarily present:

1. Mechanical equilibrium, say equilibrium with respect to the forces that can modify the ther-
modynamic coordinates.
Let us stress the difference between the mechanical equilibrium here defined in relation to the
thermodynamical coordinates and the mechanical equilibrium considered above and related
to the function Ep(qi). See also the Note below.
Two thermodynamical systems connected by a movable wall are in mechanical equilibrium
when characterised by the same pressure p.

2. Thermal equilibrium, say equilibrium with respect to the heat exchanges; the concept will be
better specified in Chapter 2, together with the introduction of the zeroth law of thermody-
namics.
As we will see, two thermodynamical systems connected by a heat-conducting wall are in
thermal equilibrium when characterised by the same temperature.

3. Chemical equilibrium, say equilibrium with respect to chemical reactions and microscopic
transport of matter.
A new quantity will be introduced in Part II, the chemical potential µ, that has the same
role in chemical equilibrium as pressure and temperature have in mechanical and thermal
equilibrium, respectively.
Two thermodynamical systems connected by a wall permeable to the exchange of matter are
in thermal equilibrium when characterised by the same chemical potential.

In order that a system be in thermodynamic equilibrium, all three forms of equilibrium (mechanical,
thermal and chemical) have to be present between the system and its surroundings as well as
between the different parts of the system.

Note: It is important to pay attention to the meaning of mechanical equilibrium in thermodynamics.
A free-falling gas bottle, although not in equilibrium from a mechanical point of view, is in
thermodynamic equilibrium, because the motion of the center of mass is thermodynamically
irrelevant. If the gas is instead contained in a cylinder closed by a moving piston, and the
pressure is different on the two sides of the piston, then the lack of mechanical equilibrium
has thermodynamic relevance, because it can cause a modification of the volume, which is a
thermodynamic coordinate.

Even if there are no external stresses, a system in thermodynamic equilibrium continuously un-
dergoes spontaneous breakdowns of the equilibrium conditions, due to local fluctuations of pres-
sure, temperature, concentration of components. Such fluctuations represent a spontaneous local
breaking of equilibrium, from which however the system spontaneously recovers. Thermodynamic
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equilibrium is necessarily stable. The conditions for the stability of thermodynamic equilibrium
are studied in Part II, at § 9.6.

Classical thermodynamics only considers systems in thermodynamic equilibrium. For a system
out of equilibrium, the thermodynamic coordinates are generally not defined, and the state of the
system cannot be described. There is no evolution criterion for thermodynamic systems similar to
the evolution criterion of purely mechanical systems, able to describe deterministically and step by
step the variation of the system coordinates. It is nevertheless possible to introduce an evolution
criterion that establishes a relation between two equilibrium states, an initial one and a final one
(the law of increase of entropy for isolated systems, Cap ??).
A thermodynamics of irreversible processes has been developed, that describes the behavior of
systems not too far from equilibrium by means of specific techniques (Part VI).

A far from trivial problem, which will be considered later on, is the operative definition of thermo-
dynamic equilibrium: how can we experimentally determine whether a system is in equilibrium?

1.3.3 Transformations

When the conditions under which a given system is in thermodynamic equilibrium are modified,
the system undergoes a transformation at the end of which the system is in a new equilibrium
state, characterised by new values of the thermodynamic coordinates.
Let us label by i and f the initial and final equilibrium states, respectively. The intermediate
states of transformation i→ f are non-equilibrium states and thus, in principle, not suitable for a
thermodynamic description.

Example: A copper block, initially in equilibrium at room temperature, is immersed in boiling
water. The block leaves its initial equilibrium state i and undergoes a transformation during
which its temperature is progressively raised and finally it finishes in a new final equilibrium
state f .

1.3.4 Quasi-static transformations

A thermodynamic transformation can be described, even if only approximately, when the inter-
mediate states differ very little (in principle infinitesimally) from equilibrium states. One such
transfrmation is said to be quasi-static. A quasi-static transformation can be conceived as a suc-
cession of equilibrium states and can be thus graphically represented in a state diagram.
In order for a transformation to be considered quasi-static, it is necessary that the system pro-
gressively undergo infinitesimal imbalances of pressure, temperature, chemical potential or other
possible thermodynamical coordinates.

Example: Let us again consider the example of the copper block. To approximate a quasi-static
i→ f transformation, the block should be put in contact with different systems of progressively
increasing temperature.

1.3.5 System and environment

When a system s undergoes a transformation from an initial state is to a final state fs, its envi-
ronment generally undergoes a transformation from an initial state ie to a final state fe too. In
some cases in can happen that fa = ie, say the environment doesn’t undergo anu modification as
a consequence of the system transformation.

1.3.6 Reversibility and Irreversibility

The notion of reversibility of a transformation plays a fundamental role in Thermodynamics.
Le us stress that the meaning of reversibility in Thermodynamics shouldn’t be mistaken for its
meaning in the common language; reversibility and irreversibility are explicitly and rigorously
defined in Thermodynamics.
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Even if the restrict our attention to the purely scientific field, one can single out at least three
different meanings of the term “reversibility”.

1) A first meaning of reversibility concerns systems in thermodynamic equilibrium (mechnical,
thermal, chemical) for which a suitable variation of an external parameter can give rise to a
variation of the state in one direction or in the opposite direction.
For example, a chemical reaction A+B ⇀↽ C +D is said to be reversible if there is an equi-
librium between the reagents A,B and the products C,D. The equilibrium can be modified
towards left or towards right by suitably modifying one of the external parameters, such as
the temperature
This kind of reversibility is different from the thermodynamic reversibility we are here inter-
ested in.

2) A second meaning of reversibility concerns the dependence on time of the physical laws. A
physical process is said to be reversible if it is described by a law invariant with respect to
the inversion of the time axis, say with respect to the substitution of t with −t.
The fundamental interactions are reversible in this sense (with the exception of some processes
of weak nuclear interaction).
In particular, the processes at the atomic level in whichever thermodynamic system are
reversible. One generally speaks of “microscopic reversibility”. Also the mechanics of celestial
bodies is reversible with very good approximation.

3) Thermodynamic reversibility is defined as follows. The transformation of a system s from an
initial state is to a final state fs is said to be reversible if one can bring back the system to
the initial state is contemporarily bringing its environment e to its initial state ie.

As we will se in Chapter 4, the Second Law of Thermodynamics assumes the irreversibility of two
well defined processes and, as a consequence that can be demonstrated, the irreversibility of all
spontaneous macroscopic processes.

In macroscopic systems also the purely mechanical reversibility is not verified, due to the unavoid-
able friction forces that depend on velocity and are thus not invariant with respect to the direction
of time. In general, all real transformations of macroscopic systems (characterised by friction
forces, heat conduction, diffusion phenomena and so on) are thermodynamically irreversible.
As a simple example, we can consider a ball that is left to fall from a given height and is bounced
on the ground. If at a given time the direction of velocity is inverted, the ball will not retrace the
same previous dynamical states.

The connection between microscopic reversibility and macroscopic reversibility is still a problem
of scientific and epistemological relevance.

Although it is impossible to completely eliminate the irreversibility in real macroscopic processes,
equilibrium Thermodynamics largely resorts to reversible transformations, o be considered as lim-
iting transformations..
In order that a transformation could be considered as reversible, it shoud contemporarily be

• quasi-static,

• free from dissipative effects (friction).

1.3.7 Evolution criteria

As we will se in Chapter 4, the Second Law of Thermodynamics establishes evolution criteria of
general validity for natural phenomena. For example, for an isolated system the evolution criterion
is connected to the variation of a state function, the entropy S: an isolated system, initially in
equilibrium in an equilibrium state is, can spontaneously evolve towards a final equilibrium state
fs only if the entropy of the final state is not inferior to the entropy of the initial state. Fo non
isolated systems equivalent evolution criteria have been developed, which will be introduced in
Part II.
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Such evolution criteria allow one only to decide whether a system can spontaneously go from an
initial equilibrium state is to a final equilibrium state fs. Contrary to Mechanics, equilibrium
Thermodynamics cannot follow step by step the evolution of a system through its non-equilibrium
states.

Let us anyway mention that a Thermodynamic of irreversible processes also exists, which can
describe the systems evolution provided the deviation from equilibrium is sufficiently small.To an
introduction to the Thermodynamic of irreversible processes Part is devoted.

1.4 Classifications of Thermodynamics

To conclude this introductory chapter, let us attempt a schematic classification of the different
phenomena studied by Thermodynamics and of the different possible approaches.

Equilibrium Thermodynamics

Thermodynamics has achieved a very high degree of accuracy in describing systems at equilibrium.
Two different main approaches to equilibrium Thermodynamics can be single out:

1. Macroscopic thermodynamics (sometimes referred to as classical Thermodynamics), which
can in turn be treated according to two different approaches:

1a. an empirical approach, based on the empirical laws of thermodynamics (Part I of this
book)

1b. an axiomatic approach, based on the variational principle of maximum entropy (Part II
of this book)

2. Statistical thermodynamics (of which an introductory account will be given in Part III of
this book)

1.4.1 Non-equilibrium Thermodynamics

Two different approaches can be used also for a thermodynamic description of systems out of
equilibrium.

1. Macroscopic approach, also referred to as Thermodynamics of irreversible processes (Part VI
of this book)

2. Macroscopic approach, also referred to as hpysical kinetics (not considered in this book)
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Chapter 2

The Zeroth Law of
Thermodynamics: Temperature

Temperature is one of the physical quantities that characterise the thermodynamic behaviour of
a macroscopic system. The intuitive idea of temperature dates bak to ancient Greece and ancient
Rome, where itv was connected to the human body physiology by the physicians Hippocrates and
Galen.
The temperature ceases to be a subjectively evaluated quantity and becomes a measurable physical
quantity at the beginning of 1600, with the invention of the first thermometer by Galileo Galilei.
The definition of temperature is nowadays base on the properties of thermal equilibrium between
different systems, which have been proposed as a postulate by the british physicist R.H. Fowler
around 1930. Since at that time the First and Second Laws were already well established, the new
postulate, which is logically precedent, was called Zeroth Law. La definizione di temperatura è
oggi basata sulle proprietà dell’equilibrio termico tra sistemi, che sono state proposte come assioma
da parte del fisico inglese R. H. Fowler intorno al 1930. Poiché in quell’epoca il Primo e il Secondo
Principio erano già ben consolidati, il nuovo assioma, che dal punto di vista logico li precede, è
stato chiamato Principio Zero.

2.1 Thermal equilibrium and its properties

The thermodynamic coordinates describe the state of a system only with reference to its properties
of thermodynamic interest, say the properties depending on the presence and behaviour of a large
number of elementary constituents. In what follows we consider, for simplicity, a system that can
be described by only two independent thermodynamic coordinates, that will be labeled as X,Y
(they could be, for example, pressure and volume, p, V .)
As previously stated, the thermodynamic equilibrium is a synthesis of mechanical, thermal and
chemical equilibria. Our aim now is to give a rigorous definition of thermal equilibrium.

To this aim, let us consider two thermodynamic systems A and B, which can be described by the
two sets of coordinates XA, YA and XB , YB , respectively. Let the two systems be separated by a
wall in mechanical equilibrium and impermeable to matter trasport (Fig. 2.1).
The wall is said to be

- adiabatic if the values of the X,Y coordinates of the system A are in no way affected by any
variation of the coordinates X ′, Y ′ of the system B, and viceversa;

- diathermal if the variation of the coordinates of one of the two systems can influence the
coordinates of the other system.

Two systems separated by a diathermal wall are said to be in thermal equilibrium when their
thermodynamic coordinates are invariant with time.

Note 1: A perfectly adiabatic wall cannot be realised in practice. From an operative point of view,

13
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Figure 2.1: Left: two systems separated by a wall fixed and impermeable to matter transport.
Right: the stat of each system is represented by a point in the XY plane.
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Figure 2.2: Left: three systems in thermal equilibrium. Right: there are many states of the system
A (line) in thermal equilibrium with a given state of the system B (point).

the distinction of an adiabatic wall from a diathermal wall is based on the ratio between the
typical time of variation of the coordinates of systems separated by a wall (relaxation time τ)
and the observation time tobs. A real wall can be considered adiabatic to a good approximation
if the relaxation time is much larger than the observation time, τ � tos.

Note 2: the process leading two systems to thermal equilibrium ha asymptotic character and
requires, in principle, an infinite time. However, if the relaxation time is sufficiently short
with respect to the typical observation times, the difference between the actual state and
the thermodynamic equilibrium state is generally negligible with respect to the measurement
uncertainties, so that one can speak of thermal equilibrium with very good approximation.

Note 3: The above considerations on the thermal equilibrium between two systems also hold for
two or more parts of the same system. A single system is in thermal equilibrium if all its
different parts are in thermal equilibrium.

Note 4: In some cases the relaxation time can be much longer than the observation time (one
important case ir represented by substance in the glassy state); in such cases the system can
appear to be in equilibrium without actually being. We will come to this subject after the
introduction of the Third Law of Thermodynamics in Chapter 20.

The Zeroth Law of Thermodynamics asserts the transitivity of the relation “to be in thermal
equilibrium”:

Given three systems A, B and C (Fig. 2.2, left), if A is in thermal equilibrium with B
and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

The relation “to be in thermal equilibrium” is thus an equivalence relation, since it is reflexive,
symmetric and transitive. As a consequence, the set of all possible thermodynamic systems can be
partitioned into disjoint equivalence classes. All systems belonging to a given class are in thermal
equilibrium. Systems belonging to different classes are not in thermal equilibrium.
One can then introduce a new physical quantity, the temperature, that univocally labels the different
classes of systems in thermal equilibrium. At each class of systems in thermal equilibrium one can
associate a different temperature.

Note: The procedure for defining the temperature is formally similar tothe procedure by which
the length is defined in Geometry: one verifies that the congruence relation of segments is an
equivalence relation and one associates a different length to each different class of equivalence.
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A thermodynamic system A can assume different values of the coordinates XA, YA maintaining the
same temperature (say staying in thermal equilibrium with another system B whose coordinates
XB , YB remain constant). The corresponding values of the XA, YA coordinates define a curve called
isotherm (Fig. 2.2, right).

2.2 Empirical temperature

An operative definition of temperature requires that an empirical methodology of measurement
is established, say a criterion for univocally associating a value of temperature to every class of
system in thermal equilibrium.

As for the length (or for the mass or the time interval), also for the temperature one can establish
a comparative criterion that allows one to decide whether a system A has temperature lower, equal
or higher than a system B. To this aim one can use different types of thermoscopes. Thanks to
this possibility, the temperature can be considered a physical quantity.

However, contrary to the length (or the mass or the time interval), the temperature is not an
additive quantity. It is impossible to define ad addition of temperatures and it is thus impossible
to define a direct measurement method based on the comparison with a standard unit.

The temperature can be only indirectly measured. Many different methods have been devised to
measure the temperature, based on the direct measurement of a thermometric property of a given
termometric substance. The choice of a particular measurement method corresponds to the choice
of a thermometer.

Example 1: In an electric resistance thermometer, the thermometric substance is a metal, the
thermometric property is the electrical resistivity.

Example 2: In a mercury thermometer, the thermometric substance is mercury, the thermometric
property is the height of the mercury column in the glass capillary.

A temperature scale is generally established by assigning arbitrary values of temperature to some
easily reproducible phenomena, which are called “fixed points”; for example, the Celsius scale
assigns the values 0◦C and 100◦C to the fusion and boiling points of water at atmospheric pressure,
respectively; other examples are listed in table 32.3 of Appendix 32.

Once a given scale has been chosen, thermometers based on different thermometric substances and
properties can anyway give different values of temperature outside the fixed points. The readings
of different thermometers have thus to be made compatible by suitable clibration procedures.

In the next § 2.3 we will introduce a particularly relevant temperature scale, base on the ideal gas
thermometer

We will see later on, in Chapter 4, that the Second Law of Thermodynamics allows the introduction
of an absolute temperature scale, independent of any thermometric substance and in agreement
with the ideal gas scale.

2.3 The gas thermometer

In the gas thermometers, the thermometric property is the pressure p measured at constant vol-
ume. Different gases have different behaviours; however the differences progressively reduce when
the rarefaction increases (say when the density decreases) This experimental observation led to
introduce the abstract idea of ideal gas , conceived as the limit towards which all gases tend when
sufficiently rarefied.

To obtain a temperature value independent of the type of gas, the pressure p of a given gas
is measured for different decreasing values of density (say for different decreasing values of the
pressure p0 measured at a fixed point of temperature); the p value is then extrapolated for p0 → 0.
The extrapolation for different gases converges to the same value p/p0, which is said to be the ideal
gas value. (Fig. 2.3, left).
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Figure 2.3: The gas thermometer. Left: the ratio p/p0 of three different gases tends to the same
value when p0 → 0, say when the gases become more and more rarefied. Right: state diagram of
water: the triple point (T = 273.16 K, p = 611.73 Pa) corresponds to the coexistence of the two
phases solid, liquid and gaseous.

The temperature of the ideal gas thermometer is defined as

θ = 273.16 lim
p0→0

p

p0
(2.1)

where p0 is, by convention, the pressure measured when the thermometer is thermal in equilibrium
with water at its triple point (Fig. 2.3, right). The triple point of a substance is defined as
the thermodynamic state in which the three phases solid, liquid and gaseous are in equilibrium
(Chapter 22). The ideal gas temperature scale is thus based on a single fixed point.

Note 1: The gas thermometer cannot measure all possible temperatures. Actually, at sufficiently
low temperatures all gases transforms to liquids and at sufficiently high temperatures become
ionised. In particular, for the gas thermometers it makes no sense to speak of zero temperature.

Note 2: The ideal gas temperature θ coincides, within the range of possible superposition, with the
absolute temperature T to be introduced as a consequence of the Second Law of Thermody-
namics (Chapter 4). As we will see, the fundamental relations of equilibrium Thermodynamics,
such as dU = TdS − pdV , are based on the use of absolute temperature.
The unit of absolute temperature, and also of the gas thermometer temperature, is the kelvin
(symbol K).

Note 3: The fusion and boiling points of water at room pressure (1 bar) are 273.15 and 373.15 K,
respectively. The Celsius scale corresponds to the kelvin scale to within a constant 273.15:
θ(◦C) = θ (K)-273.15.

Note 4: The scales of thermometers different from the gas thermometer (thermocouples, thermis-
tors, resistance thermometers, etc.) are not linear with respect to the absolute scale, and have
to be calibrated with reference to the gas thermometer.

2.4 Thermal equation of state

According to experience, the thermodynamic coordinates necessary to define the state of a system
are linked to the temperature by a functional relation.
For a simple substance, whose state is described by the two values of pressure an volume (p, V ),
the thermal equation of state is a function like the following

f(p, V, θ) = 0 . (2.2)

For an ideal gas the thermal equation of state is

pV = nRθ or more generally pV = nRT , (2.3)
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where
n is the number of moles,
R ' 8.31 J K−1 mol−1 is the gas constant
, θ is the ideal gas temperature defined by (2.1) and measured in kelvin
T is the absolute temperature, to be introduced in Chapter 4.

For other simple substances (real gases, solids, liquids) the thermal equation of state assumes
different forms and is generally less simple.
If other thermodynamic coordinates are necessary to describe the state of the system (for example
to describe magnetic or electric properties), the thermal equation of state will include also these
new coordinates.

2.5 Microscopic interpretation of temperature

The temperature has been above defined in relation to the equilibrium properties of thermodynamic
systems and some operative criteria for its measurements have been given. This purely macroscopic
approach will be further improved with the introduction of the absolute temperature in Chapter 4
and is fundamental for both this Part I and the following Part II.

Since the first acceptance of the atomic theory a microscopic interpretation of temperature has been
sought for. The first result was obtained by J.K. Maxwell in the middle of the XIX Century with
the kinetic model of the ideal gas (see Chapter 30). In the model, the temperature is proportional
to the average kinetic energy of the translational motion of the gas molecules; the temperature is
thus interpreted as the quantity that measures the microscopic “degree of thermal motion”.
Within the model, Maxwell calculated also the distributions of the velocities and of the kinetic
energies of the ideal gases and found that when the temperature increases the distributions become
broader.

The interpretation of the temperature based on the ideal gas kinetic model is intuitive but some-
what limited. How can the interpretation in terms of thermal motion be extended to solid or
liquid atomic aggregates ? And which is the meaning of temperature when the thermal motion
becomes negligible and other types of energy become significant, as for magnetic systems at low
temperatures (to be considered in Chapter 19) ?

An exhaustive answer to the problem is given by the statistica theory developed by L. Boltzmann
and J.W. Gibbs at the end of the XIX Century, which will be considered in Part III.
To grasp the basic idea, let us consider a thermodynamic system maintained in contact with a
reservoir at constant temperature; the energy of the system is not constant but fluctuates around
an average value (corresponding to the macroscopic internal energy) according to a distribution
law which is called canonical (Capters 14 and??). The temperature measures the dispersion of the
distribution of the system energy: the higher the system temperature, the broader the distribution.
As we will see in Chapter 16, the mathematical formalism of the canonical distribution can be
applied also to the statistic of particles (atoms and molecules), confirming the Maxwell distribution
of velocities and energies of the ideal gas (Fig. 16.3).
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Chapter 3

The First Law of Thermodynamics

For a long time, up to the middle of the XIX Century, thermal phenomena were interpreted
by considering heat as an indestructible substance. The work production in thermal engines was
explained in terms of the transfer of heat from a hot to a cold body, by analogy with the production
of work in hydraulic machines due to the transfer of water from a higher to a lower level.
Th possibility of converting heat into work and viceversa was hypothesised by Rumford at the end
of the XVIII Century. In the first half of the XIX Century the intuitions of the german physician
Mayer, the many experiments of the non-professional scientist Joule and the systematic work of
Helmholtz led to conceiving heat as a form of energy, like mechanical work, and to define the
mechanical equivalent of the heat unit.
The introduction of the concept of intern energy by Clausius in the middle of the XIX Century
led to the expression of the First Law of Thermodynamics in its definitive form.
The parallel evolution of Thermodynamics and Electromagnetism in the first half of the XIX
Century greatly contributed to the enlargement of the fields of application of the concept of energy,
which had been already well established in Mechanics.

3.1 Internal energy, work and heat

To introduce the First Law of Thermodynamics we will neglect the historical development and will
rely on a modern approach.

3.1.1 Adiabatic work

Let us consider a system enclosed by adiabatic walls (defined in § 2.1) and let the state of the
system be defined by a given number of thermodynamical coordinates (in the simplest cases by
the pair pressure-volume p, V ).

The First Law of Thermodynamics states:

When an adiabatic system undergoes a transformation from an initial equilibrium state
i to a final equilibrium state f , the work Wad performed on the system only depends on
the initial and final states and not on the intermediate states.

Example: Let us consider, within a thermally insulated vessel, a system s consisting in a fluid, a
mechanical stirrer and an electric resistor (reproducing one of the Joule experiments). The
transformation of the system from an initial state i to a final state f can be obtained in
different ways, for example varying the velocity of the stirrer or the intensity of the electrical
current. One can see that, within the accuracy of the experiment, the work performed on the
system is independent of the procedure of the transformation.

Note: It is not always possible to perform a transformation from a state i to a state f adiabatically,
say by the only exchange of work between the system and its ambient. However, if the
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adiabatic transformation i to f is impossible, the experience shows that the inverse adiabatic
transformation f to i is possible.

It is wort remembering that the validity of the First Law of Thermodynamics depends, more than
on its direct experimental verification, on the verification of all the laws that are derived from it.

3.1.2 Internal energy

Since the adiabatic work is independent on the details of the transformation connecting the i and f
equilibrium states, a state function U (called internal energy) can be defined such that its variation
∆U is equal to the adiabatic work:

Wad = Uf − Ui = ∆U . (3.1)

Eq. (3.1) shows that the variation ∆U can be obtained by measuring the adiabatic work W ; the
absolute value of the internal energy U can thus only be known to within an arbitrary additive
constant.
The dependence of U on the thermodynamical coordinates cannot be inferred form the Laws of
Thermodynamics; it can be only obtained from experiment or from theoretical models.

Note 1: Eq. (3.1) holds independently of whether the adiabatic transformation i→ f be reversible
or irreversible. The expression of the adiabatic work as a function of the thermodynamic
coordinates can be different, or even impossible, for different transformations connecting the
same i and f states.

Note 2: Given two equilibrium states i and f of a system, not always are both adiabatic transfor-
mations i→ f and f → i possible. Always possible are anyway the adiabatic transformations
in which the internal energy u increases.

Note 3: The term “energy” comes from the ancient greek enèrgheia = force, effectiveness.

3.1.3 Heat

Let us again consider two equilibrium states i and f of a given system. The difference of internal
energy ∆U = Uf −Ui can be measured by means of (3.1) say by means of an adiabatic transform.
Let us now remove the thermal insulation of the walls and perform the i → f transformation
avoiding any exchange of work between the system and its ambient, so that W = 0.

The quantity of heat Q absorbed by the system is defined as the energy absorbed when the work
is zero, and is equal to the variation of interna energy:

Q = ∆U (W = 0). (3.2)

Note 1: Also (3.2), like (3.1), holds independently of whether the adiabatic transformation i→ f
be reversible or irreversible.

Note 2: The notion of quantity of heat precedes historically the statement of the First Law. The
definition (3.2) is based on the well known esperiments of Joule on the equivalence between
heat and work.

3.1.4 Caloric equation of state

In § 2.4 we introduced the thermal equation of state that establishes a connection between the
thermodynamic coordinates of a system. For a simple system, the thermal equation of state has
the form

f(p, V, θ) = 0. (3.3)

One can now introduce a second equation, the caloric equation of state, which consists in expressing
the interna energy as a function of the independent thermodynamic coordinates. For a simple
system, the caloric equation of state has the form

U = U(p, V, θ). (3.4)
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The knowledge of both equations of state, thermal and caloric, of a given system corresponds to
the knowledge of all its thermodynamical properties.

Example: Let us consider an ideal gas, . Its thermal equation of state pV = nRθ, based on
experiment, has been introduced in § 2.4.
The properties of an ideal gas can be reproduced by the kinetic model, according to which at
sufficiently low density one can neglect the forces of interaction between the molecules and the
corresponding potential energy is null. For a monatomic ideal gas, in particular, the internal
energy is the sum of the translational kinetic energies of single atoms; one can demonstrate
that the internal energy is proportional to the temperature and that the caloric equation fo
state of a monatomic ideal gas can be written as

U =
3

2
nRθ =

3

2
NkBθ , (3.5)

where n is the number of moles, R ' 8.31 J K−1 mol−1 is the gas constant, N isthe number of
atoms, kB ' 1.381 ·10−23 J K−1 is the Boltzmann constant and θ is the temperature measured
in kelvin.
It is worth noting the peculiarity of the ideal gas model, where the internal energy is only of
kinetic nature, and is then absolutely defined, without arbitrary additive constants.

3.2 Conservation of energy

For every transformation, reversible or irreversible, of whichever thermodynamical system, the
First Law can be written as

∆U = W +Q (3.6)

and corresponds to the energy balance of the system: the energy of a system can be exchanged as
heat or work or both; it cannot never be created nor destroyed.

Note: Here and in the following we consider as positive the amounts of energy (heat or work)
absorbed by a system and negative the amounts o energy (heat or work) emitted by the system.
This choice is motivated mainly by symmetry reasons. Be careful that elsewhere different
conventions can be adopted; in elementary introductions the work is often positive when
performed by the system; in Chemistry the heat produced by a reaction is often considered as
positive.

3.2.1 Isolated systems

If a system is isolated and cannot exchange nor heat nor work with its ambient, eq. (3.6) bocomes

∆U = 0 (sistema isolato). (3.7)

Eq. (3.7) states the principle of conservation of energy for isolated systems.

Note: In an isolated system the total internal energy is conserved independently of whether the
system undergoes reversible or irreversible transformations (contrary to what happens in Me-
chanics, where macroscopic mechanical energy can be reduced as a consequence of dissipative
forces). As we will see in Chapter ch:pr2, as a consequence of the Second Law of thermo-
dynamics a further function of state can be defined, the entropy, which is conserved only in
reversible transformation on isolated systems.

3.2.2 Differential form

The internal energy U is by definition a function of state and can thus be formally expressed as a
function of the thermodynamical coordinates of the system, e.g. U(p, V ), even if the explicit form
of the caloric equation of state U(p, V ) cannot be deduced from the laws of Thermodynamics.

Since the interna energy is a function of the thermodynamical coordinates, its differential dU exists.



22 P. Fornasini: Lectures on Thermodynamics

The heat Q and the work W , on the contrary, arn’t functions of the state of the system; they are
different forms of energy transferred between a system and its ambient, and their amount depends
on the type of transformation between the initial and final equilibrium states. A sa consequence,
exact differentials dQ and dW don’t exist !

The differential form of (3.6) is generally expressed as

dU =d̄W +d̄Q (3.8)

where by the symbol d̄ one conventionally indicates an infinitesimal quantity that is not a differen-
tial. It is worth noting anyway that, even if the infinitesimal quantities d̄W and d̄Q are not exact
differentials, their sum dU always is.

As (3.6), also (3.8) holds for whichever transformation, reversible or irreversible.

Note: As the differentials dW and dQ are meaningless, also the use of ∆W and ∆Q for finite
quantities should be avoided, since the ∆ symbol is used to indicate finite variations of a
function..

3.2.3 Work in qusi-static transformations

The intermediate states of quasi-static transformations approximate equilibrium states, for which
one can attribute definite values to the thermodynamic coordinates. Therefore in a quasi-static
transformation the work W can be expressed as a function of the system coordinates; as a general
expression

d̄W =
∑

i
YidXi , (only for quasi-static transformations !) (3.9)

where Yi and Xi are conjugate coordinates, intensive and extensive, respectively. As an example,
for the quasi-static expansion of a gas d̄W = −p dV .
A more detailed discussion of work will be made in § 3.4.

Note: As we will see in Chapter 4, as a consequence of the Second Law a new extensive coordinate,
the entropy S, will be introduced, which will allow one to express also the infinitesimal heat
exchanged in a quasi-static transformation as the product of two thermodynamic coordinates,
d̄Q = T dS.

3.3 Microscopic intrpretation

In the previous sections, the internal energy and the principle of its conservation in isolated systems
have been introduced according to the classical approach developed in the middle of the XIX
century. This approach is simple and elegant and doesn’t require any details on the nature of the
system considered.
However, the atomic structure of matter is well known since a long time, so that it is useful to try
to establish a connection between the thermodynamical internal energy and the various forms of
energy present in matter at the microscopic level.
To this aim, in this § 3.3 we will begin from the Mechanics of macroscopic systems, where one can
define an internal energy too, to transfer the the same formalism to system formed by a very large
number of atoms. By this procedure il will be possible not only to give an interpretation of the
thermodynamical internal energy, but also of the difference between heat and work.

3.3.1 Internal energy in Mechanics

In macroscopic Mechanics, if all the forces acting on the diverse parts of a system, both internal and
external, are conservative, from the Principles of Dynamics one can derivate the law of conservation
of mechanical energy, Etot = cost.
It is convenient to express the total mechanical energy of a system as the sum of four terms:

Etot = Ek,0 + Ek,cm + Ep,i + Ep,e = const (3.10)
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where:

- Ek,0 is the kinetic energy of the center of mass (cm) of the system;

- Ek,cm is the total kinetic energy of the motion of the different parts of the system relative to
the center of mass;

- Ep,i is the total potential energy of the forces internal to the system;

- Ep,e is the total potential energy of the force fields external to the system.

In Mechanics, one can define the internal energy of a system as the sum of the kinetic energy
relative to the center of mass and the potential energy of the internal forces:

Eint = Ek,cm + Ep,i . (3.11)

In the reference system of the center of mass, the mechanical work W performed on the system by
the external forces is equal to the variation of the internal energy:

W = ∆Eint. (3.12)

Example: Let us consider a macroscopic mechanical system formed by two bodies connected by a
perfectly elastic spring. The internal energy is Eint = Ek,cm+Ep,el, where Ek,cm = µv2/2 and
Ep,el = kx2/2: µ is the reduced mss, v the relative velocity of the two bodies, k the elastic
constant and x the spring elongation. The work W of (3.12) is the work performed on the
spring.

If the forces internal to the system are not conservative, it is impossible to define a potential energy
Ep,i and it is impossible to define an internal energy Eint. In this case, the work performed on the
system doesn’t depend solely on the initial end final states of the system.

Example: Let us consider the compression work performed on a real spring (not perfectly elastic).
The work cannot be completely recovered when the spring expands to the initial state. The
amount of mechanical energy sissipated depends on the conditions under which the compres-
sion is mad (for example on the temperature).

The transformations of conservative systems are reversible; the transformations of dissipative sys-
tems are irreversible. One can associate the mechanical reversibility to the conservation of me-
chanical energy.

3.3.2 Microscopic interpretation of internal energy, heat and work

A thermodynamical system is formed by a huge number of elementary constituents. It is natural to
seek for an interpretation of internal energy, heat and work in terms of the microscopic properties
of the system.

Internal energy

The mechanical internal energy (3.11) corresponds to the thermodynamical internal energy U :

Eint = Ek,cm + Ep,i = U . (3.13)

Let us rewrite (3.10) enlightening the relation between the total energy Etot and the thermodynamic
internal energy U :

Etot = Ek,0 + U + Ep,ext . (3.14)

The potential energy of external fields Ep,ext doesn’t refer solely to the gravitational field; examples
concerning the magnetic and electric fields will be considered in § 3.6 and 3.7.
The conservation of energy in isolated systems expressed by the First Law of Thermodynamics
can be traced back to the conservation of energy in the fundamental interactions (gravitational,
electromagnetic, weak nuclear, strong nuclear) between the elementary constituents of matter,
which in turn can be deduced from the invariance of the physical law with respect to the time
translations.
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Heat and work

The difference between heat and work can be traced back to a microscopic interpretation too.
At the microscopic level, the exchange on energy between a system and its ambient is always due
to interactions between atoms or molecules of the system and atoms and molecules of the ambient.
Microscopic forces perform microscopic work on single atoms or molecules.

At the macroscopic level one distinguishes heat and work as two different forms of energy transfer.
The work W corresponds to an energy transfer macroscopically ordered, that can be expressed as
the product of a macroscopic force by a macroscopic displacement.
The heat Q corresponds to an energy transfer macroscopically disordered, that cannot be expressed
in terms of macroscopic forces and displacements.

The difference between heat and work is further clarified by statistical considerations (see Chapter
15): the work is connected to variations of the energy levels of the system, the work is connected
to variations of the populations of the energy levels.

3.4 Thermodynamic work

In introductory treatments of Thermodynamics, one generally considers only the compression or
expansion work of a substance, whose properties are summarised in the next § 3.4.1.
To allow for a thermodynamical treatment of all possible systems, it is necessary to extend the
expression of work; for example, one should consider the magnetisation work or the work of po-
larisation of a dieletric or the work of surface tension and so on. In the § 3.4.2 the concept of
generalised work will be introducd.

3.4.1 Compression and expansion work

For a thermodynamic system immersed in an ambient at a pressure pext, the compression work
done by the ambient on the system is

d̄W = −pext dV , W = −
∫ f

i

pext dV , (3.15)

where V is the volume of the system, i and f are te initial and final states, respectively. The
infinitesimal work d̄W done on the system is positive when the volume of the system is reduced,
dV < 0.

If the transformation is quasi-static, the pressure p of the system is equal to the external pressure
p = pext, so that the compression work done by the ambient on the system can be expressed as a
function of the system pressure p

d̄W = −p dV , W = −
∫ f

i

p dV . (3.16)

The quasi-static work done by the system on its ambient is

d̄Wsys = −d̄W = p dV , Wsys = −W =

∫ f

i

p dV . (3.17)

To calculate the integrals of (3.16) and (3.17), it is necessary to know the dependence of p on V
along the transformation connecting the i and f states. The thermodynamical equilibrium state of
a simple system is identified by the values of two variables, for example (V, θ). It is thusnecessary
to knowthe values of the two coordinates (V, θ) in the initial and final states i ≡ (Vi, θi) and
f ≡ (Vf , θf ), respectively, as well as along the transformation, in order to calculate the integral

W = −
∫ f

i

p(V, θ) dV . (3.18)
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Figure 3.1: Compression of a gas enclosed in a cylinder with a piston. Left: the piston slides
horizontally. Right: The piston slides vertically..

(?) Calculate the integral (3.18) for an ideal monatomic gas for different reversible transfor-
mations (isothermal, isobar, adiabatic), choosing suitable initial and final states for each
transformation.

(?) Consider again an ideal gas, choose two initial and final states i ≡ (Vi, θi) and f ≡ (Vf , θf ),
respectively, and calculate the integral (3.18) along different reversible transformations con-
necting the two states.

3.4.2 Generalised work

The expression of work can be generalised in the form

d̄W = ξ dX (3.19)

where

ξ is the generalised force, and is generally an intensive quantity;

X is the generalised coordinate, and is generally an extensive quanity.

For the compression work considered above, ξ = −pext andX = V ; for quasi-static transformations,
ξ = −pext = −p (pressure of the system).

In many cases, it can be necessary to consider contemporarily different forms of work, in addition
to the compression work. The quasi-static work is thus expressd as

d̄W =
∑
i

ξi dXi = −p dV + d̄W ∗

= −p dV +
∑
i

ξ∗i dX
∗
i , (3.20)

where the star ∗ labels the work forms different from the compression work.

To conclude Capter 3, let us consider some particularly interesting cases. In § 3.5 we study the
energy balance for the compression of an ideal gas performed in different ways. We consider then
two cases of generalised work: the magnetisation work (§ 3.6) and the polarisation work of a
dielectric substance (§ 3.7).

3.5 Transformations of an ideal gas

Let us consider a particularly simple system: a gas contained in a cylinder with a piston (Fig.
3.1). The thermodynamic system here considered is the gas, while the container (cylinder plus
piston) is considered as part of the ambient. The equilibrium thermodynamic state of the gas is
identified by two coordinates, pressure p and volume V . To simplify the calculations, let the gas
by approximated by a monatomic ideal gas, for which the two state equations hold, the thermal
one (2.3) and the caloric one (3.5)

pV = nRθ , U =
3

2
nRθ , (3.21)
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where the temperature θ is measured in kelvin.
We want now to check the conservation of energy expressed by (3.6) and (3.8). To this aim, let us
consider a compression that reduces the volume of the gas from an initial value Vi to a final value
Vf = Vi/2 (Fig. 3.1, left) and let us examine different possible types of tranforrmation.

3.5.1 Reversible compression

In order to be reversible, a transformation has to be quasi-static and free from friction. This is
obviously ad ideal situation. To approximate a quasi-static transformation, the difference between
the pressure of the gas and of its ambient should be infinitesimal; in practice, one should slowly
and progressively modify the external pressure in order to accompany the variation of the internal
pressure of the gas.

The reversible compression work is given by (3.18)

W = −
∫ Vf

Vi

p(V, θ) dV . (3.22)

The evaluation of the integral depends on the form of the p(V, θ) function, that in turn depends
on the modality of the transformation. Let us consider a particularly simple case.

If the compression is isothermal, say if the gas has a good thermal contact with the ambient at
constant temperature θ, using the thermal equation of state pV = nRθ one easily calculates the
compression work

W = −nRθ ln(Vf/Vi) = nRθ ln 2 . (3.23)

From the caloric equation of state for the monatomic ideal gas U = 3nRθ/2 one gets that if ∆θ = 0
also ∆U = 0. As a consequence, from (3.6) one gets Q = −W . The energy entering the system as
work outgoes entirely as heat.

If the reversible transformation is reversed, the gas expands and the compression work is completely
recovered as expansion work done by the system on its ambient.

3.5.2 Quasi-static compression with friction

Let us now suppose that in the quasi-static compression from Vi to Vf = Vi/2 friction forces cannot
be neglected. To the compression work W considered above the work Wa against the friction forces
has to be added, so that the total work done on the system is

Wtot = W +Wa = nRθ ln 2 +Wa . (3.24)

For an isothermal transformation of the ideal gas ∆U = 0: the entire energy entering the system
as work W +Wa (positive) outgoes as heat Q+Qa (negative) where Q = −W and Qa = −Wa is
the heat dissipated by the system in the ambient due to friction.
Viceversa, for the ambient the work done on the system is −W −Wa (negative) and the absorbed
heat is −Q−Qa (positive). See Fig. 3.2, left.

Let us now reverse the transformation, so that the gas expands quasi-statically from Vf to Vi = 2Vf .
The system (the gas) recovers its initial state, the expansion work W ′ = −W = nRθ ln(Vf/Vi) =
−nRθ ln 2 done on the ambient is negative and the heat absorbed Q′ = −Q = −W ′ is positive.
However, due to the friction, the system has to do a further work W ′a = −Wa (negative) absorbing
the corresponding heat Q′a = −Qa (positive) from the ambient; the work against friction is in turn
dissipated as heat Qa = −Q′a = −Wa into the ambient. In total, heat and work exchanged by
the system are exactly the opposite as in the compression transformation; the heat Q′a absorbed
from the ambient is transformed into work and then finally returned as heat to the ambient. See
Fig. 3.2, center.

Let us now consider an entire cycle composed by the compression and the expansion of the gas.
The system (gas) returns to its initial state of volume Vi and temperature θ. On the contrary, the
ambient doesn’t return to its initial state: globally, it does a net work −Wa against friction and
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Figure 3.2: Quasi-static isothermal transformations of an ideal gas with friction. Left: compression.
Center: expansion. Right: final result after the gas has come back to its initial state.

absorbs a net quantity of heat Qa. A quantity of work is thus transformed into heat. See Fig. 3.2,
right.
Both transformations, compression and expansion, even if quasi-static, are not reversible: when
the system returns to its initial state, its ambient doesn’t (see again the definition of reversibility
in § 1.3).

3.5.3 Irreversible spontaneous compression

Let us now suppose that the initial pressure pi of the gas is half of the ambient pressure pext = 2pi
and that the piston in maintained in a fixed position by a pin. When the pin is removed, the
piston is free to move and the gas is compressed until it a reaches a pressure equal to the external
pressure, pf = pext. The transformation is not quasi-static due to the difference between internal
and external pressures. The piston is initially accelerated, then it oscillates around the position of
equilibrium corresponding to pf = pext; the oscillations are progressively damped and at the end
the piston stops.
The compression work is now given by (3.15)

W = −
∫ f

i

pext dV = −pext ∆V , (3.25)

where the second equality holds if the external pressure stays constant during the transformation.
If the transformation is isothermal, the internal energy doesn’t vary, ∆U = 0; the energy entering
as work outgoes as heat also in this case.

The transformation is irreversible. One cannot recover the initial state of both the gas and its
ambient without the external interventions.

3.5.4 Effect of an external field

Let us revert to the isothermal reversible compression of an ideal monatomic gas. Contrary to the
previous case (Fig. 3.1, left), the piston now slides in vertical direction (Fig. 3.1, right), so that
we should consider the gravity field too.

The total energy of the system (say of the gas) is the sum of the kinetic energy of its center of
mass Ek,0, the thermodynamical internal energy U and the potential energy of the external field
of gravity Ep,ext = mgh, where m labels the mass of the gas and h the height of its center of mass
with respect to a reference plane:

Etot = Ek,0 + U + Ep,ext . (3.26)

The kinetic energy Ek,0 has no thermodynamic relevance; we can assume Ek,0 = 0 .
For an infinitesimal quasi-static compression, the variation of the total energy is

dEtot = dU + dEp,ext , (3.27)
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where dEp,ext = mg dh.
The infinitesimal compression work is

d̄W = −p dV = −p′ dV −mg dh , (3.28)

where p is the gas pressure, p′ is the external pressure (including the effect of the piston weight),
−mg dh is the contribution due to the gas weight (a volume force); all terms in (3.28) are positive.
According to the Firs Law, since for an isothermal transformation of an ideal gas the variation of
internal energy is zero, dU = 0, the energy balance can be expressed as

0 = dU = d̄Q+d̄W = d̄Q− p dV = d̄Q− p′ dV −mg dh . (3.29)

Since mg dh = dEp,ext, the heat exchanged by the gas is

d̄Q = p dV = p′ dV +mg dh = p′ dV + dEp,ext < 0 . (3.30)

The energy entering as work outgoes as heat. The incoming work can be decomposed in the two
contributions of the external pressure and of the force of gravity.

3.6 Magnetisation work

A particularly interesting case of generalised work is the magnetisation work, which is here shortly
presented and will be treated in more detail in Part IV, devoted to magnetism and low tempera-
tures.

Let us consider a solenoid of length ` and section A, made by N turns through which and electrical
current I passes (Fig. 3.3, left). To avoid mathematical complications, let us suppose that the
magnetic field is confined within the solenoid, uniform and parallel to the axis of the solenoid. Let
us also consider negligible the electrical resistance, in order to neglect the irreversible dissipation
of energy.
Our aim is the study of the properties of the magnetic field created by the current I first in
the vacuum and then in a material system inserted into the solenoid , in order to calculate the
thermodynamical work of magnetisation.

3.6.1 Magnetic field in vacuum

Let us first consider the case of vacuum inside the solenoid.
The intensity of the magnetic field is measured by the magnetic induction vector ~B. Let us introduce
since now the vector ~H (magnetising field), that plays a relevant role in the case of the magnetism
of matter.
For the unidimensional case here considered, we can confine ourselves to a purely scalar treatment

B = µ0H = µ0 n I , (3.31)

where

- the magnetic inductionB is measured in tesla (T) or in gauss (G), 1 T = 104 G;

- µ0 = 4π × 10−7 T m/A is the magnetic permeability in vacuum;

- n = N/` is the number of turns for unit length of the solenoid;

- the magnetising field H = nI is measured in A/m.

Electromagnetic induction

A variation of the current I in a solenoid induced a counter-electromotive force

F = −dΦB
dt

= −NA dB
dt

= −L dI
dt
, (3.32)
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Figure 3.3: Left: a solenoid in vacuum. Right: a material bar is inside the solenoid.

where ΦB is the total flux of magnetic induction inside the solenoid and L = ΦB/I is the solenoid
inductance. In vacuum, L = n2µ0`A = n2µ0V , where V is the volume inside the solenoid.
Let us suppose that initially a current I passes in the turns of the solenoid, generating an induction
field B; an increment dI of the current induces and increment dB of the induction field; correspond-
ingly, the electrical generator has to do an infinitesimal workd̄W against the counter-electromotive
force in the time dt:

d̄W = −F I dt = NAI dB = LI dI . (3.33)

According to (3.31), in vacuum I = `B/µ0N , so that (3.33) becomes:

d̄W =
V

µ0
B dB (3.34)

Magnetic energy in vacuum

In vacuum, according to (3.33) and (3.34) and taking into account (3.31), the work necessary to
increment the current and the induction field can be expressed in the different equivalent forms

d̄Wvac = LI dI = µ0VH dH =
1

µ0
V B dB . (3.35)

By integrating (3.35) one can calculate the work necessary to increase the electric current from
zero to a value I. Such a work corresponds to the magneto-static energy stored in vacuum within
the solenoid:

Evac =
1

2
LI2 =

1

2
µ0V H2 =

1

2µ0
V B2 , (3.36)

where V = `A is the volume of the solenoid. Dividing he last member of (3.36) by V one obtains
the well known expression of the energy density of a magneto-static field.
Let us stress that in vacuum the two fields H and B are equivalent, to within the constant µ0.

Example: A magnetic induction field B = 0.1 T = 1000 G in vacuum corresponds, according to
(3.31), to a magnetising field H ' 8×104 A/m.
Let us suppose that the cylindric volume inside the solenoid of Fig. 3.3 ris V = 1 dm3.
According to (3.36), the magneto-static energy stored by the field in vacuum lis Evac ' 4 J.
Let us further suppose that the height of the cylinder is ` = 1 dm and that the solenoid has
N = 100 turns. According to (3.31), the current is I ' 80 A.

3.6.2 Magnetic field in matter

Let us introduce, inside the solenoid, a cylindrical and homogeneous matter bar occupying exactly
the volume V = `A (Fig. 3.3, right). By effect of the induction field generated by the electrical
current, the bar is magnetised. The magnetisation intensity is measured by the magnetisation
densityM, say the magnetic moment per volume unit, measured in A/m (the same unit as for the
magnetising field H).
The magnetisation of the matter bar modifies the induction field B. The magnetising field H = nI,
that only depends on the free current in the turns of the solenoid, remains unaffected.
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The magnetisation density M is linked to the magnetising field H by the relation

M = χmH (3.37)

where χm is the magnetic susceptibility (a-dimensional) of the material by which the bar is made.

Let us consider here the two simplest cases:

a) Diamagnetism: the magnetisation of the material is due to the distortion of the electronic
orbitals induced by the magnetic field. Diamagnetism is present in all materials and gives
rise to a negative susceptibility, χm < 0, independent of temperature. The ratio betweenM
and H is thus independent of temperature too.

b) Paramagnetism: the magnetisation is due to the orientation of atomic or molecular magnetic
dipoles already present in the material. Only a number of substances are paramagnetic.
Paramagnetism gives rise to a positive susceptibility (§ 18.1), whose value is generally much
higher than the absolute value of the diamagnetic susceptibility; in paramagnetic materials
thenχm > 0.
The paramagnetic susceptibility decreases when the temperature increases: the magnetic field
favours the orientation of the magnetic dipoles, the temperature contrasts it. The relation
between M and H is thus dependent on temperature.

Only paramagnetism is thermodynamically relevant, since magnetisation depends on temperature.
It is worth noting that the paramagnetic susceptibility is some orders of magnitude smaller than
unity: χm ' 10−5 ÷ 10−3 at room temperature.

As a consequence of the magnetisation of matter, the trivial relation (3.31) between induction B
and magnetising H fields, valid in vacuum, has to be modified to take into account the contribution
of the matter magnetisation to the induction field B:

B = µ0(H+M) = µ0(1 + χm)H . (3.38)

In (3.38) the magnetising field H = nI represents again the effect of the current of free charges in
the solenoid turns, while M represents the effect of the magnetisation currents, localised at the
atomic level inside matter.

Example: Let us consider again the previous example, where the induction field in vacuum was B
= 0.1 T, and insert in the solenoid a cylinder of a paramagnetic material with susceptibility
χm = 10−4. If the current I is unaltered, so that also the magnetising field H is unaltered,
one can calculate from (3.38) that the relative variation of the induction field B amounts to
0.01 %. For a paramagnetic system, induction field and magnetising field can be with a good
approximation exchanged (obviously to within the constant µ0).

Note: The magnetic properties of matter can give rise to phenomena by far more complicated
than paramagnetism. In Part V, devoted to phase equilibrium and phase transitions, we will
hint at the phenomenon of ferromagnetism (§ 22.5). We only stress here that the difference
between B and H, negligible for diamagnetic and paramagnetic materials, is instead relevant
for ferromagnetic materials.

3.6.3 Magnetisation work

Let us now consider the material bar as a thermodynamic system and calculate the work necessary
for its magnetisation.
To this aim, let us first note that equations (3.32) to (3.33) concerning the electromagnetic induction
are of general validity and can be applied also to the case of the material bar inside the solenoid.
To calculate the work necessary to increment the current in the solenoid one can start from (3.33):
the current I is directly connected to the magnetising field, so that NAI = VH; let us stress that
(3.31) and (3.34), valid in vacuum, are not in matter.
By further substituting dB in (3.33) according to (3.38) one obtains

d̄W = µ0VHdH+ µ0VHdM = µ0VHdH︸ ︷︷ ︸
vacuum

+ H dM︸ ︷︷ ︸
matter

, (3.39)
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where in the last equality the total magnetisation M = µ0 V M, that is an extensive variable, has
been introduced (the factor µ0 has been included M for convenience).
In the last member of (3.39):

a) The first term µ0VHdH =d̄Wvac is the infinitesima work necessary to increase the magnetic
field in vacuum, already considered in (3.35); this term has no thermodynamic relevance
since it is not referred to the thermodynamic system here considered, say the material bar.
Its integral is given by (3.36).

b) The second term H dM = d̄Wmag ris the infinitesimal work necessary to modify the mag-
netisation of the bar, that is the thermodynamic system here considered. The magnetisation
work is thus

Wmag =

∫ f

i

H dM = µ0V

∫ f

i

χmH dH (3.40)

For paramagnetic materials the susceptibility χm depends on temperature, so that the inte-
gral depends on the intermediate states of the transformation.

The total work Wvac + Wmag is done by the electric generator that supplies the current to the
solenoid, as can be inferred from (3.32) and (3.33).

Example: Let us consider again the previous example, with V = 1 dm3. We have seen that in
vacuum the work necessary to obtain an induction field B = 0.1 T is Wvac ' 4 J, corresponding
to the energy Evac stored in the magneto-static field in vacuum.
Let us now calculate the work Wmag by means of (3.40) and assuming a magnetisation at
constant temperature, with constant susceptibility χm = 10−4. It is easy to verify that
Wmag ' χmWvac. The work Wmag is four orders of magnitude smaller than Wvac.

Magnetic systems and the First Law of Thermodynamics

According to the First Law, considering the expression (3.19) of the generalised work, the differ-
ential variation of the interna energy of a magnetic system is

dU =d̄Q+d̄W =d̄Q− pdV +HdM . (3.41)

In the energetic balance (3.41), the term dWvac = µ0VHdH is absent, since it has no influence on
the thermodynamic properties of the system (the material bar).
The magnetic energy stored in vacuum is anyway part of the total energy. In the general expression
(3.14), it contributes to the term Ep,ext, say to the potential energy of the external fields.

3.7 Polarisation work

Let us consider a capacitor with flat parallel surfaces of area A at distance `, having a surface
density of electric charge σfree (Fig. 3.4, left). Inside the capacitor the electric field is uniform and
directed perpendicular to the surfaces (we neglect for simplicity the border effects).
We want to study the properties of the electric field generated by the density of charge σfree first
in vacuum and then in a dielectric material inserted in the capacitor, in order to calculate at the
end the polarisation work of the dielectric.

3.7.1 Electric field in vacuum

In vacuum one can indifferently use the electric field vector E or the electric displacement vector
D:

E =
D
ε0

=
σfree

ε0
, (3.42)

where

ε0 is the electrical susceptibility of vacuum,
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lthe electric displacement D = σfree is measured in C/m2.

Since the problem is unidimensional, we use the scalar notation.
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Figure 3.4: Left: charged capacitor in vacuum. Right: the same charged capacitor with a dielectric
inserted between the surfaces.

3.7.2 Electric field in matter

Let us now insert a dielectric material between the surfaces of the capacitor (Fig. 3.4, right) and
let the dielectric be the thermodynamic system.

The effect of the electric field is the polarisation of the dielectric, measured by the polarisation
vector P, corresponding to the moment of electric dipole per volume unit, and measured in cC/m2

(the same unit as the electric displacement).

The polarisation per unit volume P is connected to the electric field E by

P = χe ε0 E (3.43)

where χe is the electric susceptibility (a a-dimensional quantity).

Let us consider two cases:

a) The polarisation is due to the deformation of the electrons distribution is atoms: this effect
is present in all dielectrics. The electric susceptibility χe > 0 is independent of temperature.

b) The polarisation is due to the orientation of permanent electric dipoles, and concerns only
substances where such permanent dipoles are present. The corresponding contribution to
the electrical susceptibility χe > 0 is inversely proportional to the temperature: the electric
field favours the orientation of the electric dipoles, the temperature opposes to it.

Only the second case is thermodynamically relevant, since it gives rise to a polarisation that is
dependent on temperature.

As an effect of the polarisation, the electric field becomes

E =
1

ε0
(σfree − P) =

1

ε0
(D − P) (3.44)

In (3.44) the electric displacement D again represents the density of free charges on the capacitor
surfaces, while P represents the density of polarisation charge on the dielectric faces.

There is a similarity between the treatments of magnetisation and polarisation, the field D corre-
sponding to the field H, the field E corresponds to the field B.

For historical reasons the similarity is however not complete. Actually, to (3.38) it corresponds,
for the case of polarisation,

D = ε0E + P = ε0 (1 + χe) E = ε E , (3.45)

where ε = ε0(1 +χe) is the electrical permittivity of the dielectric substance (the ratio εr = ε/ε0 =
1 + χe is the dielectric constant).
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3.7.3 Polarisation work

Let us consider the dielectric as a thermodynamic system and calculate the work necessary for its
polarisation.
The infinitesimal work required to increase the charge on the capacitor is

d̄W = E ` dq = E `A dσfree = E V dD , (3.46)

where V is the volume fo the dielectric.
By substituting dD according to (3.45) one gets

d̄W = ε0 V E dE + E V dP = ε0 V EdE︸ ︷︷ ︸
vacuum

+ E dP︸ ︷︷ ︸
polar.

(3.47)

where in the last equality the total polarisation P = V P (an extensive variable) has been intro-
duced.

in the last member of (3.47):

a) ε0V EdE is the infinitesimal work required to increase the electric field in vacuum; this term
has no thermodynamic relevance, since it doesn’t refer to the thermodynamic system here
considered. Its integral for the entire charge of the condenser is

Wvac = V ε0

∫ E
0

E ′ dE ′ =
1

2
V ε0 E2 . (3.48)

b) E dP is the infinitesimal work required to increase the polarisation of the dielectric, say of
the thermodynamic system. The polarisation work is thus

Wpol =

∫ f

i

E dP . (3.49)

For materials If the polarisation is due to the orientation of permanent dipoles, the suscepti-
bility χe depends on temperature, cso that the polarisation work depends on the intermediate
states of the transformation.

According to the First Law, the differential of the internal energy of a dielectric is

dU =d̄Q+d̄W =d̄Q− pdV + EdP . (3.50)

(?) Find the relation between the results of the above discussion and the well known result of
electro-static theory according to which the energy density of the electric field in the dielectric
is ε E2/2.
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Chapter 4

The Second Law of
Thermodynamics

The historical development that led to the statement of the Second Law began with the attempts
at improving the performances of heat engines. The discovery of the conservation of energy (First
Law) allowed in 1850-1851 the expression of the Second Law in a definitive form (for more historical
details see Appendix ??).
In this chapter the Second Law and its consequences (Carnot theorem, absolute temperature,
Clausius theorem and inequality, entropy) are introduced according to the traditional method
based on cyclic transformations. In Part II a more general axiomatic approach based on the
properties of system will be introduced.

4.1 The heat–work conversion

As a starting point, it is convenient to introduce some general properties of the cyclic heat engines
and of the refrigerating cycles, useful to understand the statements of the Second Law and to
discuss ints consequences.

4.1.1 Cyclic heat engines

A heat engine is a device that can transform a quantity of heat Q into work W through a cyclic
transformation of a suitable substance, typically a fluid. A heat engine is a thermodynamical
system; during each cycle, a heat engine

- absorbs and gives heat by contact with its surroundings;

- does and receives work by mechanical interactions with its surroundings.

In a cyclic engine, the system returns periodically in the same thermodynamical state; the variation
of the internal energy at the end of each cycle is null, ∆U = 0; as a consequence, according to the
First Law the energy balance for each cycle is

∆U =
∑

Qi +
∑

Wi = 0 (for one cycle) (4.1)

where
∑
Qi and

∑
Wi are the total quantities of heat and work exchanged by the system with its

surroundings during one cycle.
In (4.1) the prescription is maintained of considering as positive both heat and work entering into
the system. In what follows, to avoid possible misunderstandings, we will use also the indices “in”
and “out” to label the quantities of heat and work incoming and outgoing, respectively.
In order that a cyclic device could be considered an engine, the neat quantity of work produced
has to exceed the neat quantity of work absorbed in each cycle:

|Wout| − |Win| > 0 , (4.2)

35
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Figure 4.1: Schematic representation of the energy fluxes in a cyclic heat engine (left) and of a
refrigerator (right) that operate between two reservoirs at the temperatures θh > θc. The rectangles
represent the reservoirs, the circle represents the cyclic device.

an so, to satisfy (4.1), the neat quantity of heat absorbed has to exceed the neat quantity of heat
given in each cycle:

|Qin| − |Qout| > 0 . (4.3)

The neat quantity of useful work produced by an engine in each cycle is thus

|Wuseful| = |Wout| − |Win| = |Qin| − |Qout| . (4.4)

The efficiency of a heat engine is defined as:

η =
|Wuseful|
|Qin|

=
|Qin| − |Qout|
|Qin|

= 1 − |Qout|
|Qin|

. (4.5)

One easily verifies that the efficiency η of heat engines is necessarily included between 0 and 1.

To focus the attention on the main thermodynamic properties, the heat engine is conveniently
schematised as a device that absorbs heat |Qin| = |Qh| from a single reservoir at high temperature
θh and gives heat |Qout| = |Qc| to a single reservoir at a lower temperature θc, per cui θh > θc
(Fig. 4.1, left).
A reservoir is by convention a system whose thermal capacity is so large that one can neglect
the variations of its thermodynamical state when it exchanges heat with other systems. The
temperature of a reservoir is thus constant.
Considering only two reservoirs is not a limitation for the statement of the Second Law and the
study of its consequences. From the technical and historical points of view this choice is motivated
because in the classical heat engine the exchanges of heat take place in the two processes of
evaporation and condensation of water, corresponding to transformations which are contemporarily
isothermal and isobaric.

4.1.2 Cyclic refrigerators and heat pumps

A refrigerator is a device that extracts heat from a system by means of a cyclic thermodynamic
transformation of a suitable substance, typically a fluid. Also a refrigerator, like a heat engine,
absorbs and gives energy as both heat and work. The energy balance of each cycle is again expressed
by (4.1).

For a refrigerator, the schematisation in terms of two reservoirs is particularly realistic. The
refrigerator absorbs heat |Qin| = |Qc| from a volume at low temperature θc (a cold room) and
emits heat |Qout| = |Qh| to an ambient at higher temperature θh (Fig. 4.1, right).
During every cycle the refrigerator absorbs a neat quantity of work

|Wabs| = |Win| − |Wout| . (4.6)

Since in a cycle ∆U = 0, according to the First Law

|Qout| = |Qin| + |Wabs| . (4.7)



4. The Second Law of Thermodynamics 37

The efficiency of a refrigerator is the ratio between the heat extracted from the system to be
cooled and the neat absorbed work:

ωfri =
|Qin|
|Wabs|

=
|Qin|

|Qout| − |Qin|
. (4.8)

The efficiency of a refrigerator can in principle assume any value equal or larger than zero.

A heat pump is a refrigerating device that absorbs heat |Qin| at low temperature θc from the
exterior of a building and gives heat |Qout| at a higher temperature θh to the interior of the
building: it is thus a device useful for heating houses. Il coefficient of performance of a heat pump
is the ratio between the heat given to the ambient to be heated and the neat work absorbed:

ωpump =
|Qout|
|Wabs|

=
|Qout|

|Qout| − |Qin|
. (4.9)

The coefficient of performance of a heat pump can in principle assume any value equal or larger
than zero.

Note: A single device can be used to heat houses in winter and to cool them in summer, running
as a heat pump in winter and as a refrigerator in summer.

4.2 Statements of the Second Law

Two different statements of the Second Law were proposed independently by R. Clausius in 1850
and by W. Thomson, lord Kelvin, in1851.

Second Law: Kelvin statement

It is impossible to make a cyclic transformation whose unique result is the conversion
to work of heat absorbed from a unique reservoir.

The Kelvin statement (Fig. 4.2, left) asserts the unfeasibility of a heat engine having efficiency
η = 1 (say with |Qout| = 0). According to the Kelvin statement the efficiency of all real heat
engines is η < 1.

Second Law: Clausius statement

It is impossible to make a cyclic transformation whose unique result is the transfer of
heat from a system at a given temperature to a system at an higher temperature.

The Clausius statement (Fig. 4.2, right) asserts the impossibility of a refrigerator that doesn’t
require the input of work from external sources (say with |Wabs| = 0). The efficiency ω cannot be
infinite.

Equivalence of the two statements

One can easily demonstrate that the two statements of Kelvin and Clausius of the Second Law are
equivalent.

Were the Kelvin statement false, one could build an heat engine with efficiency η = 1. The work
so produced could be used to power a refrigerator. The sum of the two devices would be a device
violating the Clausius statement.

Were the Clausius statement false, one could transfer heat from a cold to a hot reservoir without
the need of external work. The transferred heat could be used as input of a heat engine. The sum
of the two devices would be a device violating the Kelvin statement.
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Figure 4.2: Second Law of Thermodynamics: schematic representation of the statements of Kelvin
(left) and Clausius (right).

Irreversibility of natural processes

The two statements of Kelvin and Clausius can be interpreted in terms of the irreversibility of
natural spontaneous processes.

It is common experience that it is always possible to convert a given amount of work into heat
given to a single reservoir (for example by dissipating work through friction or for Joule effect
in electrical circuits). The Kelvin statement affirms that the dissipation of work into heat is an
irreversible process (Fig. 4.2, left).

It is common experience that heat spontaneously flows from a body at a given temperature to a
body at a lower temperature. The Clausius statement affirms that the flow of heat from a hot
body to a cold body is an irreversible process (Fig. 4.2, right).

More generally, it is possible to demonstrate that, as a consequence of the Second Law, all spon-
taneous natural phenomena are irreversible. Some examples:

- transformations of mechanical or electrical work into heat or into internal energy of a reser-
voir;

- expansion of gases against lower pressures;

- spontaneous transfers of heat between different systems or within a system;

- chemical reactions;

- diffusion processes.

A detailed analysis can be found, for example, in Zemansky, Chapter 8.

4.3 Carnot theorem, thermodynamic temperature

Sadi Carnot (1753-1823), in his theroetical reserach on the efficiency of heat engines, focused his
attention on the engines that exchange heat with only two reservoirs, one at high temperature θh,
the other at low temperature θc (actually, this was not an abstract hypothesis, since vapour engines
really work between two temperatures). Besides, Carnot distinguished reversible and irreversible
transformations, and fixed his attention on the general properties of the reversible transformations.

4.3.1 Carnot cicle

Generalising the results obtained by Carnot, by Carnot cycle we mean whichever cyclic transfor-
mation

a) that is reversible (say quasi-static and without friction)

b) that requires only two reservoirs

independent of the system involved (a simple substance, a magnetic system, a dielectric system, a
chemical mixture, and so on). The Carnot cycle thus doesn’t exclusively refer to heat engines.
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Since only two reservoirs are involved, a Carnot cycle is necessarily made by four transformations:

a) two reversible isotherms at the temperatures θh and θc, during which the system exchanges
heat with one of the two reservoirs,

b) two reversible adiabatics, during which the system is transferred from one reservoir to the
other without exchanging heat with the ambient.

For a simple substance, whose thermodynamic state is described by only two thermodynamic
coordinates (e.g. p and V ), the representation of a Carnot cycle on the pV plane depends on
the type of substance. In the case of an ideal gas the reversible isotherms and the reversible
adiabatics are represented by the particularly simple equations pV = costant and pV γ = constant,
respectively (γ = cp/cv is the ratio between the specific heats at constant pressure and volume,
and its value is 5/3 and 7/5 for monatomic and bi-atomic gases, respectively).
Being reversible, the same Carnot cycle can be performed both clockwise (engine) or anticlockwise
(refrigerator) in the pV plane.

Below we will introduce the thermodynamic temperature T and the state function entropy S
(§ 4.4); the Carnot cycle assumes a particularly simple form in the TS plane, equal for all systems.

The Carnot cycle, made by reversible transformations, is actually an ideal cycle that cannot be re-
alised in practice. However, it represents a fundamental theoretical instrument of Thermodynamics
and can anyway be quite well approximated in many cases.

4.3.2 Carnot theorem

A first consequence of the Second Law of Thermodynamics is the Carnot theorem:

All reversible cycles operating between two reservoirs (at temperatures θh and θc, re-
spectively) share the same efficiency, independent of the substance that represents the
thermodynamic system.

The theorem had been initially demonstrated by Carnot within the framework of the caloric theory,
as a consequence of the impossibility of the “perpetuum mobile”, say of the impossibility, in modern
terms, of creating energy from nothing.
In 1850 Clausius succeeded in deriving the theorem from the Second Law. The demonstration is
as follows. Let us consider two Carnot cycles A and B operating as heat engines between the same
two reservoirs. Let us suppose that the Carnot theorem is false, for example that cycle A has
higher efficiency than cycle B (ηA > ηB). Since the cycles are reversible by hypothesis, one run
the cycle B, having smaller efficiency, backwards. The global result would violate the Second Law.

4.3.3 Absolute thermodynamic temperature

According to the Carnot theorem, for whichever thermodynamic system the efficiency of a reversible
cycle that exchanges heat with two reservoirs only depends on the temperatures θh and θc of the
reservoirs and is independent of the peculiarities of the system. The efficiency (4.5) is thus a
function of the two temperatures:

ηrev = 1− |Qc|
|Qh|

= f(θh, θc) , (4.10)

so that event the ratio |Qc|/|Qh| is a function of the temperatures of the two reservoirs:

|Qc|
|Qh|

= φ(θh, θc) . (4.11)

W. Thomson, lord Kelvin, understood that, on the grounds of (4.11), a new temperature scale
could be introduced, the absolute thermodynamic scale, whose thermometric property is the heat
exchanged by whichever system in a Carnot cycle.
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For a demonstration, let us consider three reservoirs at the temperatures θ1, θ2, θ3, respectively.
Between each one of the three pairs of reservoirs let a Carnot cycle to operate. For the three cycles
(4.11)) gives

|Q1|
|Q2|

= φ(θ1, θ2) ,
|Q2|
|Q3|

= φ(θ2, θ3) ,
|Q1|
|Q3|

= φ(θ1, θ3) . (4.12)

Multiplying the first two equations and eliminating |Q2| one obtains

φ(θ1, θ2)φ(θ2, θ3) = φ(θ1, θ3) , (4.13)

say

φ(θ1, θ2) =
φ(θ1, θ3)

φ(θ2, θ3)
. (4.14)

Since (4.14)) has to be valid for whichever value of θ3, the functions at the numerator and denom-
inator can be factorised as products of a new function T (θ):

φ(θ1, θ3) = T (θ1)T (θ3) , φ(θ2, θ3) = T (θ2)T (θ3) , (4.15)

so that from (4.12), (4.14) and (4.15), one obtains

|Q1|
|Q2|

= φ(θ1, θ2) =
T (θ1)T (θ3)

T (θ2)T (θ3)
=
T (θ1)

T (θ2)
. (4.16)

The function T (θ) introduced in (4.15) allows the introduction of a new temperature scale, the
thermodynamic temperature, operatively defined by the two properties:

a) Tfc/Tch = |Qfc| / |Qh| for whichever Carnot cycle as a consequence of (4.16);
the scale of the thermodynamic temperature is defined in terms of a ratio, then to within an
arbitrary multiplicative constant.

b) T =273.16 K at the triple point of water (by convention);
this convention avoids eliminates the arbitrariness of the multiplicative constant and at-
tributes to the triple point of water the same value of the ideal gas scale (§ 2.3).

The thermodynamic temperature T is “absolute” because

- it cannot assume have values, being the ratio of two positive values of heat quantities;

- is independent of the thermometric substance.

Being independent of the thermometric substance, the thermodynamic scale has an universal va-
lidity.

The scale of absolute temperatures T (also called Kelvin scale) coincides with the ideal gas scale
θ in the temperature interval where a gas thermometer can be used. Actually, if one considers the
Carnot cycle of an ideal gas composed by two reversible isotherms at the temperatures θ1 and θ2

and two reversible adiabatics, one can easily verify that |Q1|/|Q2| = θ1/θ2, whence T1/T2 = θ1/θ2.

(?) Demonstrate the relation |Q1|/|Q2| = θ1/θ2 pfor the Carnot cycle of an ideal gas.

By exploiting the relation Tc/Th = |Qc| / |Qh|, the efficiency of a Carnot cycle can be expressed
as a function of the thermodynamic temperatures of the two reservoirs. For the heat engine, the
refrigerator and the heat pump one has, respectively,

η = 1 − Tc
Th

, ωfri =
Tc

Th − Tc
, ωpump =

Th
Th − Tc

. (4.17)

Be anyway careful: equations (4.17) refer to the ideal case of the Carnot cycle (by definition
reversible) and represent thus limiting values: one speaks of ideal efficiencies.In the real cases the
efficiency values are necessarily smaller, in some cases even dramatically smaller.

Note: The absolute thermodynamic temperature is one of the seven base quantities of the Inter-
national System of Units (SI). Its unit is the kelvin (symbol: K). Up to 2019 the kelvin was
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defined as the fraction 1/273.16 of the thermodynamic temperature fo the triple point of wa-
ter. In 2019 new definitions of all the base quantities have been defined. The kelvin is now
defined as a function of the Boltzmann constant, to which an exact value has been attributed.
We will return to this topic in Part III, dedicated to Statistical Thermodynamics, where the
Boltzmann constant will be introduced.

4.3.4 Carnot theorem and irreversible cycles

The Carnot theorem can be extended to the comparison between reversible and irreversible cycles
operating between two temperatures Th and Tc.

Of all the possible cycles operating between two reservoirs at different temperatures,
irreversible cycles have smaller efficiencies that reversible cycles.

For a demonstration, let us consider two cycles A (irreversible) and B (reversible) operating be-
tween the same two reservoirs and let to suppose, by contradiction, that the irreversible cycle A
has an efficiency higher than the reversible cycle B (ηA > ηB). Since B is reversible, it can be
operated backwards. One can easily see that the sum of the two devices would violate the Second
Law.

Eq. (4.17) can thus be generalised by substituting the equality = (valid only for reversible cycles)
with a disequality ≤.

Heat engine

For a heat engine the thermodynamic efficiency η is superiorly limited by the relation

η =
|Wuseful|
|Qin|

≤ 1 − Tc
Th

. (4.18)

Since typically Tc is the ambient temperature, the efficiency η can only be increased by increasing
the temperature of the hot source Th.

(?) Let be Tc = 293 K; plot ηmax as a function of Th.

Example: In an internal combustion engine temperatures of the order of Th ' 3000 K can be
reached. The ideal efficiency of a Carnot cycle is thus η '0.92. However, a real engine
exchanges heat with more than two reservoirs; for example, a petrol-driven engine is generally
approximated by an Otto cycle, formed by two adiabatic and two isocore (constant volume)
transformations; the real cycle is anyway different even from the ideal Otto cycle Taking into
account mechanical friction and other constraints of chemical origin, the efficiency of a typical
real petrol-driven engine doesn’t exceed generally the value 0.3.

Refrigerator

For a refrigerator the thermodynamic efficiency η is superiorly limited by the relation

ωfri =
|Qin|
|Wass|

≤ Tc
Th − Tc

. (4.19)

Example 1: For domestic refrigerators generally Th ' 293 K (room temperature). Let us suppose
that the freezer should be maintained at a temperature Tc = 253 (' −20◦ Celsius): the
maximum ideal efficiency ωfri ' 6.3; the real efficiency is smaller, due to mechanical friction
in engine and compressor as well as to insulation losses.
The efficiency of a refrigerator is progressively reduced when the low temperature Tc is reduced.
This makes difficult to obtain very low temperatures (see Chapter ??).

Example 2: For air-conditioners generally Tc ' 293 K (room temperature). Let the outside
temperature be Th = 303 K: the maximum ideal efficiency is ωfri ' 29; the real efficiency is
smaller due to mechanical friction as well as to insulation losses.
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(?) Let be Th = 293 K (room temperature); plot the maximum efficiency ωfri of a refrigerator as
a function of Tc. Compare the maximum efficiency for Tc = 1 K ? and for Tc = 0.1 K.

(?) Let Tc = 293 K (room temperature); plot the maximum efficiency ωfri of an air-conditioner
as a function of the external temperature Th.

Heat pump

For a heat pump the coefficient of performance is superiorly limited by the relation

ωpump =
|Qout|
|Wass|

≤ Th
Th − Tc

. (4.20)

Example: For heat pumps used for heating houses, generally Th ' 293 K (' 20◦ Celsius). Let
the external temperature be Tc = 273 K: the maximum ideal coefficient of performance is
ωpump ' 14.6. The real coefficient is smaller, due to mechanical friction and to insulation
losses; typical values are included between 2 and 4, depending on the value of Tc.

(?) Si ponga la temperatura dell’ambiente da riscaldare al valore Tc = 293 K e si grafichi il
coefficiente di prestazione massimo ωcal in funzione della temperatura esterna Tf .

4.3.5 Relevant comments

A

For historical and tutorial reasons, the Carnot theorem is generally explained with reference to
heat engines, where the work W us purely mechanical, and by refrigerators, where the work W is
typically electric.

Actually, the Carnot theorem has a general validity, independent of the type of system; the work W
can thus have different origin, it can for example be magnetisation work or dielectric polarisation
work or deformation work of an elastic body, and so on.

B

The Carnot theorem plays a fundamental role for deriving the consequences of the Second Law
(see this § 4.3 and next § 4.4), for example the definition of thermodynamic temperature T and
entropy S as well as the determination of the limits of efficiency of thermodynamical processes.

However, a Carnot cycle, composed by four reversible transformations, cannot be practically im-
plemented. Even if mechanical friction could be eliminated at all, a basic problem remains for the
implementation of a Carnot cycle. The two isothermal transformations require the exchange of
heat between the system and the two reservoirs; reversibility requires in turn that the difference of
temperature between system and reservoir be negligible. But the speed of heat transfer depends on
the difference of temperature; as a consequence, the better are the reversibility conditions fulfilled,
the slower is the heat transfer and the work production, say the smaller is the delivered power.

4.4 Clausius theorem.

The consequences of the Carnot theorem were further developed and generalised by Clausius,
who introduced a new thermodynamic quantity, the entropy, that on the one hand is a new state
function suitable to characterise the equilibrium state of a system, on the other allows one to
measure the degree of irreversibility of thermodynamic transformations.

To better grasp the meaning of the Clausius theory, let us begin from the case of simple cycles
operating between two temperatures (§ 4.4.1), and only afterwards consider the general cas (§ 4.4.2).
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Figure 4.3: Schematic representations referring to the case of a cycle operating between two reser-
voirs. Left: heat and work fluxes in a cyclic engine. Center: flux of Q/T for a reversible cycle.
Right: flux of Q/T for an irreversible cycle.

4.4.1 Clausius theorem, a particular case

Let us consider cyclic devices operating between two reservoirs, at temperatures T1 and T2, re-
spectively, where T1 < T2.

Reversible cycles

Let us fist consider a Carnot cycle, by definition reversible (Fig. 4.3, left, where a cyclic engine is
represented).

As a consequence of the Carnot theorem, the absolute thermodynamic temperature T (eq. 4.16)
has been defined in such a way that

T1

T2
=
|Qrev

1 |
|Qrev

2 |
. (4.21)

From (4.21) one obtains
|Qrev

1 |
T1

=
|Qrev

2 |
T2

. (4.22)

While the heat quantities |Qrev
1 | and |Qrev

2 | are different (Fig. 4.3, left), equation (4.22) shows that
the quantity |Qrev|/T is unchanged (Fig. 4.3, center).
Since the cycle is reversible, when the system exchanges heat with each one of the two reservoirs
it has its same temperature, T2 or T1.

If we now focus aour attention on the cyclic device and take into account the sign of the heat
quantities (positive when entering the system, negative when outgoing), since Qrev

1 and Qrev
2 have

opposite signs, from (4.22) one gets

Qrev
1

T1
+
Qrev

2

T2
= 0 (reversible cycle) . (4.23)

At the end of every cycle, the algebraic sum of the heat quantities exchanged divided by the
corresponding temperatures is zero.
Since we are considering reversible cycles, the same conclusion holds for refrigerating cycles.

If we focus our attention on the two reservoirs, we could say that the quantity |Q|/T is transferred
from the hot reservoir to the cold reservoir (Fig. 4.3, center).

Irreversible cycles

Let us now consider irreversible cycles and compare their behaviour with the behaviour of reversible
cycles. It is now necessary to distinguish heat engines from refrigerators.



44 P. Fornasini: Lectures on Thermodynamics

Let us first consider a non reversible cyclic engine and suppose that the heat quantity Q2 absorbed
from the hot reservoir is equal to the quantity of heat Qrev

2 absorbed by the reversible engine.
According to the Carnot theorem, the efficiency η of an irreversible engine operating between
between two given temperatures is smaller than the efficiency of a reversible cycle operating between
the same temperatures, ηirr < ηrev. It is thus easy to see that (Fig. 4.3, right)

|Q1|
|Q2|

>
|Qrev

1 |
|Qrev

2 |
=
T1

T2
⇒ |Q1|

T1
>
|Q2|
T2

. (4.24)

Let us now consider a non reversible refrigerating cycle and suppose that the heat quantity Q1

absorbed from the cold reservoir is equal to the quantity of heat Qrev
1 absorbed by the reversible

refrigerator. According to the Carnot theorem, the efficiency η of an irreversible refrigerator
operating between between two given temperatures is smaller than the efficiency of a reversible
cycle operating between the same temperatures, ωirr < ωrev. It is thus easy to see that

|Q1|
|Q2|

<
|Qrev

1 |
|Qrev

2 |
=
T1

T2
⇒ |Q1|

T1
<
|Q2|
T2

. (4.25)

Since we are considering irreversible transformations, it is important to remember that the tem-
peratures T in (4.24) and (4.25) are the temperatures of the two reservoirs sono le temperature
dei due serbatoi (only for reversible transformations the temperatures of the cyclic device during
its different transformations are equal to the temperatures of the reservoirs).

To conclude, let us first focus our attention on the cyclic device (engine or refrigerator) and take
into account the sign of the heat quantities exchanged; from (4.24) and (4.25) one obtains

Q1

T1
+
Q2

T2
< 0 (irreversible cycle) . (4.26)

At the end of each cycle, the algebraic sum of the quantities of heat exchanged by the system,
divided by the temperatures of the reservoirs, is always negative.

Let us finally focus the attention on the two reservoirs, that together with the cyclic device are an
isolated system. During an irreversible cycle of the device, the heat quantities exchanged by the
reservoirs have opposite sign with respect to the heat quantities exchanged by the cyclic device.
At the end of each cycle, the cyclic device (engine or refrigerator) returns to its initial state. The
quantity |Q|/T increases when heat is transferred from the hot to the cold reservoir through the
cyclic device (Fig. 4.3, right).

We will consider again this particular case of the cyclic device operating between two reservoirs,
once the function of state entropy will be introduced and its behaviour in irreversible transforma-
tions clarified (§ 4.5.2).

4.4.2 Clausius theorem, general case

The equality (4.23) and the inequality (4.26) for reversible and irreversible cycles, respectively, op-
erating between two reservoirs can be generalised to thermodynamic systems undergoing whichever
cyclic transformation and exchanging heat with the environment at more than two different tem-
peratures.

Let us first consider a system M interacting with a number of other systems, to be considered
as reservoirs of infinite heat capacity. Let Qi be the heat quantity exchanged by the system M
with the i-th reservoir at the temperature Ti. As usual, Q− i is positive or negative according to
whether it enters into the system M or goes out.
As a consequence of the Second Law one can demonstrate (see below) that (4.23) and (4.26) can
be generalised as

©
∑
i

(
Qi
Ti

)
≤ 0 , (4.27)
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Figure 4.4: Schematic picture supporting the proof of the Clausius theoremwhen the system M
exchanges heat with a finite number N of reservoirs at different temperatures Ti.

where the symbol © indicates a sum over a cyclic transformation of the system. The = sign holds
only for reversible cycles. It is worth remembering that in (4.27) Ti is the temperature of the i-th
reservoir. Only for reversible transformations Ti is also the temperature of the system.

Equation (4.27) can be further generalised to the continuum case, where the system M exchanges
infinitesimal quantities of heat d̄Q at different temperatures with its environment:∮ (

d̄Q

T

)
≤ 0 . (4.28)

As usual, the symbol
∮

indicates the integral over a closed path. Also in (4.28) the = sign holds
only if the cycle is reversible and T is the temperature of that part of the environment with which
the system exchanges heat; only for reversible cycles T is the temperature of the system too.

Proof of the Clausius theorem

Let us consider a system M undergoing a cyclic transformation, reversible or irreversible. During
the cycle, the system exchanges heat with a number of reservoirs at temperatures T1, T2, . . . , TN
(Fig. 4.4). Let Qi be the heat quantity exchanged with the reservoir at the temperature; ss usual,
Q− i is positive or negative according to whether it enters into the system M or goes out.
Our goal is now to verify the sign of the sum

©
∑
i

(
Qi
Ti

)
. (4.29)

To this aim, let us introduce an auxiliary system made by a reservoir at temperature T0 connected
to each one of the Ti reservoirs by a Carnot cycle (by definition reversible). The auxiliary Carnot
cycles are such that each one exchanges with the corresponding reservoir Ti the same quantity of
heat Qi exchanged by the reservoir Ti with the system M .
Exploiting the property (4.23) for each one of the Carnot cycles and correctly taking into account
the signs of the heat quantities, one can connect the total quantity of heat Q0 absorbed by the
Carnot cycles from the reservoir T0 to the heat quantities Qi absorbed by the system M :

Q0 =
∑
i

Q0i = T0

∑
i

(
Qi
Ti

)
, (4.30)



46 P. Fornasini: Lectures on Thermodynamics

(where the symbol © has been omitted for concision).
Let us now consider the global system (real system plus auxiliary system): the global results for a
cycle is

• the neat absorption of a quantity of heat Q0 from a single reservoir at a temperature T0 (all
Ti reservoirs are returned to their initial states),

• the absorption of a total work W , algebraic sum of the quantities of work absorbed by the
system M and by each one of the Carnot cycles.

As a consequence of the First Law (the total interna energy is not varied in a cyclic transformation)
and of (4.30) one gets

∆U = Q0 +W = 0 ⇒ T0

∑
i

(
Qi
Ti

)
+W = 0 . (4.31)

According to the Second Law it must be W ≥ 0 (the neat work is made on the system). Actually,
were W < 0, globally the system would produce work at the expenses of heat extracted from a
single reservoir. Imposing then W ≥ 0 in (4.31), one obtains equation (4.27):

©
∑
i

(
Qi
Ti

)
≤ 0 . (4.32)

The artefact of the reservoirs Ti having infinite heat capacity (say whose temperature is insensible
to the exchanges of heat) can be overcome by decomposing the finite heat quantities Qi into sums
of infinitesimal quantities d̄Q, so that the sum of (4.32) is transformed into the integral of (4.28):∮ (

d̄Q

T

)
≤ 0 . (4.33)

If the cycle undergone by system M is reversible, equation (4.33) holds even if all heat quantities
invert their sign, so that ∮ (

d̄Q

T

)
= 0 (reversible cycle.) (4.34)

For reversible cycles, the temperatures in (4.34) refer not only to the reservoirs but also to the
system.

4.5 Entropy

A first consequence of the Clausius theorem applied to reversible cycles is the possibility of intro-
ducing a new state function.
Let us rewrite equation (4.34) ∮ (

d̄Q

T

)
rev

= 0 (4.35)

remembering that T is here the system temperature, since in every infinitesimal transformation of
a reversible cycle the temperature of the system is equal to the temperature of the reservoir.
As a consequence of (4.35), for two s whichever equilibrium states A and B of a thermodynamical
system, the integral ∫ B

A

(
d̄Q

T

)
rev

only depends on the initial and final state A and B, respectively, and is independent of the in-
termediate states. One can thus define a new state function, called entropy S, whose variation in
going from state A to state B is given by

∆S = SB − SA =

∫ B

A

(
d̄Q

T

)
rev

. (4.36)
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Since the entropy is a state function, its differential exists

dS =
d̄Q

T
. (4.37)

While d̄Q is not an exact differential, the ratio dS =d̄Q/T is.

The entropy is the ratio between a quantity of heat (say energy) and a temperature; the unit of
entropy is thus joule over kelvin (J K−1). Entro, such as energy, is defined by (4.36) to within ad
additive constant. If a value of entropy is conventionally attributed to a given state A, the entropy
of all other possible states of the system are univocally defined by (4.36).

Note 1: Notice the formal formal analogy between the procedure by which the state function has
been here introduced and the procedure by which the potential energy in conservative systems
is defined in Mechanics.
A force ~F is said to be conservative when, for whichever closed path,

∮
~F · d~r = 0. As a

consequence the mechanical work of a conservative force for a displacement from a point A to
a point B is independent of the path and can be expressed as the variation of the potential

energy function, W =
∫ B
A
~F · d~r = −∆Ep.

Note 2: The term “entropy” derives from the ancient greek words en=into and tropè=modification.

The entropy plays a fundamental role in Thermodynamics. In what follows we will explore its
main applications for bot reversible and irreversible transformations.

Example: The differential of entropy, taking into account the First Law, can be expressed as

dS =
d̄Qrev

T
=

dU

T
+

P

T
dV (4.38)

Let us consider a monatomic ideal gas, for which the thermal and caloric equations of state
(2.3) and (3.5), respectively, hold. By substituting in (4.38) the expressions of dU and dV
given by the equations of state, one easily finds

dS =
3

2
nR

dT

T
+ nR

dV

V

whence, by integration, the finite variation

∆S =
3

2
nR ln

T

Tref
+ nR ln

V

Vref

where Tref and Vref are arbitrary reference values of temperature and pressure for the ideal
gas. If one attributes an arbitrary value Sref in correspondence to the values of Tref and Vref ,
the entropy S can be expressed as a function of the coordinates T and V as

S(T, V ) = Sref +
3

2
nR ln T + nR ln V . (4.39)

One can easily verify that as a function of the coordinates T and p the expression of entropy
for a monatomic ideal gas becomes

S(T, p) = Sref +
5

2
nR ln T − nR ln p , (4.40)

where now Sref refers to the reference values Tref and pref for the ideal gas.

4.5.1 Entropy as a thermodynamic coordinate

Being a state function, entropy can be used as a thermodynamic coordinate to characterise the
thermodynamical state of a system.

For example, let us consider a simple system, consisting in a homogeneous substance without mag-
netic or dielectric properties. Its the thermodynamic state can be described by two thermodynamic
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coordinates, for example pressure and volume pV , or temperature and volume TV , or pressure and
temperature pT . We will see in Part II how the most suitable choice of coordinates depends on
the phenomena one is interested in and that for complex systems more that two coordinates are
necessary..

As a consequence of the First and Second Laws two new state functions have been introduced, the
internal energy U and the entropy S, both defined to within an additive constant. Being state
functions, also the internal energy U and the entropy S can be used as thermodynamic coordinates,
whose absolute value is assumed with respect to an arbitrary reference state. The thermodynamic
equilibrium state of a simple system can thus be described also by pairs of coordinates such as UV
or ST .

The use of internal energy U and entropy S as thermodynamic coordinates is largely exploited in
the axiomatic approach to Thermodynamics, to be introduced in Part II.
As we will there see, a great deal of thermodynamical properties depend on the derivatives of
the internal energy and of the entropy, so that the arbitrary additive constant is in many cases
uninfluent.

It is convenient, at this point, to shortly discuss the problem of the different intuitive meanings of
internal energy and of entropy.
The concept of thermodynamical internal energy U is quite intuitive, since one is accustomed to
the use of energy in various scientific and technological fields and due also to the relative simplicity
of the microscopic interpretation sketched in § 3.3.
By far less immediate is an intuitive understanding of the meaning of entropy. Its introduction
as a consequence of the Clausius theorem appears to have a quite abstract purely mathematical
character. The actual physical meaning of entropy will become progressively clearer when its use
in practical cases will be studied. However, a satisfactory intuitive understanding of entropy is
possible only on the grounds of statistical considerations, to the introduced in Part III.

Coming back to the entropy S as a thermodynamic coordinate, let us now consider two important
applications.

Reversible adiabatic transformations

In any reversible adiabatic transformation the integral
∫

(d̄Q/T ) is null, because d̄Q = 0, and thus
the entropy is unchanged, ∆S = 0. A reversible adiabatic is thus an iso-entropic transformation.
It is now interesting to consider the Carnot cycle, that is represented by two reversible isothermal
and two reversible adiabatic transformations. If S and T (entropy and temperature) are used as
thermodynamic coordinates, the plot of the Carnot cycle in the ST plane has the same simple
rectangular shape for any system (Fig. 4.5).

S

T

S

T

Figure 4.5: Representation of the Carnot cycle in the ST plane. Left: Carnot engine. Right:
Carnot refrigerator.

Reversible exchange of heat

As previously stated (§3.4.1, eq. 3.16), the reversible compression work can be expressed as
(d̄W )rev = −p dV .
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The introduction of the state function entropy allows one to express also the quantity of heat
absorbed reversibly in an analogous form, by inverting eq. (4.37): (d̄Q)rev = T dS.

In Chapter 3 we have observed that the First Law is always symmetrical with respect to both heat
and work, in both its infinitesimal and finite :

dU =d̄Q+d̄W , ∆U = Q+W (for all transformations) (4.41)

By the introduction of the entropy function, one can express the First Law for reversible transfor-
mations in a differential form that is again symmetrical with respect to heat and work:

dU = T dS − p dV , ∆U =

∫ f

i

T dS −
∫ f

i

p dV (only for reversible transf.) (4.42)

4.5.2 Entropy and irreversible processes

A further consequence of the Clausius theorem is the possibility of using the entropy S for measuring
the degree of irreversibility of a thermodynamic transformation.

The Clausius inequality (4.28) concerns the irreversible cyclic transformations. The introduction
of the state function entropy S allows one to obtain from the Clausius inequality a relation that
concerns any irreversible transformation, even if not cyclic.

Let us consider a generic transformation connecting two equilibrium states of a system, the initial
one i and the final one f (i → f) and a second reversible transformation that brings back the
system to its initial state (f → i).
The cyclic integral of (4.28) can be decomposen into the sum of the integrals:∮

d̄Q

T
=

∫ f

i

d̄Q

T
+

∫ i

f

(
d̄Q

T

)
rev

≤ 0 . (4.43)

In the first transformation i → f the temperature T refers to the ambient of the system; only
in the second (reversible) transformation f → i is the temperature of the system equal to the
temperature of its ambient.
The second integral of (4.43) (f → i) can be substituted by the corresponding variation of entropy,
according to (4.36), so that for the generic transformation i→ f one obtains∫ f

i

d̄Q

T
≤ S(f)− S(i) = ∆S . (4.44)

It is worth noting that, since the entropy is a state function, its variation ∆S in the transformation
of a system from an initial state i to a final state f is independent of the type of transformation
(reversible or irreversible) and of the intermediate states.
However, to calculate the entropy variation ∆S = S(f)−S(i) it is necessary to refer to any reversible
transformation connecting the initial state i to the final state f of the system, and on this reversible
transformation to calculate the integral

∫
(d̄Q/T )rev (where T is the system temperature).

Irreversible processes in isolated systems

A very important consequence of equation (4.44) concerns the isolated systems. An isolated system
cannot exchange nor heat nor work with its ambient. In that case, since d̄Q = 0, the integral on
the left of (4.44) is zero, sa that

∆S = Sf − Si ≥ 0 (for an isolated system) . (4.45)

Otherwise stated, an isolate system that initially is in an equilibrium state i can transform into a
final equilibrium state f only if (4.45) is fulfilled, say only if the entropy of the final state is not
larger than the entropy of the initial state.
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If the transformation i → f is reversible, the entropy cannot diminish for the opposite transform
f → i too, so that:

∆S = Sf − Si = 0 (reversible transf. of isolated system) . (4.46)

Since all natural processes are irreversible, eq. (4.45) implies that the entropy of an isolated system
cannot diminish in any spontaneous process. It can only increase or, at most, remain constant.
This statement is often refered to as the law of entropy increase in isolated systems.

For a non isolated system, the variation of entropy can be positive, null or negative, depending
on the transformation. The ensemble of a given system and of all the other systems with which
it interacts (its ambient) is anyway an isolated system, and for a spontaneous transformation the
global relation holds:

∆Ssist + ∆Samb > 0 . (4.47)

The sum of a system and its ambient is often conventionally called an “universe”.

Example 1: Let us come back to the case of cyclic devices operating between only two reservoirs,
that was considered in § 4.4.1, and analyse the behaviour of entropy for irreversible transfor-
mations.
For concreteness, let us refer to the cyclic engine. The ensemble of the cyclic engine and the
two reservoirs can be considered as an isolated system (an “universe”). The entropy of the
isolated ensemble is the sum of the entropies of the system and of the two reservoirs.
Let us consider an entire cycle of the engine. At the end of the irreversible cycle, the engine
returns to its initial state, so that also its entropy, that is a state function, returns to its initial
value. For a cycle, ∆Sengine = 0. Pay attention that one cannot use (4.26) for measuring the
entropy variation, since according to (4.36) one should consider heat exchanged reversibly.
The reservoirs maintain unchanged their temperatures, thanks to their ideally infinite heat
capacities. The entropy variations can thus be calculated by the ratios Q/T . One can easily
verify that for an irreversible engine the total variation of entropy of the two reservoirs is
positive, ∆Sserb > 0 (Fig. 4.3, right).

Example 2: Let us again consider a cyclic engine operating between two reservoirs, and reduce its
efficiency down to the value η = 0. No work is now produced and the entire quantity of heat
emitted by the hot reservoir is transferred to the cold reservoir. The situation corresponds
to the irreversible transfer of heat Q from a body at temperature T2 to a body at a lower
temperature T1 < T2. It is immediate to verify that ∆S = −Q/T2 +Q/T1 > 0.

Example 3: An instructive example of irreversible process is represented by the free adiabatic
expansion of an ideal gas.
Le us consider a thermally insulated vessel, of total volume V , divided in two equal parts by a
fixed wall. One of the two parts, of volume V/2, is filled by one mole of ideal gas at pressure p,
the other part is empty. At a given time the separation wall is removed and the gas expands
and fills up the entire volume V . One can easily verify that the process is irreversible.
During the expansion, the gas doesn’t exchange nor heat nor work with the ambient; according
to the First Law, the internal energy of the final state is equal to the internal energy of the
initial state. Since the gas is ideal, the final temperature is equal to the initial temperature
too.
To calculate the entropy variation ∆Sfi from the initial equilibrium state i to the final equi-
librium state f , one must calculate the integral of d̄Q/T along any reversible transformation
connecting the two states. Since the initial an final state share the same temperature, it is
convenient to choose the isothermal reversible transformation between the initial state (V/2, p)
and the final state (V, p/2). One can easily verify that ∆Sfi = R ln 2 > 0, where R is the gas
universal constant.

Note: A careful reader could be worried about the possibility that an isolated system initially
in an equilibrium state spontaneously could transform to a different final equilibrium state.
Otherwise stated: how is it possible that an isolated system modifies its equilibrium state ?
This far from trivial problem is clarified in Chapter 5, at the beginning of Part II.
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4.5.3 Increase of entropy and degradation of energy

The First Law of Thermodynamics imposes a constraint on thermodynamical transformations: in
an isolated systems, only the transformation for which the internal energy is conserved, ∆U = 0,
are possible.
The Second Law imposes a further constraint: in an isolated thermodynamical system only the
transformations for which the entropy doesn’t decrease are possible. For (ideal) reversible trans-
formations the entropy of an isolated system is conserved; for real irreversible transformations of
an isolated system the entropy increases. The law of increase of entropy in isolated systems is a
general criterion of evolution fro physical pocesses.

To the increase of entropy of an isolated system it corresponds a degradation of energy, say an
irreversible reduction of the possibility of obtaining useful work.
Let us consider the transformation of an isolated thermodynamical system from an initial state i
to a final state f . The lost work, say the difference between

a) the work obtainable by a perfectly reversible i→ f transformation, an

b) the work obtained by the real irreversible transformation,

is
Wlost = Wrev − Wirr = T0 ∆S , (4.48)

where T0 is the lowest available temperature and ∆S is the variation of the entropy of the isolated
system.

Example: Let us verify the validity of (4.48) for the simple case considered in § 4.4.1, Fig 4.3.
There are two reservoirs, at the temperatures T2 and T1, respectively, with T2 > T1. The direct
transfer of a quantity of heat Q from the hot to the cold reservoir is an irreversible process, with
no production of work. The increase of entropy is ∆S = −Q/T2 +Q/T1 = Q(T2 − T1)/T1T2.
We could alternatively input the heat Q emitted by the hot reservoir into a Carnot engine
(reversible) and obtain the work W = Q(1− T1/T2). It is immediate to see that W = T1 ∆S.
The quantity of heat Q absorbed by the cold reservoir in the irreversible process cannot be
used to obtain work, unless one can dispose of another reservoit at a temperature lower than
T1.

A general demonstration of (4.48) is far from trivial.
Let us consider the ensemble made by a thermodynamic system and its ambient. The ensemble
(system+ambient) is an isolated system (a “universe”).
During an irreversible transformation from an initial state i to a final state f the system exchanges
heat and work with its ambient and the entropy of the “universe” increases, ∆Ssyst + ∆Samb =
Sf − Si > 0.
To perform the same transformation i → f reversibly, one can add a new auxiliary ambient,
connected to a reservoir at the lowest available temperature T0, which exchanges work and heat
with the system through suitable Carnot cycles.
The variation of entropy of the original ensemble is always ∆Ssyst + ∆Samb = Sf − Si > 0,
since initial and final states are unchanged. The auxiliary ambient undergoes an opposite entropy
variation ∆Saux = −∆Ssyst−∆Samb < 0, in such a way that the total variation of entropy is null,
∆Ssyst +∆Samb +∆Saux = 0. The negative value ∆Saux < 0 corresponds to a neat transfer of heat
Qaux from the auxiliary ambient to the original ensemble. Since the original ensemble undergoes
the same transformation i → f and the same variation of internal energy than in the irreversible
transformation, the heat Qaux = T0∆Saux outgoing from the auxiliary ambient has to transform
into work, say into work that is lost in the irreversible transformation, so that Wlost = T0 (Sf−Si).
Example: A body of heat capacity C = 500 J K−1, initially at the temperature Ti = 400 K, is

immersed in an ambient of infinite heat capacity at the temperature T0 = 300 K. After a
sufficiently long time, the body is in equilibrium at the final temperature T0 = 300 K.
The process is irreversible. The heat transferred from the body to the ambient is Q = C∆T =
C(Ti − T0) = 50000 J. To evaluate the variation of entropy it is necessary to calculate the
integrals of d̄Q/T = C dT/T along reversible transformations connecting the initial and final
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states; for the body it is convenient to consider a reversible isobar transformtion, for the
ambient the ratio Q/T0 is sufficient:

∆Ss,irr = ∆Ssist + ∆Samb = C

∫ T0

Ti

dT

T
+
Q

T0
= 22.82 JK−1 > 0 . (4.49)

Alternatively, the body could reach the final equilibrium state through a reversible transfor-
mation by means of a Carnot engine inserted between the body and the ambient. During the
process the temperature of the body progressively decreases. The Carnot engine has to work
by a number of infinitesimal cycles, producing infinitesimal variations of the body temperature
in each cycle. Since the process is reversible, the global variation of entropy is null, ∆Srev = 0.
For each infinitesimal cycle the efficiency is η = 1− T0/T , where T is the instantaneous tem-
perature of the body, and the work is d̄W = −ηd̄Q, where d̄Q is the quantity of heat given by
the body. By integrating d̄W from Ti to T0 one gets W = 6847 J. One can easily verify that
W = T0 ∆Sirr.

4.6 Final remarks

In this Chapter 4 the Second Law and its consequences (Carnot and Clausius theorems) have been
introduced by considering cyclic transformations of thermodynamic systems, without worrying
about the very nature of the systems. By focusing the attention on isolated systems it has been
possible to define the state function entropy and to demonstrate the law of increase of entropy in
isolated systems. It has also been observed that the increase of entropy represents an evolution
criterion for isolated systems.
We conclude now this Chapter with some comments which should help to better understand the
relevance of the Second Law and introduce to the developments of next Chapters.

4.6.1 Non-isolated systems

The large majority of the applications of Thermodynamics concern systems which are not isolated.
For example: a number of phenomena, such as chemical reactions and phase transitions, take place
at constant temperature and pressure, so that the system can exchange work and heat with its
surroundings; statistical calculations are instead generally performed by controlling temperature
and volume.
It is thus necessary to suitably tailor to non isolated systems the procedures up to now developed
for isolated systems, avoiding the need to extend the treatment of a given system to include also
its surroundings, in order to obtain an isolated ”thermodynamical universe”. For example, how
can the law of entropy increase in isolated systems be adapted to a system maintained at constant
temperature and pressure or to a system maintained at constant volume and temperature ?
The problem has been solved by introducing new thermodynamic functions, such as the enthalpy
or the free energies of Helmholtz and Gibbs, each one suitable for a different situation.

These topics are treated systematically in Part II, that is based on an axiomatic approach to
Thermodynamics, alternative to the cycle approach of this Part I.

4.6.2 Intuitive meaning of entropy

The meaning of temperature and internal energy is in general quite easily understood, since one
can refer to quantities of everyday experience (temperature, work, heat).
The meaning of entropy, such as it is introduced in macroscopic terms from the Clausius theorem,
is easily understood with reference to the simple examples of heat transfer introduced in § 4.4.1.
It is instead little intuitive in many other cases, such as the free adiabatic expansion of a gas
considered in a previous example, where the system doesn’t exchange heat with its ambient, and
the integral of d̄Q/T has to be performed along a reversible transformation that has no relation
with the real transformation.
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The meaning of entropy is more easily understood if one refers to its statistical interpretation,
that refers to the microscopic structure of thermodynamic systems and will be treated in Part III.
In particular, in Chapter,13, we will see that for an isolated system the entropy depends on the
number of microscopic states corresponding to the macroscopic equilibrium state. The increase of
entropy in an irreversible transformation corresponds to an increase of the number of microscopic
states available to the system.

4.6.3 The arrow of time

As already observed, the law of entropy increase in isolated systems represents an evolution cri-
terion for natural processes, which are always irreversible. The law has a general validity, since
one can always add to a given system its surroundings in order to obtain an isolated system (a
“thermodynamic universe”, that in some cases can correspond to the entire Universe).
The irreversibility of natural processes and the entropy increase imply a preferred direction with
respect to the time axis. Macroscopic phenomena can only take place in a given time direction,
not in the opposite.
A gas can spontaneously expand into a vacuum vessel, the opposite phenomenon cannot take place
spontaneously. Heat is spontaneously transferred from a hot to a cold body, the opposite cannot
take place spontaneously. And so on.
A deeper understanding of the macroscopic irreversibility will be gained by the statistical approach
to Thermodynamics of Part III.
One often says that macroscopic irreversibility establishes the “arrow of time”.
This behaviour of macroscopic systems contrasts with the behaviour at the microscopic level. The
laws of fundamental interactions are invariant with respect to time inversion (with the exception
of some phenomena of weak nuclear interaction).
The connection between the microscopic reversibility and the macroscopic irreversibility is a still
unsolved problem.

4.6.4 Irreversibility, disorder and degradation of energy

As already noticed above, irreversibility is connected to the degradation of energy, say to the the
loss of the possibility of obtaining useful work.
A sequence of natural irreversible processes gives rise to a progressive increase of entropy that
corresponds to a progressive accumulation of energy stored at low temperatures.
According to Statistical Thermodynamics, this behaviour corresponds to a tendency towards
macroscopic states that correspond to an increasing number of microscopic states; the result is
a reduction of differentiation and an increasing uniformity at the microscopic level.
Such a trend is often interpreted as an increase of the degree of disorder of systems. Whence the
use of the term entropy as synonymous of disorder in the everyday language.
Ordered structures can actually spontaneously develop, for example in the growth of living beings,
but at the expenses of the increase of entropy, say of disorder, in the environment.



54 P. Fornasini: Lectures on Thermodynamics



Part II

Equilibrium macroscopic
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In Part I the Laws of Thermodynamics have been introduced according to the traditional approach
based on cyclic transformations.

In this Part II a more general approach is followed, based on the coordinate formalism first devel-
oped by J. W. Gibbs at the end of the XIX Century.

The treatment is based on the relatively recent axiomatic foundation developed by L. Tisza and
H. B. Callen, that allows a formulation which is both elegant form the mathematical point of view
and easily adapted to the different fields of application of Thermodynamics.

We will introduce the state functions enthalpy and Helmholtz and Gibbs free energies, and the
equilibrium conditions of thermodynamic systems will be discussed. The response function will be
introduced and the relations connecting them will be deduced.

Part II is concluded by the study of some relevant thermodynamical processes and an introduction
to chemical Thermodynamics.



Chapter 5

Axioms of equilibrium
Thermodynamics

In this Part II the attention is focused on the thermodynamic coordinates, according to the Gibbs
approach, say on the accurate description of the states of the different possible thermodynamic
systems (pure and composite substances, magnetic and dielectric systems, systems affected by
chemical reactions or transport phenomena, etc.) The Gibbs approach allows one to adapt in
a simple and flexible way the thermodynamic formalism to different systems and to different
experimental conditions.
The Gibbs coordinate Thermodynamics can be built on the results of the cycle Thermodynamics
introduced in Part I. Alternatively, we follow here the axiomatic approach proposed by L. Tisza
and H. B. Callen, that is independent of cyclic transformations and is characterised by flexibility
and formal elegance.
In this first Chapter 5 the postulates are introduced on which the axiomatic formulation of equi-
librium Thermodynamics is based. The main differences with respect to the classical Cycle Ther-
modynamics of Part I will be immediately apparent, in particular concerning the definition and
role of internal energy and temperature.

5.1 Equilibrium axiom

5.1.1 Thermodynamical coordinates

In the axiomatic approach the extensive coordinates play a major role in definingthe equilibrium
states of thermodynamical systems. Extensive coordinates are:

- the volume V ;

- the internal energy U , that assumes a primitive character in the axiomatic approach;

- the quantity of matter in the system, measured by the number ni of moles of each omponent;

- the generalised coordinates X∗ that are necessary to describe possible physical properties of
thermodynamical interest, such as the magnetisation M or the electrical polarisation P (see
§ 3.4).

A least three extensive coordinates are necessary to describe the thermodynamical state of system,
however simple: V,U, n.
Before introducing the postulates of axiomatic Thermodynamics, it is convenient to make a point
about internal energy and the components of the system.

Internal energy

In the cycle Thermodynamics the existence of the internal energy U and its conservation in isolated
systems are assumed as the First Law of Thermodynamics (§ 3).
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In the present axiomatic approach the existence of the internal energy U and its conservation in
isolated systems are instead assumed as primitive concepts, which can be traced back to consid-
erations on the microscopic behaviour, in particular to the conservation of energy in fundamental
interactions.

As is well known, the potential energy is defined to within ad additive constant, so that also
internal energy U is defined to within an additive constant. From the operative point of view, one
can thus know only the variations ∆U . However, to simplify the notation, one generally indicates
the internal energy U as an absolute value, intended to be referred to an arbitrary reference value.
(This procedure is commonly followed, for example, when the potential energy of a spring is said
to be Ee = kx2/2).

Operatively, the variations of internal energy ∆U between two states of equilibrium of a system
can be evaluated by measuring the adiabatic work connecting the two states. The heat exchanged
in a generic transformation can be the evaluated as Q = ∆U −W .

The considerations of § 3.2 on exact differentials and infinitesimal quantities obviously are still
valid: dU =d̄Q+d̄W .

Components of a system

A system can contain one or more components, whose nature depends on the type of system and
on the type of phenomenon one wants to describe. Let us give some examples.

• An inert gas, in which no chemical reactions can take place. Its components are molecules
(atoms for monatomic gases). One has to specify one number n of moles if only one type of
gas is present, two values n1 and n2 if the system is a mixture of two gases, and so on.

• A system containing two phases, for example liquid water and its vapour: the components
are the water molecules and one has to distinguish the number of moles n1 of the liquid phase
and the number of moles n2 of the vapour phase.

• A chemical reaction: one has to specify the number of moles (n1, n2, n3 . . . , ni) of the chemical
species participating to the reaction. For example, for the reaction 2H2 + O2 ⇀↽ 2H2O one
has to specify the numbers n1, n2, n3 of molecules of hydrogen, of oxygen and of water,
respectively.

• Electromagnetic radiation confined within a cavity (for example a black body): one can
consider the photons (quanta of electromagnetic energy) as components, so that n is the
number of photons.

• The behaviour of electrons in a metal is often described by the model of a gas of free electons:
the components of the thermodynamical system are the electrons and n is the number of moles
of electrons.

• A radioactive material: different isotopes of the same atomic species generally have a different
behaviour; the components of the system are the different isotopes; one has thus to specify
the number of moles ni for every isotope.

Let us recall that the mole (symbol “mol”) is the quantity of matter of a system that contains
exactly the number of Avogadro, N0 ' 6.022× 1023, of elementary constituents, whose nature has
to be explicitly specified: n mol of atoms, of molecules, of electrons, etc..

The number ni of moles of the different components is necessary tocharacterise the dimensions of
a thermodynamical system

In systems containing only one component, the variations of n depend on the possible exchange
of matter with the environment or the creation or destruction of components (for example in the
case of a photon gas).

In systems containing more than one component, the variation s of the numbers of moles n1, n2, n3 . . . , ni
can describe not only the possible exchanges with the environment, but also the evolution of chem-
ical reactions, transport phenomena, phase transitions.
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5.1.2 Thermodynamical equilibrium

One can now state the first axiom of the coordinate Thermodynamics.

Axiom I: Thermodynamic systems can be in equilibrium states, completely charac-
terised by the values of the extensive coordinates U, V, {ni}, {X∗j }.

The extensive thermodynamical coordinates completely characterise the thermodynamical state of
the system. They define the Gibbs space. A point in the Gibbs space represents a thermodynamical
equilibrium state of the system.
In what follow, to simplify the notation, we will omit to specify the generalised coordinates X∗j , if
not strictly necessary.

The study of the equilibrium conditions in Chapter 6 will lead to the definition of the intensive
coordinates conjugatedto the extensive coordinates (in particular tmperature and pressure). The
conditions for the stability of equilibrium will be studied in § 9.6.
Let us stress that the experimental verification of the equilibrium state of a system and of its
stability can be far from trivial. See the discussion in § 2.1: if the relaxation time is short with
respect to the observation time, one can speak with good approximation of thermal equilibrium.
There are however some systems for which the relaxation time is much longer than the tYpical
observation times; such systems, even if their thermodynamical coordinates don’t change in time,
are in metastable equilibrium (for example diamond at ambient temperature and pressure) or even
out of equilibrium(for example glasses of radioactive materials).
As we will see, Thermodynamics gives the possibility of evaluating whether a system is in stable
or metastable equilibrium or if it is out of equilibrium.

5.2 The basic problem

The the Axiom I, concerning the thermodynamical equilibrium, the First Law of the cycle Ther-
modynamics is implicitly contained.
In the axiomatic approach a central role is played by the Second Law, that is however no more
expressed in terms of the properties of cyclic transformations, but with reference to the properties
of the state function entropy, whose very essence is the object of an axioms.
Before stating the entropy axioms, it is convenient to clarify the terms of the fundamental problem
that macroscopic Thermodynamics has to solve. To this aim, let us introduce some basic concepts:
composite systems, constraints, thermodynamical operations and thermodynamical processes.

Composite systems, walls, constraints

A composite system is a system composed of two or more sub-systems separated by suitable walls.
The equilibrium state of each one of the sub-systems is characterised by the value of its extensive

coordinates, U (j), V (j), {n(j)
i }, where the apex j labels the sub-systems.

The walls can be restrictive or non restrictive with respect to the transfer of one or more of the
extensive quantities (U, V, {ni}) from one sub-system to another.
The transfer of extensive quantities between sub-systems is a thermodynamical process, also called
a thermodynamical transformation.

The presence of restrictive walls imposes constraints to the transfer of extensive quantities within
the composite system. The extensive quantities are said to be free (with respect to non restrictive
walls) or constrained (with respect to restrictive walls).

Constraints removal and thermodynamical processes

Let us consider an isolated composite system (Fig. 5.1) that initially is in equilibrium. The sub-
systems, separated by restrictive walls, are in internal equilibrium.

At a given time one or more constraints are removed, the corresponding walls being transformed
from restrictive to non restrictive with respect to some extensive quantities. The constraints
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Constrained
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time

Non constrained 
equilibrium

trasformation

t0

Figure 5.1: Schematic representation of the fundamental problem. An isolated thermodynamical
system is initially (t < t0) in a condition on constrained equilibrium. At time t0 the constraints
are removed (thermodynamical operation); as a consequence, a thermodynamical process (trans-
formation) is triggered leading to a new situation of non constrained equilibrium.

removal is termed a thermodynamic operation, ideally taking place without exchanges of energy
and/or matter between the composite system and its environment.

As a consequence of the constraints removal, some extensive coordinates become free to change
their value and a thermodynamic process is triggered. After a suitable time interval, the composite
systems reaches a new equilibrium condition.

The fundamental problem is to establish the relation between the properties of the final un-
constrained equilibrium state and the properties of the initial constrained equilibrium state.

Examples

Example 1: Free expansion of a gas. A vessel is initially divided in two separated parts of equal
volume: V (1) = V (2). Part 1 is filled with gas, part 2 is empty: n(1) 6= 0, n(2) = 0; U (1) 6=
0, U (2) = 0. The wall separating the two parts is restrictive with respect to the transport
of both matter and energy. At a given time the separating wall is removed: the coordinates
n(1), n(2), U (1), U (2) become free variables. The system evolves towards a new equilibrium
state.

Example 2: A cylinder is divided in two parts by a sliding piston. The two parts contain n(1)

and n(2) mol of gas, respectively. Initially the piston is maintained fixed by a pin. At a given
time the pin is removed and the piston becomes free to move. The constraint on volume and
energy is removed: the coordinates V (1), V (2), U (1), U (2) become free variables. The system
evolves towards a new equilibrium state.

Example 3: A system is composed by two bodies at different temperatures, separated by an
adiabatic wall.At a given time the wall is removed and the two bodies become free to exchange
heat: the coordinates U (1), U (2) become free variables. The system evolves towards a new
equilibrium state.

Example 4: A vessel contains {n1, n2, n3, . . . } mol of different chemical reagents in a state of
metastable equilibrium. The insertion of a catalysts breaks the metastable equilibrium and
triggers a chemical reaction: the coordinates {ni} become free variables. The system evolves
towards a new equilibrium state.

5.3 Axioms on entropy

5.3.1 Fundamental axiom on entropy

The fundamental problem of establishing the relation between the properties of the final un-
constrained equilibrium state and the properties of the initial constrained equilibrium state (§ 5.2)
is solved by an axiom that introduces the state function entropy and its main property.
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Figure 5.2: Schematic illustration of axiom II. Left and centre: two possible situations of con-
strained equilibrium. Right: system in the state of non-constrained equilibrium.

Axiom II: For each thermodynamical system there is a function of the extensive coordi-
nates, entropy S(U, V, n1, . . . , ni), defined in the states of thermodynamical equilibrium.
The knowledge of the function S(U, V, n1, . . . , ni) is equivalent to the knowledge of all
the thermodynamical properties of the system.
In an isolated composite system, if no constraints are present, the extensive quantities
U, V, {ni} are distributed among the different possible sub-systems in such a way that
the value of the entropy Seq is the highest with respect to the values that entropy could
assume in any state of constrained equilibrium:

Seq >
∑

j
S(j) (isolated system) (5.1)

In (5.1), Seq is the entropy value for the entire system in the state of non constrained equilibrium,∑
j S

(j) is the entropy value for the entire system in any state of constrained equilibrium, expressed
as the sum of the entropies of the single sub-systems (Fig. 5.2).

The fundamental equation

The existence of the state function entropy, derived as a consequence of the Second Law in the
cycle Thermodynamics (§ 4.4), has been here assumed as an axiom.

In addition, one assumes that the function S(U, V, n1, . . . , ni) contains all the information of the
thermodynamical properties of the given system. The function, connecting the value of entropy to
the values of the extensive coordinates, is thus called “fundamental equation”.

The knowledge of the function S(U, V, n1, . . . , ni) for a given system is thus equivalent to the
knowledge of its two equations of state, the thermal one and the and caloric one (§ 3.1) The case
of an ideal gas will be studied in § 6.4.

The fundamental equation, such as the equations of state, cannot be obtained on pure ther-
modynamical grounds; it is generally established from experiment or from theoretical statistical
considerations.

Evolution criterion and equilibrium states

Equation (5.1), corresponding to the law of entropy increase in isolated systems, represents the
evolution criterion for isolated systems.

One should notice that the sum
∑
j S

(j) in (5.1) doesn’t necessarily refer only to the real states
of constrained equilibrium of a composite system; actually, the sum can be also referred to the
possible states of constrained equilibrium that the system could virtually attain if the unavoidable
fluctuations with respect to the equilibrium state were frozen by the insertion of suitable constraints
(see § 6.2).

As a consequence, equation (5.1) not only represents an evolution criterion for isolated systems.
It also characterises the properties of equilibrium states.
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S

SU

U

Figure 5.3: Projections on the (U, S) plane of the fundamental equation in the entropy representa-
tion S(U, V, {ni}) (left) and of the fundamental equation in the energy representation U(S, V, {ni})
(right).

5.3.2 Properties of entropy

The properties of entropy are further specified by the third axiom.

Axiom III: The entropy S is an additive variable ad is a functioncontinuous, differ-
entiable and monotonously increasing of the internal energy U .

As a consequence of the additivity, the entropy S is a first-order homogeneous function of the
extensive coordinates; for any value of the scale parameter λ the following equation holds

S(λU, λV, {λni}) = λS(U, V, {ni}) . (5.2)

Since S is a monotonous function of U ,(
∂S

∂U

)
V,{ni}

> 0 , (5.3)

the function S(U, V, {ni}) can be inverted to the function U(S, V, {ni}) (Fig. 5.3).

Entropy representation and energy representation

As already observed, the knowledge of the function S(U, V, {ni}) corresponds to the knowledge of
all the thermodynamical equilibrium properties of a system.

The possibility of inverting the function S(U, V, {ni}), guaranteed by (5.3), allows one to obtain
a new function U(S, V, {ni}) which still contains the entire information on the properties of the
system.

There are thus two equivalent fundamental equations, corresponding to two different choices of the
independent thermodynamical coordinates. The two choices are termed entropy representation
and energy representation, respectively:

S = S(U, V, {ni}) entropy representation (5.4)

U = U(S, V, {ni}) energy representation (5.5)

The properties of the two representations will be studied more carefully in Chapter 6. Other
representations will be introduced in Chapter 7, which allows one to tailor the thermodynamic
formalism to different experimental situations.

Note 1: The entropy S is here defined to within an additive constant, as in the cycle Thermody-
namics. As for the internal energy U , the absolute value of S is assumed to be referred to
an arbitrary reference value. The large majority of thermodynamical properties depend on
derivatives of the entropy or of the energy with respect to other coordinates, so that the value
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of additive constant is generally irrelevant. An absolute value can be attributed to entropy
only on the grounds of quantum statistical considerations.

Note 2: The axiom III asserts that the entropy S is a function monotonously increasing of the
internal energy U ; as a consequence U monotonously increases with S too. As it will be made
clear in Chapter 6, this property is connected to the non-negative value of the thermodynamical
temperature. Further considerations on the stability of the thermodynamical equilibrium (to
be studied in § 9.6) allow one to conclude that the two curves S(U) and U(S) are downward
concave and upper concave, respectively. (Fig. 5.3).
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Chapter 6

Entropy and energy
representations

In this chapter the equilibrium properties of thermodynamical systems are studied in the two repre-
sentations of entropy and of energy. At first, the intensive coordinates conjugated to the extensive
coordinates will be defined (§ 6.1). The two representations will then be separately studied (§ 6.2
and 6.3). At last, some consequences of the homogeneity of the fundamental equations will be
considered (§ 6.4).

6.1 Intensive coordinates

From the two fundamental equations (5.4) and (5.5),

S = S(U, V, {ni}) (entropy representation) (6.1)

U = U(S, V, {ni}) (energy representation) (6.2)

the two corresponding differential equations can be obtained.
In the entropy representation

dS =

(
∂S

∂U

)
V,{ni}

dU +

(
∂S

∂V

)
U,{ni}

dV +
∑

i

(
∂S

∂ni

)
V,U

dni . (6.3)

In the energy representation

dU =

(
∂U

∂S

)
V,{ni}

dS +

(
∂U

∂V

)
S,{ni}

dV +
∑

i

(
∂U

∂ni

)
V,S

dni . (6.4)

The partial derivatives in (6.3) and (6.4) correspond to intensive coordinates.
By introducing, for the entropy representation the symbols

1

T
=

(
∂S

∂U

)
V,{ni}

,
p

T
=

(
∂S

∂V

)
U,{ni}

,
µi
T

= −
(
∂S

∂ni

)
V,U

, (6.5)

and, for the energy representation the symbols

T =

(
∂U

∂S

)
V,{ni}

, p = −
(
∂U

∂V

)
S,{ni}

, µi =

(
∂U

∂ni

)
V,S

, (6.6)

equation (6.3) becomes

dS =
1

T
dU +

p

T
dV −

∑
i

µi
T
dni (entropy representation) (6.7)

65



66 P. Fornasini: Lectures on Thermodynamics

and equation (6.4) becomes

dU = T dS − p dV +
∑

i
µi dni (energy representation) (6.8)

We will show below, by means of suitable examples, that the intensive variables T, p, µi are con-
nected to thermal, mechanical and chemical equilibria, respectively. As one can easily expect, the
variables T and p correspond to temperature and pressure, respectively. The µi intensive variables
are termed chemical potentials; their role will be clarified later on.

Since, according to Axiom II (§ 5.3), the entropy S is a monotonously increasing function of the
internal energy U , the intensive varible T cannot be negative.

Note: To simplify the notation, the generalised extensive coordinates X∗j , necessary for some sys-
tems such as the magnetic or dielectric ones, have been here omitted in the expression of the
fundamental equations. We only observe here that intensive coordinates, termed generalised
forces, are associated also to the generalised extensive variables:

ξj
T

= −

(
∂S

∂X∗j

)
V,U,{ni},{X∗k 6=j}

ξj =

(
∂U

∂X∗j

)
V,S,{ni},{X∗k 6=j}

(6.9)

If one or more extensive generalised coordinates have to be taken into account, the corre-
sponding terms ±ξj dX∗j should be included in (6.7) and (6.8).

6.2 Entropy representation

Let us first better clarify the meaning and the origin of the entropy variations expressed by (6.7).
We will then study the concept of thermodynamical equilibrium and the meaning of the intensive
coordinates in the entropy representation.

6.2.1 Origin of entropy variations

Let us rewrite (6.7) in the more familiar form

T dS = dU + p dV −
∑

µi dni . (6.10)

With respect to the expression established in § 4.4, the entropy variation (6.10) contains the addi-
tional terms µi dni, that can describe the effect of different phenomena:

- matter exchanges between the system and its environment,

- variations of the quantity of the components of a system, as a consequence for example of
chemical reactions of phase transitions,

- transport of matter between sub-system of a composite system.

To better grasp the meaning of the different terms appearing in (6.10), let us consider some
suitable examples, without forgetting that (6.10) refers to equilibrium conditions, say to reversible
variations of the coordinates.

Example 1: System with {ni} constant

If the quantities of the various components of the systems don’t vary, say {ni}=constant, equation
(6.10) simplifies to:

T dS = dU + p dV = dU −d̄Wp = d̄Qrev , (6.11)

where d̄Wp is the reversible compression work. The entropy variation, depending on the reversible
variations of internal energy and of volume, corresponds to the quantity of heat reversibly ex-
changed (as in § 4.4): dS =d̄Qrev/T .
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Example 2: Open system with one component

Let us now consider an open system, that can exchange matter with its environment; for simplicity,
let us assume that the system has only one component. Equation (6.10) becomes:

T dS = dU + p dV − µdn . (6.12)

The variation dn of the matter content contributes to the variation of entropy. To quantitatively
evaluate the amount of this contribution one should know the chemical potential µ, that depends
on the type of substance as well as on temperature and pressure. We will better understand the
properties of the chemical potential after the introduction of other thermodynamical functions, in
particular the Gibbs free energy (§ 8.4). For the moment we anticipate that the entropy variation
can be expressed as

T dS = d̄Qrev + T s dn , (6.13)

where s = S/n is the molar entropy transported by matter.
The entropy variation of an open system depends thus not only on the exchanged heat, d̄Qrev/T ,
but also on the transport of entropy by matter.
Open systems will be considered in more detail in § 11.3.

Example 3: Chemical reaction in an isolated system

Let us lastly consider an isolated system, where dU = 0, dV = 0 and there is no exchange of matter
with the environment. Let us suppose that in the isolated system one or more components are
transformed into other components, for example due to a chemical reaction or a phase transition.
Equation (6.7) becomes now

T dS = −
∑

µi dni (6.14)

According to (6.14), the entropy of an isolated system can be modified also as a consequence of
the variation of the quantities of the various components. In § 11.4 we will study in some detail
the chemical reaction and will further elaborate equation (6.14).

Note: A chemical reaction is generally an irreversible process. In spite of that, the state of the
system can be thermodynamically described also during the chemical reaction, provided the
thermal and mechanical equilibria remain unaffected. It is then possible to evaluate in any
case the entropy variation by means of (6.14).

6.2.2 Virtual thermodynamical processes

We want now better grasp the meaning of thermodynamical equilibrium and its relation with the
intensive variables, on the grounds of Axiom II of § 5.3 (law of entropy increase). To this aim, let
us introduce the concept of virtual thermodynamical process.

We have seen in § 5.2 that the removal of some constraints in a composite system triggers a
thermodynamic process by which the system reaches a new state of non constrained equilibrium.
Viceversa, a simple thermodynamic system cal always be transformed in a composite system by
the insertion of an arbitrary number of constraints.

Let us consider an isolated system in thermodynamical equilibrium, say a system whose thermody-
namical state is univocally characterised by the values U, V, {ni}, which are constant in time. This
means that the energy density and the matter density are uniformly distributed in the system (we
neglect for the moment the equilibrium with respect to chemical reations and phase transitions).

Let us now imagine a process by which the system temporarily leaves its equilibrium state, for
example due to a exchange of energy or matter between the different parts of the system. From a
macroscopic point of view, this is a virtual process, that corresponds, from a microscopic point of
view, to a fluctuation (Fig. 6.1).
By ideally inserting a suitable number of walls, or more generally of constraints, the virtual non-
equilibrium state of the simple system can be transformed into a state of constrained equilibrium of
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Isolated system
in equilibrium

Non-equilibrium
state

Composite system
in equilibrium

U 

S 

U (1) 

Figure 6.1: Left: A fluctuation of energy in an isolated system leads to a non-equilibrium state,
that can be virtually frozen by the insertion of ad adiabatic constraint. Right: plot of entropy S
as a function of the variable U1.

a composite system (Fig. 6.1). One can thus calculate the variation of entropy ∆S corresponding
to the virtual process:

∆S = S

(
composite syst.

constrained equil.

)
− S

(
simple syst.
free equil.)

)
(6.15)

6.2.3 Equilibrium condition

According to Axiom II (§ 5.3), for any virtual process in an isolated system in equilibrium

∆S < 0 (6.16)

The entropy S is maximum with respect to all possible virtual processes that induce deviations
from the equilibrium state.
To describe virtual processes in terms of thermodynamical variables one should introduce some
walls and create some sub-systems. New thermodynamical variables would thus added, for example
U (1) and U (2) = U−U (1); it is with respect to these new variables that S is maximum at equilibrium
(Fig. 6.1, right).

The entropy function S is thus stationary with respect to any infinitesimal virtual process inducing
a deviation from the equilibrium state. The equilibrium condition is formally represented by

δS = 0 (6.17)

Don’t confuse the symbol δS in (6.17) with the differential dS in (6.7). The symbol δ refers to
virtual processes, and the evaluation of δS requires the thermodynamic operation of inserting some
restraint within the system.

6.2.4 Equilibrium and intensive coordinates

Thermodynamic equilibrium is connected to the intensive coordinates introduced in § 6.1. Let us
give some significant examples.

Example 1: Thermal equilibium

Let us consider an isolated system, divided in two sub-systems by a rigid diathermic wall. Initially
the entire system is in equilibrium (Fig. 6.2).

Let us first focus our attention on a virtual process consisting in the exchange of an infinitesimal
quantity of energy dU (1) between the syb-system (1) and the sub-system (2). The new situation
could be frozen by making ideally adiabatic constraint the wall separating the sub-system (1) from
the sub-system (2).
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Figure 6.2: An energy fluctuation in an isolated system in thermal equilibrium.

The condition that S is stationary at equilibrium (δS = 0) can be expressed in terms of the
properties of the two sub-systems:

δS = dS(1) + dS(2) = 0 . (6.18)

By adapting the differential expression (6.7) to the two sub-systems, with dV (1) = dV (2) = 0,

dn
(1)
i = dn

(2)
i = 0 and dU (1) = −dU (2), one finds

δS =
1

T (1)
dU (1) +

1

T (2)
dU (2) =

[
1

T (1)
− 1

T (2)

]
dU (1) = 0 . (6.19)

The condition of thermal equilibrium is thus:

T (1) = T (2) . (6.20)

By generalising the result to any number of sub-systems, for a system in thermal equilibrium the
intensive variable T has to be uniform within the entire system. The variable T is thus identified
with the temperature.

The Zeroth Law of the cycle Thermodynamics (§ 2.1) is so restated.

Let us now consider a virtual process consisting in the trasfer of a finite quantity of energy between
the two sub-systems. According to (6.16), lthe finite variation of entropy is negative:

∆S = ∆S(1) + ∆S(2) < 0 . (6.21)

As a consequence of the virtual process, the temperatures T (1) and T (2) of the two sub-systems
become different. One can anyway observe that, since

∆S =

∫
1

T (1)
dU (1) +

∫
1

T (2)
dU (2) < 0 (6.22)

and dU (1) = −dU (2), the virtual process induces a transfer of energy U from the sub-system that
reduces its temperature to the sub-system that increases its temperature.

Example 2: Thermal and mechanical equilibrium

Let us consider again an isolated system, divided now in two sub-systems by a mobile and diather-
mic piston(Fig. 6.3). IInitially the system is in thermodynamical equilibrium.
Let us consider a virtual process consisting in an infinitesimal exchange of energy dU (1) and of
volume dV (1) between the sub-system (1) and the sub-system (2). The resulting state is frozen by
fixing and insulating the piston separating (1) from (2).
The condition that S is stationary at equilibrium (δS = 0) can be expressed in terms of the

properties of the two sub-systems by means of the differential equation (6.7), with dn
(1)
i = dn

(2)
i =

0, dU (1) = −dU (2) and dV (1) = −dV (2):

δS = dS(1) + dS(2) =

[
1

T (1)
− 1

T (2)

]
dU (1) +

[
p(1)

T (1)
− p(2)

T (2)

]
dV (1) = 0 . (6.23)

Since U (1) and V (1) are independent variables, the condition of thermal and mechanical equilibrium
implies that

T (1) = T (2) e p(1) = p(2) . (6.24)

The intensive variable T has already been identified with the temperature; one can now identify
the variable p with the pressure.
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Figure 6.3: A fluctuation of energy and volume in an isolated system in thermal and mechanical
equilibrium.

Example 3: Thermal and chemical equilibrium

At last, let us consider an isolated system, divided in two sub-systems by a fixed diathermic wall,
permeable to the flux of matter. Initially the system is in thermodynamical equilibrium.

Let us now consider a virtual process consisting in the exchange of infinitesimal quantities of energy

dU (1) and of matter {dn(1)
i } between the sub-system (1) and the subsystem (2). The resulting state

is frozen by insulating making impermeable the wall separating (1) from (2).

The condition that S is stationary at equilibrium (δS = 0) can again be expressed in terms of
the properties of the two sub-systems by means of the differential equation (6.7), with dV (1) =

dV (2) = 0, dU (1) = −dU (2) and dn
(1)
i = −dn(2)

i , so that

δS = dS(1) + dS(2) =

[
1

T (1)
− 1

T (2)

]
dU (1) −

∑
i

[
µ

(1)
i

T (1)
− µ

(2)
i

T (2)

]
dn

(1)
i = 0 . (6.25)

Since U (1) and n
(1)
i are independent variables, the condition of thermal and chemical equilibrium

implies that

T (1) = T (2) e µ
(1)
i = µ

(2)
i (∀ i) , (6.26)

where µi is the chemical potential of the i-th component.

One can qualitatively observe that the chemical potential plays, with respect to matter transfer, a
similar role as the temperature with respect to energy transport. However, the chemical potential
is not directly connected to the sensorial experience as temperature is. We will better grasp the
meaning of the chemical potential later on. For the moment we can anticipate, as an example,
that the chemical potential of an ideal gas can be expressed in the form µi = RT [φ(T ) + ln pi],
where φ(T ) is a function of the temperature.

Example 3 refers to the chemical equilibrium relative to matter transport. The case of the equi-
librium in chemical reaction, which is more complicated, will be treated later on, in § 11.4.

6.2.5 Intensive variables and irreversible processes

The above simple examples refer to the equilibrium between two sub-systems. Equilibrium corre-
sponds to the equality of intensive coordinates. The lack of equilibrium between two sub-systems,
represented by finite differences of intensive variables ∆T,∆p, {∆µi} triggers an irreversible process
towards an equilibrium state where ∆T = 0,∆p = 0, {∆µi} = 0.

The generalisation to the case of any continuous system is trivial. The condition of thermody-
namical equilibrium requires the uniformity of the intensive coordinates T, p, {µi} in the entire
system.

The presence of gradients of intensive variables in the entropy representation, ∇(1/T ), ∇(p/T ),
{∇(µi/T )}, and as a consequence also of ∇T , ∇p, {∇µi}, means that the thermodynamical equi-
librium is absent and triggers irreversible processes towards equilibrium.

The finite differences ∆T,∆p, {∆µi} for discrete systems and the gradients ∇T,∇p, {∇µi} for
continuous systems are often called generalised forces, since they are responsible of the irreversible
processes that lead the system to an equilibrium state.
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6.3 Energy representation

Let us now consider the equilibrium conditions in the energy representation. The energy repre-
sentation plays a more relevant role than the entropy representation in the further development of
the thermodynamical formalism.

6.3.1 Fundamental equation

Axiom III of § 5.3 states that the entropy Sis a monotonously increasing function of the energy U .
As a consequence, the temperature T cannot be negative (§ 6.2).
More information on the dependence of S on U can be obtained from the stability conditions of the
thermodynamical equilibrium, to be considered later on. We only anticipate here that, in order to
guarantee the stability of thermodynamical equilibrium, it is necessary that(

∂2S

∂U2

)
= − 1

T 2

(
∂T

∂U

)
< 0 , (6.27)

sat that the heat capacity ∂U/∂T be positive. Equation (6.27) implies that S(U) is downward
concave (Fig. 5.3, left).

As already seen in § 5.3.2, the monotonous dependence of S on U allows one to invert of the
fundamental equation S = S(U, V, {ni}) and to obtain the fundamental equation in the energy
representation:

U = U(S, V, {ni}) . (6.28)

The energy U is a monotonously increasing function of the entropy S, upwards concave (Fig. 5.3,right).
The fundamental equation (6.28) contains the entire information on the thermodynamical proper-
ties of a system, like equation S = S(U, V, {ni}).

6.3.2 Energy balance

The differential form (6.8)

dU = T dS − p dV +
∑

µi dni (6.29)

represents the energy balance for infinitesimal reversible transformations. Comments:

a) The term −p dV =d̄Wrev is the reversible compression work made on the system.

b) For a system in which the quantities of the components are constant (dni = 0), one has
T dS =d̄Qrev, and (6.8) reduces to the equation (4.42) of Chapter 4: dU =d̄Q+d̄W .

c) The terms µi dni are the variations of energy due to the variations of the quantity of the
components; they are sometimes called “cheical work”.

For completeness, one can add to (6.8) the terms of possible contributions of generalised work
dW ∗i = ξ∗i dX

∗
i .

We will deepen the topic of the energy balance in § 8.1 of Capter 8, after other thermodynamic
functions have been introduced in the energy representation dopo aver introdotto in Chapter 10.
For the moment, let us focus our attention on the equilibrium conditions in the energy represen-
tation.

6.3.3 Fundamental axiom and equilibrium condition

As it was pointed in § 5.3, the fundamental Axiom II states that in an isolated system (say where
U, V are constant and there is no exchange of matter with the environment) the extensive quantities
U, V, {ni} are distributed among the various possible sub-systems is such a way that, in equilibrium
conditions, the value of the entropy Seq is maximum with respect to the values that entropy could
take in any possible virtual state of constrained equilibrium. Otherwise stated, the entropy S of
an isolated system in equilibrium is maximum with respect to all possible virtual processes that
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would induce deviations from the equilibrium state. The equilibrium conditions in the entropy
representation are summarised in (6.16) and (6.17):

∆S < 0 , δS = 0 .

The fundamental axiom can be stated within the energy representation too. In this case, however,
instead of an isolated system we have to consider a system where S is constant, and again V is
constant and there is no exchange of matter with the environment.
The fundamental axiom states that for such a system, that is initially in a state of constrained
equilibrium, the removal of the constraints triggers a thermodynamic process that brings the system
to a non constrained equilibrium state characterised by a value of energy U smaller that in the
initial state.
Otherwise stated, the internal energy U is minimal, at equilibrium, in the systems for which S and
V are constant and there is no exchange of energy with the environment. The equation equivalent
to (6.16) is, in the energy representation,

∆U > 0 (6.30)

The internal energy function U(S, V, {ni}) is minimum with respect to any infinitesimal process
that brings the system out of equilibrium maintaining constant S and V and without exchange of
matter with the environment. The equilibrium conditions are formally represented by

δU = 0 (6.31)

Note: We have again neglected here the chemical reaction, that will be treated in § 11.4.

Dimostrazione dell’equivalenza dei due enunciati

The equivalence of (6.30) and (6.31) to (6.16) and (6.17), respectively, say the equivalence of the
two statements of the fundamental axiom in the energy and entropy representations, can be proved
by a reductio ad absurdum. The procedure is similar to that previously used to demonstrate the
equivalence of the Clausius and Kelvin statements of the Second Law of Thermodynamics in § 4.2.

a) Let us suppose that S be not maximum in a system in equilibrium with U constant (violation
of the statement in the entropy representation). A virtual process could then occur leading
the system out of equilibrium with ∆U = 0,∆S > 0. One could recover the initial entropy
value S by expelling an energy quantity ∆U = T ∆S as heat. Globally, one would obtain a
process leading the system out of equilibrium with ∆S = 0,∆U < 0. The initial equilibrium
condition would thus correspond to having S constant and the value of U non minimum
(violation of the statement in the energy representation). In short:{

∆S > 0

∆U = 0
⇒

{
∆S = 0

∆U < 0
(6.32)

b) Let us suppose that U be not minimum in a system in equilibrium with Sconstant (violation
of the statement in the energy representation). A process could then occur leading the system
out of equilibrium, with ∆S = 0,∆U < 0. One could recover the initial energy value U by
doing work W on the system and dissipating it s heat Q = T ∆S. Globally, one would
obtain a process leading the system out of equilibrium with ∆U = 0,∆S > 0. The initial
equilibrium condition would thus correspond to having U constant and the value of S not
maximum La situazione di equilibrio iniziale corrisponderebbe cioè a U costante e S non
massima (violation of the statement in the entropy representation). In short:{

∆U < 0

∆S = 0
⇒

{
∆U = 0

∆S > 0
(6.33)

In the demonstration it was supposed that the volume V is maintained constant and that there is
no exchange of matter with the environment.
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6.3.4 Example: Thermal equilibrium

Let us study in more detail the conditions of thermal equilibrium for a system maintained with
entropy S and volume V constant and without exchanges of matter. In particular, the attention
if focused on the condition that entropy be constant, ∆S = 0.

A. At first, let us consider a process connecting an initial state of constrained equilibrium to a
final state of non-constrained equilibrium and verify that the process with ∆S = 0 is accompanied
by a reduction of the internal energy U .

Let as consider a system composed of two bodies at temperatures T1 and T2, respectively, separated
by an adiabatic wall that forbids the transfer of energy. If the adiabaticity constraint is removed,
the two bodies exchange heat until their temperatures become equal. Let us examine two different
possibilities for thermalisation:

1) The two bodies are in direct contact; the irreversible flow of heat from the hot to the cold
body generates an increase of the system entropy; to recover the initial value of entropy, so
that at the end ∆S = 0, it is necessary to expel a given amount of heat from the system, say
to reduce its internal energy (∆U < 0).

2) The two bodies exchange heat through a reversible (Carnot) engine; the entropy of the system
is unchanged (∆S = 0), and the engine performs work W̃ on the external ambient, so that
the energy of the system decreases (∆U = W̃ < 0).

B. Let us consider now a system that is already in a state of non-constrained equilibrium.

One can devise a transfer of energy dU from a sub-system (1) to a subsystem (2) through a
reversible (Carnot) refrigerating cycle operating between the two sub-systems and absorbing work
W̃ > 0 from the ambient. The entropy is unchanged (∆S = 0).

The condition that δU = 0 in the equilibrium state can be expressed as

δU = dU (1) + dU (2) = T (1) dS(1) + T (2) dS(2) = (T (1) − T (2)) dS(1) = 0 , (6.34)

whence the condition of thermal equilibrium:

T (1) = T (2) . (6.35)

One thus recovers in the energy representation the same condition of thermal equilibrium already
found in the entropy representation.

By similar procedures one can recover the conditions of mechanical and chemical equilibrium.

6.3.5 Comments

1. A non-negligible difference can be observed between the entropy and energy representations.

- For isolated systems (in the entropy representation) the transition from constrained to non-
constrained equilibrium can take place only irreversibly. This fact requires that one resorts
to the artefact of virtual processes to describe the fluctuations with respect to equilibrium.
It is worth noting that entropy is not a conservative quantity, and can increase even in isolated
systems.

- For systems maintained at constant entropy S (in the energy representation) the transition
from constrained to non-constrained equilibrium can take place both reversibly or irreversibly.
It is not necessary to resort to virtual processes. Real deviations from equilibrium can take
place by exchange of energy (a conservative quantity) between the system and its environ-
ment.
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2. The statements of the fundamental axiom in the representations of entropy and energy can be
connected with the Clausius and Kelvin statements of the Second Law, respectively.

a) In an isolated system, the spontaneous flow of heat takes place from a hot to a cold body
(Clausius) and the entropy increases (axiom II in the entropy representation).

b) If the entropy of a system is maintained constant, the flow of heat from a hot to a cold boy
takes place with release ow work out of the system (Kelvin), say with reduction of the system
energy (axiom II in the energy representation).

3. Here and below, W̃ represents the work exchanged by a system with its environment as
a consequence of readjustements taking place within the system, without modifications of its
extensive coordinates V, n, . . .. The internal energy U represents a sort of potential energy for the
work W̃ . We will consider again this topic in connection with the introduction of the so-called
thermodynamical potentials (Chapter 7).

6.4 Properties of the fundamental equations

As already observed, the fundamental equation for a thermodynamical system in one of the two
representations (entropy or energy) can be evaluated with varying degrees of approximation from
suitable experiments or statistical calculations.
In this § 6.4 some relevant mathematical properties of the fundamental equations will be introduced,
that define their analytic form and facilitate their experimental or theoretical evaluation.
At the end, by way of example, we will take advantage of these properties to find the fundamental
equation of an ideal gas in the entropy representation.

6.4.1 State equations

For the two representations, energy and entropy, respectively,

U = U(S, V, {ni}) S = S(U, V, {ni}) (6.36)

one can obtain the variables coordinates as a function of the extensive variables. Such expressions
are called state equations:

T =

(
∂U

∂S

)
V,{ni}

= T (S, V, {ni})

p = −
(
∂U

∂V

)
S,{ni}

= p(S, V, {ni})

µi =

(
∂U

∂ni

)
S,V

= µi(S, V, {ni})



1

T
=

(
∂S

∂U

)
V,{ni}

=
1

T
(U, V, {ni})

p

T
=

(
∂S

∂V

)
U,{ni}

=
p

T
(U, V, {ni})

µi
T

= −
(
∂S

∂ni

)
U,V

=
µi
T

(U, V, {ni})

(6.37)

For a simple system with one component there are three extensive variables and thus three state
equations.
The state equations can be obtained from experiment or from statistical theory. Our problem is
now to understand how the fundamental equation can be evaluated from the state equations.
Two main difficulties can affect this procedure.

1. In general, if onlythe n first derivatives of a function with respect to its n independent
variables are known, the univocal evaluation of the function is impossible. Asa consequence,
the knowledge of the state equations (6.37) doesn’t correspond, in principle, to a complete
knowledge of the fundamental equations (6.36).



6. Entropy and energy representations 75

2. Not all the state equations can be independently obtained from experiment or from theory.
On the other hand, one can ask whether the three state equations (6.37) are really indepen-
dent. For example, in § 3.1 we have seen that for a simple system with one component two
only state equations (the thermal and the caloric one) should be sufficient to define all the
thermodynamical properties.

The first difficulty can be solved by considering that also energy and entropy are defined to within
an arbitrary additive constant. The second difficulty is solved by considering a further property of
the fundamental equations, say their homogeneity, to be introduced immediately below.

6.4.2 Homogeneity of the fundamental equations

As a consequence of the axiom of additivity of S (axiom III), the fundamental equations are
homogeneous to first order with respect to the extensive coordinates (§ 5.3). Otherwise stated, if
all extensive coordinates are multiplied by a factor λ, the function is multiplied by λ too:

U(λS, λV, {λni}) = λ U(S, V, {ni}) , S(λU, λV, {λni}) = λ S(U, V, {ni}) . (6.38)

It is worth noting that the state equations (6.37) are instead homogeneous of order zero with
respect to the extensive coordinates: the values of the intensive coordinates are not modified if the
extensive coordinates are multiplied by a scale factor.

Euler relations

The homogeneity (6.38) of the fundamental equations allows one to determine their analytic form.
To this aim, let us differentiate the functions (6.38) with respect to the arbitrary scale factor λ:

dU

dλ
=

∂U

∂(λS)
S +

∂U

∂(λV )
V +

∑
i

∂U

∂(λni)
ni = U (6.39)

dS

dλ
=

∂S

∂(λU)
U +

∂S

∂(λV )
V +

∑
i

∂S

∂(λni)
ni = S (6.40)

Since the value of λ is arbitrary, one can assume λ = 1 in (6.39) and (6.40). Taking into account
the definitions of the intensive coordinates (6.6) and (6.5), from (6.39) and (6.40) one obtains the
Euler relations in both representations of energy and entropy, respectively:

U = T S − p V +
∑
i

µi ni , S =
1

T
U +

p

T
V −

∑
i

µi
T
ni . (6.41)

Two relevant comments can be made on the Euler relations:

1) The Euler relations are linear with respect to the estensive coordinates.

2) If all the state equations (6.37) are known in a given representation (energy or entropy), they
can be substituted in the corresponding Euler relation (6.41). The knowledge of all the state
equations is thus equivalent to the knowledge of all the thermodynamical properties implicit
in the fundamental equations (6.36).

Gibbs-Duhem relations

Further important general relations can be obtained by comparing, for each representation, the
fundamental equation (6.36) with the Euler relation (6.41). Let us consider, for example, the
energy representation. The differentials of energy calculated from the fundamental equation and
from the Euler relation are, respectively

fundam. eq.: dU = TdS − pdV +
∑

µidni (6.42)

Euler: dU = TdS + SdT − pdV − V dp+
∑

µidni +
∑

nidµi (6.43)
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Similar equations can be written for the entropy representation.
By equating the second members of the two equations one obtains the Gibbs-Duhem relations (on
the left for the energy representation, on the right for the entropy representation):

S dT − V dP +
∑
i

ni dµi = 0 , U d

(
1

T

)
+ V d

( p
T

)
−
∑
i

ni d
(µi
T

)
= 0 . (6.44)

Equations (6.44) represent a differential relation between intensive variables.
If in a given representation (energy or entropy) all state equations minus one are known, the missing
equation can be obtained, to within an additive constant, by integrating the Gibbs-Duhem relation.
Once all state equations are known, one can calculate the fundamental equations, obviously to
within ad additive constant.

6.4.3 One-component systems: Molar quantities

For system with only one component, the expression of the fundamental equations is particularly
simple.
The thermodynamical state of a one-component system is defined by three extensive coordinates:
S, V, n in the energy representation, U, V, n in the entropy representation.

Molar quantities. For a closed system with only one component, it is convenient to resort to
molar quantities (molar energy, molar volume, molar entropy), conventionally denoted by lower-
case letters:

u = U/n , v = V/n , s = S/n . (6.45)

Fundamental equations. The fundamental equations in the energy and entropy representation

U = U(S, V, n) , S = S(U, V, n) (6.46)

can be expressed in molar terms for a closed system (say with n constant) as

u = u(s, v) , s = s(u, v) (6.47)

and their differential forms are

du = T ds− p dv , ds =
1

T
du+

p

T
dv . (6.48)

The fundamental equations (6.47) don’t contain extensive coordinate, so that the previous consid-
erations about homogeneity don’t apply to them.
In (6.48) two intensive coordinates are present for each representation. If the two corresponding
state equations are known – e.g. T (s, v) and p(s, v) in the energy representation – by substituting
them in (6.48) and calculating the integral, one can obtain the fundamental equations (6.47),
obviously to within an integration constant.

Euler relations. Dividing the Euler relations (6.41)

U = T S − p V + µn , S =
1

T
U +

p

T
V − µ

T
n , (6.49)

by the number n of moles one obtains the molare Euler equations:

u = T s− p v + µ , s =
1

T
u+

p

T
v − µ

T
. (6.50)

If two state equations are known – e.g. T (s, v) and p(s, v) in the energy representation – by
substituting them in (6.50) one cannot univocally recover the fundamental equations, since the
chemical potential µ is unknown.
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Gibbs-Duhem relations. Thei Gibbs-Duhem (6.44) relations for a system with only one com-
ponent become

s dT − v dp+ dµ = 0 , u d

(
1

T

)
+ v d

( p
T

)
− d
(µ
T

)
= 0 . (6.51)

The chemical potential. The chemical potential µ can be calculated, to within ad additive
constant, from the state equations – e.g. T (s, v) and p(s, v) in the energy representation –by
means of two alternative procedures:

a) from the Euler relations (6.50) once the fundamental equation (6.47) is known,

b) by integrating the Gibbs-Duhem (6.51) relations.

6.4.4 Example: The monatomic ideal gas

The monatomic ideal gas is a simple system, particularly suitable for a tutorial on the concepts
introduced above.

State equations

The two state equations for the monatomic ideal gas (§ 3.1)

thermal state equation: pV = nRT , (6.52)

caloric state equation: U = (3/2)nRT . (6.53)

are obtained experimentally – (6.52) from the Boyle and Gay-Lussac laws, (6.53) from the mea-
surement of specific heats – at the limit for low density.

To be rigorous, the caloric state equation based on the specific heat measurement should contain
an arbitrary constant. However, (6.53) is based on the kinetic model of the ideal gas, where the
internal energy U is purely kinetic and there are thus no additive constants.

The fundamental equation

We want now to obtain the fundamental equation starting from the knowledge of the empirical
state equations (6.52) and (6.53).

We can note that (6.52) and (6.53) correspond to the first two state equations (6.37) in the entropy
representation:

p

T
=
nR

V
,

1

T
=

3nR

2U
. (6.54)

It is thus convenient to remain within the entropy representation and search for the fundamental
equation S = S(U, V, n).

By inserting equations (6.54) in the Euler relation (6.49) for the entropy representation, one obtains

S =
5

2
nR− µ

T
n . (6.55)

Equation (6.55) is not sufficient. To obtain a fundamental equation it is necessary to express the
intensive coordinate µ/T as a function of the extensive coordinates.

The problem can be dealt by two different procedures, the first one more general, the second one
limited to closed system(dn = 0).
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First procedure

The Gibbs-Duhem relations (6.44) connect the differentials of the intensive coordinates. For a
system with one component the Gibbs-Duhem relation in the entropy representation

U d

(
1

T

)
+ V d

( p
T

)
− nd

(µ
T

)
= 0 (6.56)

allows the expression on the differential of µ/T as a function of the differentials of the two other
intensive variables, that can in turn be calculated by differentiating equations (6.54) with respect
to the extensive variables:

d
(µ
T

)
=
U

n
d

(
1

T

)
+
V

n
d
( p
T

)
=
U

n

[
−3nR

2U2
dU +

3R

2U
dn

]
+
V

n

[
−nR
V 2

dV +
R

V
dn

]
= −3

2
R
dU

U
−R dV

V
+

5

2
R
dn

n
.

(6.57)

The indefinite integral of (6.57)

µ

T
= −3

2
R lnU −R lnV +

5

2
R lnn+ constant , (6.58)

once inserted in (6.55), allows the derivation of the fundamental equation for the monatomic ideal
gas to within an arbitrary additive constant:

S =
5

2
nR+

3

2
nR lnU + nR lnV − 5

2
nR lnn+ constant. (6.59)

The presence of the unknown additive constant in (6.59) forbids the verification of the homogeneity
of the equation.

It is more convenient to perform the definite integral of (6.57) with reference to a reference state
(U0, V0, n0), so obtaining the expression

µ

T
=
(µ
T

)
0
− 3

2
R ln

U

U0
−R ln

V

V0
+

5

2
R ln

n

n0
, (6.60)

which, inserted in (6.55), gives the fundamental equation in the form

S(U, V, n) =
5

2
nR− n

(µ
T

)
0

+
3

2
nR ln

U

U0
+ nR ln

V

V0
− 5

2
nR ln

n

n0

=
5

2
nR− n

(µ
T

)
0

+ nR ln

[(
U

U0

)3/2(
V

V0

)(
n

n0

)−5/2
] (6.61)

Some simple comments on the fundamental equation (6.61):

- The equation is homogeneous with respect to the extensive variables U, V, n, as required by
Axiom III.

- The entropy S is a monotonously increasing function of the energy U , again as required by
Axiom III. The curve S(U) is downward concave.

- The validity of the equation is limited to the temperature interval of validity of the state
equations (6.52) and (6.53).

- The equation contains an unknown constant term (µ/T )0. The reason is that the starting
point was represented by only two state equations instead of three. The result is anyway
consistent with the entropy being defined in the cycle Thermodynamics to within ad additive
constant.
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Second procedure

Fo a closed system, where the number n of moles is constant, one can consider molar quantities
(6.45) and integrate the differential (6.48)

ds =
1

T
du+

p

T
dv , (6.62)

without resorting to the Gibbs-Duhem relation.
By substituting the state equations in molar form (6.54)

1

T
=

3R

2u
,

p

T
=
R

v
(6.63)

in (6.62) and integrating one obtains:

s = s0 +
3

2
R ln

u

u0
+R ln

v

v0
, (6.64)

where s0 is the molar entropy of a reference state. Comparing with (6.61), and imposing n = n0 =
1, one finds

s0 =
5

2
R−

(µ
T

)
0
. (6.65)

The expression of entropy (6.64) is consistent, to within the factor n, with the expression (4.39)
calculated in Part I.

Concluding remarks

The previous example concerning the monatomic ideal gas allowed us to determine the analytic
form of its fundamental equation and to inquire on the relations between fundamental equation
and state functions for a simple system.

In spite of the simplicity of the system, the fundamental equations (6.61) and (6.64) are not so
familiar. Actually, their practical usefulness is quite limited, since it is unusual the deal with
systems for which one of the independent variables is the internal energy U . More frequently one
has to deal with systems whose state is characterised by the value of some intensive coordinate;
the independent coordinates could be, for example, volume and temperature V, T or volume and
pressure V, p,

It is thus important to inquire whether fundamental equations can be found based on sets of co-
ordinates different from those used in the energy and in the entropy representations. For example,
is it possible to establish fundamental equations based on the pair of coordinates T, V, {ni} or
T, p, {ni} ? A solution to this problem will be found in the next Chapter 7, where new represen-
tations are introduced, alternative but equivalent to the energy and entropy representations.

At last, let us notice that, according to (6.60), the chemical potential depends on the internal energy
U in addition to the coordinates (T, V, n). Thanks to the introduction of new representations in
Chapter 7, an expression of the chemical potential as a function of only temperature and pressure
will be obtained in § 11.1.
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Chapter 7

Alternative fundamental equations

In previous chapters 5 and 6, the thermodynamical state of systems has been specified by extensive
coordinates. Two choices of extensive coordinates have been considered, the entropy and the
energy representations. For each one of the two representations, the thermodynamical properties
of systems are contained in a fundamental equation,

S(U, V, {ni}) or U(S, V, {ni}) . (7.1)

The two representations are connected by a simple rotation of the axes in the Gibbs space of
extensive coordinates.
In the two representations an intensive coordinate is conjugated to each one of the extensive
coordinates (§ 6.1). The intensive can be more easily controlled in the laboratory (a number of
experiments are performed in conditions of fixed pressure and temperature). It is thus sound to
describe the thermodynamical properties by fundamental equations in which one or more of the
extensive coordinates are substituted by intensive coordinates.

7.1 Legendre transforms

The formalism allowing a flexible adaptation of the thermodynamical description to different sys-
tems, by substituting some extensive coordinates with intensive coordinates, is founded on the
Legendre transforms.

7.1.1 Statement of the problem

Let us focus our attention on the energy representation and denote by Xi and Yi the extensive
and intensive coordinates, respectively. The function U(X1, X2, X3, . . .), that contains all the
thermodynamical information on the system, is assumed to be continuous and differentiable. The
first derivatives of U(X1, X2, X3, . . .) with respect to the extensive coordinates Xi are the intensive
coordinates Yi (such as T, p, µ cor a simple system with one component). As we will see later on,
derivatives of higher order with respect to both extensive and intensive coordinates correspond
to further quantities characterising the thermodynamical behaviour of a system, such as specific
heats, compressibilities, coefficients of thermal expansion. ,
Our goal is now to succeed in expressing all the thermodynamical properties of a system by new
functions where one or more extensive coordinates are substituted by the corresponding intensive
coordinates. The problem is far from trivial, so that we will first try to solve it in a simple
unidimensional case.

7.1.2 Unidimensional case, an inadequate solution

Let the function U = Ux(X) be continuous and differentiable (Fig. 7.1, left). To each value of X
one can associate the value of the first derivative Y (X) = dUx/dX. One can then obtain a new
function U = Uy(Y ) (Fig. 7.1, center).

81
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Figure 7.1: With reference to the unidimensional case of § 7.1.2. Left: the initial function Ux(X).
Center: the corresponding ffunction Uy(Y ), where Y = dUx/dX. Right: examples of different
functions Ux corresponding to the same function Uy(Y ).

To each function Ux(X) it corresponds only one function Uy(Y ).
It is easily verified that to the function Uy(Y ) infinite functions Ux(X) correspond (Fig. 7.1, right).
In the transform Ux(X) → Uy(Y ) an amount of information has been lost. .The function Uy(Y )
doesn’t contain all the information contained in Ux(X) and wouldn’t t be a good fundamental
function.

Example: Let us consider the function U = Ux = AX3, where A is a constant. Its first derivative
is Y = dUx/dX = 3AX2.
By substituting X = (Y/3A)1/2 in Ux, one obtains an expression of U as a function of Y :
Uy(Y ) = Y 3/2/(33/2A1/2).
The new function Uy(Y ) doesn’t contain all the information contained in Ux(X). Actually, any
function Ux = A(X −X0)3, where X0 is a constant, gives rise to the same function Uy(Y ) =
Y 3/2/(33/2A1/2). Otherwise stated, if Uy(Y ) is known, to each value of Y it corresponds a
single value of U , but infinite values of X.

(?) Repeat the procedure of the above example for the two functions Ux = AX2 and Ux = A lnX.

7.1.3 Legendre transforms for the unidimensional case

A sound solution to the problem of substituting an independent variable with is first derivative
without losing information is based on the Legendre transforms.
From the geometrical point of view, the curve representing a function U(X) in the X,U plane can
be alternatively considered as

a) a locus of points, corresponding to pairs of coordinates (X,U) (Fig. 7.2, left); this picture
allows the simple transition from the entropy representation to the energy representation,
and viceversa;

b) an envelope of straight lines characterised by a slope Y and an intercept Φ (Fig. 7.2, center);
to each point of the curve a pair of values (Y,Φ) univocally corresponds; on this picture the
Legendre transform is founded.

Slope Y and intercept Φ of the straight line tangent to a given point are connected by the relation
(Fig. 7.2, center)

Y =
U − Φ

X
, (7.2)

so that the intercept Φ (that has the same dimensions as the function U) can be expressed as

Φ = U − Y X (7.3)

The function Φ(Y ) (Fig. 7.2, right) is called the Legendre transform of the function U(X), to which
it univocally corresponds.



7. Alternative fundamental equations 83

0

40

80

0 1 2 3 4 5 6

U
 (

ar
b.

 u
ni

ts
)

X (arb. units)

U

X

Φ

P

-40

-20

0

0 10 20 30

Φ
 (a

rb
. u

ni
ts

)

YY (arb. units)

Figure 7.2: With reference to the Legendre transform. Left: the initial function U(X), equal to the
function Ux(X) of Fig. 7.1. Center: relation between the variable X, the function U , lhe intercept
Φ and the slope Y in a given point P . Right: the Legendre transform Φ(Y ) = U −XY .

The differential of Φ(Y ) is

dΦ = dU − Y dX −X dY = −X dY (because dU = Y dX) . (7.4)

The function Φ(Y ) has the same information content as the function U(X). From Φ(Y ) one can
univocally recover U(X) through the inverse transform.
Synthetically, the two equivalent functions are:

U = U(X) Φ = Φ(Y )

dU = Y dX dΦ = −X dY (7.5)

dU

dX
= Y

dΦ

dY
= −X

connected through the Legendre transforms:

Φ = U − Y X ←→ U = Φ +XY . (7.6)

Example: Let us consider again the function U(X) = AX3 of the previous example. The first
derivative is Y = dU/dX = 3AX2, so that X = (Y/3A)1/2. The Legendre transform of U(X)
is the new function Φ(Y ) = U −XY = −2Y 3/2/(33/2A1/2).
The inverse transform is U(X) = Φ(Y ) + XY . If Φ(Y ) is known, U(X) can be univocally
recovered.

(?) Calculate the Legendre transforms of the two functions: Ux = AX2 e Ux = A lnX.

(?) What happens if U = AX +B, say for a linear dependence of U on X ?

7.1.4 Legendre transforms in several dimensions

Let us now consider the case, relevant for Thermodynamics, of a function of several variables:

U = U(X1, X2, X3, . . .) (7.7)

dU =
∑

i
Yi dXi , Yi =

(
∂U

∂Xi

)
(Xj 6=Xi)

(7.8)

By generalising (7.3), one can calculate the Legendre transforms of U(X1, X2, X3, . . .) with respect
to one or more intensive variables Yi.
For example, the Legendre transform with respect to the two intensive coordinates Yr and Ys is

U [Yr, Ys] = Φ(X1, . . . , Xr−1, Yr, Ys, Xs+1, . . .)

= U −XrYr −XsYs (7.9)
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and its differential is
dΦ = −Xr dYr −Xs dYs +

∑
i 6=r,s

Yi dXi . (7.10)

The inverse transform of (7.9),

Φ[Xr, Xs] = Φ +XrYr +XsYs (7.11)

returns the initial function U(X1, X2, X3, . . .).

Example: An example of Legendre transform can be found in Analytical Mechanics. The mechani-
cal behaviour of a system can be deduced by the knowledge of the Lagrange function L(qi, q̇i),
that is a function of the generalised coordinates qi and of their derivatives with respect to
time q̇i. Alternatively, one can refer to the Hamilton function H(qi, pi), that is a function of
the generalised coordinates qi and of their conjugate momenta pi = ∂L/∂q̇i. The connection
between the Lagrange and Hamilton pictures is given by the Legendre transform

−H = L −
∑

i
piq̇i

.

7.2 Legendre transforms in Thermodynamics

Let us now apply the Legendre transforms to the fundamental equations of Thermodynamics. We
focus the attention mainly on the energy representation, whose Legendre transforms are particu-
larly important in practice, and make only a rapid mention to the entropy representation.

7.2.1 Enegry representation

Let us start from the fundamental equation and its differential form

U = U(S, V, {ni}) , (7.12)

dU = T dS − p dV +
∑

i
µi dni (7.13)

and consider its possible Legendre transforms.

Enthalpy

The entalphy H is the Legendre transform of the energy U with respect to the pressure p:

U [p] = U + pV = H(S, p, {ni}) . (7.14)

The enthalpy is a function of the independent coordinates S, p, {ni}. Its differential is

dH = dU + p dV + V dp

= T dS + V dp+
∑

i
µi dni . (7.15)

Helmholtz free energy

The Helmholtz free energy F is the Legendre transform of the energy U with respect to the
temperature T :

U [T ] = U − TS = F (T, V, {ni}) . (7.16)

The Helmholtz free energy is a function of the independent coordinates T, V, {ni}. Its differential
is

dF = dU − T dS − S dT

= −S dT − p dV +
∑

i
µi dni . (7.17)
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Note: In the german literature the Helmholtz function is denoted by the letter A (from “Arbeit”
= work). The letter A is suggested also by IUPAC (International Union of Pure and Applied
Chemistry).

Gibbs free eneergy

The Gibbs free energy G (also called free enhtalpy) is the Legendre transform of the energy U with
respect to both the temperature T and the pressure p:

U [T, p] = U − TS + pV = G(T, p, {ni}) . (7.18)

The Gibbs free energy can also be considered the Legendre transform of the enthalpy H with
respect to the temperature T or of the Helmholts function F with respect to the pressure p.
The Gibbs free energy is a function ofthe independent coordinates T, p, {ni}. Its differential is

dG = dU − T dS − S dT + p dV + V dp

= −S dT + V dp+
∑

i
µi dni . (7.19)

Grand-canonical potential

The grand-canonical potential Ω is the Legendre transform of the energy U U with respect to the
temperature T and the chemical potentials µi:

U [T, {µi}] = U − TS −
∑

i
µi ni = Ω(T, V, {µi}) . (7.20)

The grand-canonical potential is a function of the independent coordinates T, V, {µi}. Its differen-
tial is

dΩ = dU − T dS − S dT −
∑

i
µi dni −

∑
i
ni dµi

= −S dT − p dV −
∑

i
ni dµi . (7.21)

For a system with only one component, the grand-canonical potential is

U [T, µ] = U − TS − µn = Ω(T, V, µ) , (7.22)

say a function of the independent coordinates and its differential is

dΩ = dU − T dS − S dT − µdn− ndµ
= −S dT − p dV − ndµ . (7.23)

7.2.2 Consequency of the homogeneity of the fundamental equation

In § 6.4 we have derived the Euler relations (6.41) from the homogeneity of the fundamental equa-
tions. In particular, the Euler relation for the energy representation is I

U = TS − pV +
∑

i
µini . (7.24)

One can easily find the Euler relations for the new functions H,F,G,Ω starting from (7.24):

H = U + pV = TS +
∑

i
µini (7.25)

F = U − TS = − pV +
∑

i
µini (7.26)

G = U + pV − TS =
∑

i
µini (7.27)

Ω = U − TS −
∑

i
µi ni = − pV (7.28)
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Note: The progressive reduction of the number of terms in the second member of the Euler re-
lations when passing from (7.24) to (7.25) and (7.26) and to (7.27) is due to the progressive
substitution of extensive variables, with respet to which the function is homogeneous of order
1, by intensive variables, with respect to which the function is homogeneous of degree 0.

Gibbs free energy and chemical potential

For a system with only one component the Euler relation for the Gibbs free energy (7.27) becomes

G = µn ; (7.29)

for a system with only one component, the chemical potential µ corresponds to the molare Gibbs
free energy:

µ =
G

n
= g . (7.30)

An extreme case

By performing the Legendre transform with respect to all the extensive coordinates and comparing
the result with the Euler relation (7.24) one finds

U [T, p, {ni}] = U − TS + pV −
∑

i
µini = 0 . (7.31)

The Legendre transform with respect to all the extensive coordinates has no meaning, since the
basic information on the system size is lost.

Note: The comparison with the case of the transform between the Lagrange and Hamilton for-
malisms in Mechanics can be instructive. Let us consider the simple case of a particle free to
move. The Lagrange function is L = mv2/2, the conjugate momentum is p = dL/dv and the
Hamilton function is H = pv − L = mv2/2.
The transform with respect to all the variables (in this case only one) is now significant. Why ?

7.2.3 Entropy representation

One can generate new fundamental equations by means of Legendre transforms of the function
S(U, V, {ni}) in the entropy representation too. The new functions are generally called Massieu
functions. For example:

S [1/T ] = S − 1

T
U = − F

T
(7.32)

S [p/T ] = S − p

T
V (7.33)

S [1/T, p/T ] = S +
1

T
U − p

T
V = − G

T
. (7.34)

7.3 Useful mathematical relations

To conclude this Chapter, let us introduce some mathematical relations that are frequently used
in Thermodynamics, for example to connect some quantities that are easily measurable to other
non measurable quantities as well as for reducing the number of variables of a given problem.

7.3.1 Maxwell relations

As is well known, if a continuous function Z = Z(x1, x2, ..., xn) of n variables has all the first
and second derivatives, one can demonstrate the invariance of the second partial derivatives with
respect to the exchange of the order of the independent variables

∂2Z

∂xi∂xk
=

∂2Z

∂xk∂xi
. (7.35)



7. Alternative fundamental equations 87

Let us now consider the differentials of the first four thermodynamical functions considered in § 7.2:

dU = T dS − p dV +
∑

i
µidni (7.36)

dH = T dS + V dp+
∑

i
µidni (7.37)

dF = −S dT − p dV +
∑

i
µidni (7.38)

dG = −S dT + V dp+
∑

i
µidni (7.39)

All the differentials (7.36) - (7.39) have the form

dZ = M dx+N dy +
∑

i
µidni

=

(
∂Z

∂x

)
dx+

(
∂Z

∂y

)
dy +

∑
i
µidni . (7.40)

By means of (7.35), one can obtain from (7.40) the relation(
∂M

∂y

)
x

=

(
∂N

∂x

)
y

. (7.41)

By applying (7.41) to each one of the (7.36)-(7.39) one obtains the following Maxwell relations:(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(7.42)(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

(7.43)(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

(7.44)(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

(7.45)

Other Maxwell relations can be obtained if also the terms µi dni or the possible terms of generalised
work d̄W ∗j = ξ∗j dX

∗
j are taken into account.

We considered here only the Maxwell relations that will be encountered in the next chapters.

Example: In § 10.1 we will study in detail the energy balance of a closed system undergoing an
isothermal compression. We will start from the energy differential dU = T dS − p dV and
rewrite it as a function of the variables T and p. Since by hypothesis dT = 0, one finds

dU = T

(
∂S

∂p

)
T

dp− p
(
∂V

∂p

)
T

dp .

The Maxwell relation (7.45) consente di trasformare la derivata dell’entropia S rispetto alla
pressione pwill allow us to transform the derivative of the volume V with respect to the
temperature T :

dU = −T
(
∂V

∂T

)
p

dp− p
(
∂V

∂p

)
T

dp .

The two partial derivatives correspond to easily measurable quantities, say the coefficient of
thermal expansion and the isothermal compressimility

β =
1

V

(
∂V

∂T

)
p

dp , χT = − 1

V

(
∂V

∂p

)
T

dp .
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7.3.2 Other useful mathematical identities

Let three variables x, y, z be connected by the implicit relation

F (x, y, z) = 0 . (7.46)

The two explicit functions x(y, z) and y(x, z) can be differentiated as:

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz , dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz . (7.47)

If in the differential dx of the left equation the differential dy of the right equation is substituted,
one obtains [(

∂x

∂y

)
z

(
∂y

∂x

)
z

− 1

]
dx+

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz = 0 . (7.48)

If now x and z are considered as independent variables, equation (7.48) is true for whichever values
of dx and dz. The two expressions in square parentheses have then to be identically zero.
By equating to zero the expression in the first square parenthesis of (7.48) one gets the identity(

∂x

∂y

)
z

=
1(
∂y
∂x

)
z

. (7.49)

By equating to zero the expression in the second square parenthesis of (7.48) one gets the identity(
∂x

∂z

)
y

= −
(
∂x

∂y

)
z

(
∂y

∂z

)
x

, (7.50)

cioè (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 . (7.51)

One can demonstrate that the identities (7.49) and (7.51) are valid also in the case of more that
three independent variables, for example for an implicit relation F (x, y, z, w) = 0.

The identities (7.49) and (7.51), as the Maxwell relations, are frequently used to modify some
equations between thermodynamical quantities and express them as a function of easily measurable
quantities.

Example 1: In § 9.4, to demonstrate the relation between specific heats at constant volume and
constant pressure, we will resort to (7.49) to transform

1(
∂T
∂V

)
p

=

(
∂V

∂T

)
p

.

Example 2: In § 10.4, when studying the free adiabatic expansion of gases, we will resort to (7.50) to
substitute the derivative of the pressure with respect to the temperature at constant volume:(

∂p

∂T

)
V

= −
(
∂p

∂V

)
T

(
∂V

∂T

)
p

.

Example 3: In § 9.4, when studying the relations between the response functions, fwe will resort
to (7.50) to find an alternative expression of the coefficient of thermal expansion:(

∂V

∂T

)
p

= −
(
∂p

∂T

)
V

(
∂V

∂p

)
T

.



Chapter 8

Thermodynamic potentials

In this Chapter 8 we will study in detail the physical meaning and the practical use of the internal
energy U and of its Legendre transforms H,F,G, that have been formally introduced in Chapter 7.

The four functions, that are often defined thermodynamic potentials for reasons that will be made
clear below, describe the thermodynamical properties of systems as a function of different sets of
coordinates:

U (S, V, {ni}, {Xj}) H (S, p, {ni}, {Xj})
F (T, V, {ni}, {Xj}) G (T, p, {ni}, {Xj}) (8.1)

The differences between the four functions (8.1) concern the first two coordinates. The internal
energy U is used for systems where one can control entropy S and volume V , the enthalpy H is
used for systems where one can control entropy S and pressure P , and so on.

Below we will separately examine the four functions U , H, F and G. For each one of the functions
we will consider three different applications:

1. Use of the function to describe equilibrium properties and reversible transformations of simple
systems.
In particular, we will be interested in

– amount of heat reversibly exchanged when the volume V or the pressure p remain
constant (comparison between U and H),

– reversible compression work, performed when the entropy S or the temperature T remain
constant (comparison between U and F ).

2. Study of processes taking place in composite systems, to determine the sign of the variation
of the function in the transformation from an initial state of constrained equilibrium to a
final state of non-constrained equilibrium.
Such variations are are always negative for the four functions, U , H, F and G:

– for irreversible processes they correspond to an increase of entropy of the isolated system
formed by the studied system and its environment (the so called “thermodynamical
universe”);

– for reversible processes they measure the maximum work obtainable as a consequence
of the constraints removal (whence the name thermodynamic potentials).

3. Statement of the conditions for thermodynamical equilibrium.

In § 8.5 we will shortly consider processes of closed systems affected by variations of the coordinates
ni (chemical reactions, matter transport, phase transitions) in order to better understand the
meaning of the grand-canonical potential Ω, defined in (7.20).

89
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8.1 Internal energy U

The thermodynamical properties of a system can be summarised in the fundamental equation

U = U(S, V, {ni}, {Xj}) , (8.2)

where S and V are the entropy and the volume of the system, respectively, and ni are the molar
quantities of the different components. The symbol {Xj}, that denotes all the other possible
thermodynamical coordinates, will be omitted in the following of this chapter when not strictly
necessary.

8.1.1 Simple systems in equilibrium

For a simple system in thermodynamical equilibrium, the differential o (8.2),

dU = TdS − pdV +
∑

i
µidni +

∑
j
ξj dXj , (8.3)

represents the energy balance for an infinitesimal reversible transformation. Let us examine in
detail the different terms of the second member of (8.3), by considering some particular cases,
following the approach of § 6.3.

Closed and isolated systems

A closed and isolated system doesn’t modify its volume and doesn’t exchange matter nor energy
with its ambient, so that (8.3) becomes

dU = TdS +
∑

i
µidni = 0 , (8.4)

where the differentials dni refer to possible variations within the system, typically due to chemical
reactions or phase transitions. The entropy variation dS cannot depend on heat exchanges, since
the system is isolated; it can only be due to variations of the ni values within the system; if dni = 0
for every i, then also dS = 0.

Compression work

The second term in the right member of (8.3), −p dV = d̄W , is the compression work reversibly
performed on the system. The compression work can be taken as a measure of the interaction of
the system with the external pressure field.

For a system where all extensive coordinates remain constant with exclusion of volume V , the
variation of internal energy is equal to the compression work:

dU = −p dV , ∆U = W [dS = 0, dni = 0, dXj = 0] (8.5)

Note: Ina reversible compression process, the internal pressure is equal to the external pressure.

Generalised work

The terms of the sum
∑
j d̄W

∗
j =

∑
ξj dXj in (8.3) correspond to the variations of internal energy

due to reversible contributions of generalised work. The generalised work terms measure the
interactions of the system with external fields too.

Some examples are given in Table 8.1.
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Table 8.1: Examples of generalised work.

Magnetisation work d̄Wm = H dM § 3.6
Electrical polarisation work d̄Wp = E dP § 3.7

! 

dU

! 

dQ

! 

h dn

Figure 8.1: Open system with one com-
ponent. The variation of internal en-
ergy is due to both exchange of heat d̄Q
and exchange of matter h dn.

Closed non-isolated systems - Exchanged heat

If dni = 0 (closed system with no internal reactions), the first term of (8.3) is the heat reversibly
absorbed in an infinitesimal reaction:

T dS = d̄Qrev . (8.6)

If in addition dV = 0 and dXj = 0, the heat reversibly exchanged is equal to the variation of
internal energy:

dU =d̄Qrev , ∆U = Qrev [dV = 0, dni = 0, dXj = 0] (8.7)

In this case, the heat capacity at constant volume Cv is connected to the internal energy by

Cv =

(
d̄Qrev

dT

)
V

= T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

. (8.8)

Open systems, the terms µi dni

Let us consider now an open system, that can exchange matter with its environment. For sim-
plicity, let us suppose that the system has a single component and cannot exchange work with the
environment, so that dV = 0, dXj = 0 (Fig. 8.1).
Equation (8.3) becomes now dU = T dS + µdn.
By introducing the molar quantities, so that T dS = T d(ns), and recalling that according to (7.30)
the chemical potential corresponds to the molar Gibbs free energy µ = g = u+ pv − Ts = h− Ts,
one gets

dU = T d(ns) + (u+ pv − Ts) dn
= Tn ds+ h dn . (8.9)

According to (8.9), the variation of internal energy dU of an open system can be decomposed as
the sum of two contributions:

- reversible exchange of heat d̄Qrev = Tn ds, that leads to a variation ds of the molar entropy
of the system;

- exchange of matter dn, that transports molar enthalpy h = u + pv: the enthalpy measures
the contribution of the molar energy u transported by matter and the contribution due to
the introduction of the volume v dn at a pressure p.

The total variation of entropy dS = nds+ s dn doesn’t thus depend only on the exchange of heat
d̄Q (see equation 6.13 in § 6.2).
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Figure 8.2: Center: a constant-volume composite system maintained in equilibrium by an adiabatic
wall. The removal of the wall insulation triggers the energy exchange between the two sub-systems.
The entropy of the entire system has to remain unchanged. Two different processes are considered,
one completely irreversible (left) with heat emission, the other reversible (right) . Sono illustrati
due possibili processi: uno completamente irreversibile (a sinistra), con emissione di calore; l’altro
reversibile (a destra) with production of work thanks to a Carnot engine.

Closed systems, the terms µi dni

We will analyse later on, in § 8.5, the meaning of the terms µi dni of (8.3) for closed systems. The
variations dni in closed systems can be due to chemical reactions or to phase transitions.

8.1.2 Thermodynamical processes and internal energy

In § 6.3 we have seen that, in a composite system with constant entropy and volume, the removal of
constraints triggers a thermodynamical process towards a new state of non-constrained equilibrium,
whose internal energy U is smaller than in the initial state.

Let us now study in more detail this type of processes[
Composite system

(constrained equilibrium)

]
→

[
SSimple system

(non-constrained equilibrium)

]
We consider here the behaviour of the internal energy; the cases of the other thermodynamical
functions will be analysed later on.

Note: Equation (8.3) only holds for simple systems in equilibrium, and cannot describe the ther-
modynamical state of a composite system. Actually, the state of a composite system is known
if, in addition to S, V, {ni}, also the corresponding coordinates of all the sub-systems mi-
nus one are known. For a system divided in two sub-systems, it is necessary to know also

S(1), V (1), {n(1)
i }.

We will start from simple examples (the first one already considered in § 6.3) to proceed then to
suitable generalisations. The two following examples concern processes of internal re-adjustement
between sub-systems initially maintained at different temperatures or pressures, respectively.

Example 1

A system maintained with constant volume and composition is divided in two sub-systems of
equal heat capacity (C1v = C2v = Cv) and of different temperatures T1 and T2, respectively, with
T2 > T1. The two sub-systems are initially separated by an adiabatic wall (Fig. 8.2, center).
Ata given time the wall insulation is removed and the two sub-systems exchange heat until they
achieve thermal equilibrium at the temperature Tf . The process takes place with no variation of
the system entropy S, so that for the global system dS = dV = dni = 0.
Let us consider two extreme cases: a) completely irreversible process and b) reversible process.

a) The thermalisation of the two sub-systems takes place through an irreversible transfer of
heat. In order that the total entropy remain unchanged, not all the heat amount Q2 lost by
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the hot sub-system has to be transferred to the cold sub-system; the cold sub-system has to
receive a smaller amount of heat Q1 and the system has to transfer to its environment the
remaining amount of heat Qout (Fig. 8.2, left).
The infinitesimal heat quantities are connected by the relation

|d̄Q2| = |d̄Q1|+ |d̄Qout| . (8.10)

To evaluate the finite heat quantities exchanged in the entire process it is convenient to first
calculate the temperature Tf of the final equilibrium state.
By hypothesis, the final state of non-constrained equilibrium has the same volume V and
the same entropy S of the initial state of constrained equilibrium. To calculate Tf one can
consider, for both sub-systems, a reversible transformation leading to the final temperature
Tf , by imposing a null variation of entropy:

∆S =

∫ Tf

T1

d̄Q1

T
+

∫ Tf

T2

d̄Q2

T
= Cv

∫ Tf

T1

dT

T
+ Cv

∫ Tf

T2

dT

T
= 0 . (8.11)

From (8.11) one can easily obtain the final equilibrium temperature:

ln
Tf
T1

+ ln
Tf
T2

= 0 ⇒ Tf =
√
T1T2 . (8.12)

Once Tf known, one can calculate the heat quantities:

Q1 = Cv(Tf − T1) > 0 ; Q2 = Cv(Tf − T2) < 0 ; (8.13)

|Qout| = |Q2| − |Q1| = Cv

(√
T2 −

√
T1

)2

. (8.14)

To maintain the entropy S unaltered, the system has to lose a heat amount Qout, thus re-
ducing its internal energy, ∆U = Qout < 0.
The transformation is irreversible. In order that the entropy of the system remain unaltered,
the ambient entropy has to increase. The reduction of the system energy corresponds thus
to an increase of the entropy of the thermodynamic universe, that is the sum of the system
and its ambient and is by definition isolated.

b) The thermalisation of the two sub-systems is performed reversibly by means of a Carnot
engine (Fig. 8.2, right). The requirement that the entropies of the initial and final states are
equal lead again to (8.11) and to the final equilibrium temperature (8.12), Tf =

√
T1T2. The

heat quantities Q1 and Q2 are again given by (8.13).
However, in this case no heat is expelled from the system. The difference between the heat
quantities Q2 and Q1 is instead converted to work |W̃ | = |Q2| − |Q1|, again with a reduction
of the internal energy ∆U = W̃ < 0.

(?) Calculate the final equilibrium temperature for an irreversible thermalisation like that of the
previous example, however taking place in an isolated system.

Example 2

The second example is proposed as a problem.
Consider a system represented by a gas enclosed in a cylinder and separated in two sub-systems
at different pressures by a fixed piston. When the piston becomes free to move, the system evolves
towards a new state of non-constrained equilibrium. Impose that S and V remain constant and
show that the internal energy U decreases.
As in the previous example, compare the two cases of a completely irreversible process and a
reversible process.
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Figure 8.3: Above: the workW performed to compress an elastic spring is stored as potential energy
and can be recovered when the spring expands. Below: the work performed on a thermodynamic
system with constant entropy and volume can be stored as internal energy by means of a Carnot
refrigerating cycle and can be recovered by inverting the cycle.

General conclusions

By generalising the previous examples, one can draw the following conclusions about the processes
taking place in closed composite systems with entropy S and volume V constant, after the removal
of internal constraints:

1. For a generic process, ∆U = Q+ W̃ < 0 where W̃ is the work that the system can exchange
with its environment due to the modifications of its internal structure.

2. In completely irreversible processes, the system transfers heat to its environment without
producing work: ∆U = Q < 0.

3. In reversible processes the reduction of internal energy entirely corresponds to work performed
on the environment: ∆U = W̃ < 0.

The variation of internal energy ∆U thus measures the maximum work obtainable by the trans-
formation from the initial state of constrained equilibrium to the final state of non-constrained
equilibrium.

On more general grounds, a composite system maintained at constant entropy and volume can
absorb or lose energy by exchanging work with its ambient (Fig. 8.3): the work reversibly performed
on a system can be employed to separate two or more sub-systems in constrained equilibrium; the
removal of the constraints allows the recovery of the work.
The internal energy U thus represents a sort of potential energy for the work LW̃ . Whence the
name “thermodynamic potential” attributed to the internal energy and, as we will see below, also
to the thermodynamical functions H,F,G.

Note: Here and in the following W̃ represents the work exchanged by a system with its ambient as
a consequence of the removal or insertion of constraints.

8.1.3 Irreversibility and reduction of the internal energy

In § 6.3 it has been formally demonstrated that the axiom of maximum entropy in isolated systems
can be re-formulated as an axiom of minimum energy in systems with constant S and V .
Example 1 considered above more intuitively shows how the reduction of the internal energy U in
irreversible transformations of a closed system with constant Sand V is a consequence of Axiom
II of § 5.3 (increase of entropy in isolated systems).
In this case, the isolated system is the sum of the given system and its ambient, often called
“thermodynamical universe” (not necessarily corresponding to the Universe of astronomy and
cosmology).

Since by hypothesis the entropy of the system is constant (∆Ss = 0), the variation of the entropy
of the thermodynamic universe corresponds to the variation of entropy of the ambient (∆Sa) and
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has to be positive according to Axion II of § 5.3:

∆Ss + ∆Sa = ∆Sa ≥ 0 (8.15)

1. For a completely irreversible process (Fig. 8.2, left) the system reduces its internal energy
emitting heat ∆Us = −|Qout| = Qs < 0. Heat is absorbed by the ambient producing an
increase of its internal energy , ∆Ua = +|Qout| = Qa = −Qs = −∆Us > 0.
As a consequence, since the volume of the system is constant, ∆Vs = 0,

Ta∆Sa = ∆Ua = −∆Us > 0 : (8.16)

the increase of the entropy of the universe corresponds to a reduction of the internal energy
of the system, ∆Us < 0.

2. In the extreme case of a reversible process (Fig. 8.2, right) the system reduces its internal
energy by performing reversible work on the ambient, ∆Us = −|W̃out|. The reversible work
|W̃out| doesn’t increase the internal energy of the ambient, so that so that T∆Sa = ∆Ua =
0. Reversible processes take place in isolated systems without entropy variations (in the
Thermodynamics of cycles it’s a consequnce of the Clausius theorem, § 4.4).

8.1.4 Equilibrium condition

The above considerations confirm the conclusions of § 6.3: for a closed system with constant Sand
V , the thermodynamical equilibrium is characterised by a minimum of the internal energy U .
Any deviation from the equilibrium state, reversible or irreversible, gives rise to an increase of the
internal energy U . The conditions of equilibrium and of its stability are, respectively

δU = 0, ∆U > 0 . (8.17)

Let us stress again that in non isolated systems the deviations from equilibrium are not necessarily
virtual (as is the case instead for isolated systems).

8.2 Enthalpy H

Enthalpy H is obtained by the Legendre transform of the internal energy U with respect to pressure
(§ 7.2), so that

H = U + pV = H(S, p, {ni}) , (8.18)

where S and p arethe entropy and the pressure of the system, respectively and ni are the molar
quantities of the components. The possible generalised coordinates Xj are no more considered in
thi chapter.

8.2.1 Simple systems in equilibrium

The differential of (8.18) is

dH = TdS + V dp+
∑

i
µidni . (8.19)

It is convenient to enlighten the similarities and the differences between the differentials (8.19) and
(8.3) of the enthalpy H and of the internal energy U .

The difference concerns the second term, p dV for the internal energy, V dp for the enthalpy. The
term V dp doesn’t correspond to work; as a consequence, la (8.19) doesn’t represent an energy
balance corresponding to the Fisrt Law.
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Closed system - Exchanged heat

When dni = 0 (closed system without chemical reactions and phase transitions), the first term of
(8.19) is the heat amount reversibly absorbed:

T dS = d̄Qrev . (8.20)

If the pressure of the system remains constant, dp = 0, the heat reversibly exchanged corresponds
to the enthalpy variation:

dH =d̄Qrev , ∆H = Qrev [p = constant] (8.21)

The heat capacity at constant pressure is connected to the enthalpy by the relation

Cp =

(
d̄Qrev

dT

)
p

= T

(
∂S

∂T

)
p

=

(
∂H

∂T

)
p

. (8.22)

Note: The word “enthalpy” is derived from ancient greek enthalpein=to heat.

Let us compare equations (8.21) and (8.22) concerning the enthalpy with the corresponding equa-
tions (8.7) and (8.8) rconcerning the internal energy.
The heat absorbed at constant volume is equal to the increment of internal energy, the heat
absorbed at constant pressure is equal to the increment of enthalpy.

Schematically:

V = constant ⇒ d̄W = 0 ⇒ d̄Q = dU

p = constant ⇒ d̄W 6= 0 ⇒ d̄Q

{
6= dU

= dH = dU + p dV

Example: In the monatomic ideal gas, the iternl energy and the heat capacity at constant volume
are

U =
3

2
nRT ; Cv =

(
∂U

∂T

)
v

=
3

2
nR . (8.23)

The enthalpy and the heat capacity at constant pressure are instead

H = U + pV =
3

2
nRT + nRT =

5

2
nRT ; Cp =

(
∂H

∂T

)
p

=
5

2
nR . (8.24)

A number of real transformation take place at constant pressure (often the athmospheric pressure)
rather than at constant volume. Whence the usefulness of enthalpy.

Open systems

Let us consider an open system with one component, maintained at constant pressure (dp = 0).
Equation (8.19) becomes dH = T dS + µdn.
By introducing the molar quantities a recalling that µ = g = u+ pv − Ts, one obtains

dH = T d(ns) + (u+ pv − Ts) dn
= T d(ns) + (h− Ts) dn
= Tn ds+ h dn . (8.25)

The last member of (8.25) is equal to the last member of (8.9). The enthalpy H plays the same
role in the systems with constant p as the internal energy U in the systems at constant V . The
enthalpy variation in an open system with constant p is the sum of the same two contributions:

- exchange of heat d̄Q = Tn ds = T dS − Ts dn;

- exchange of matter transporting molar enthalpy h = u+ pv.
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8.2.2 Thermodynamical processes and enthalpy

We study now the role of enthalpy in thermodynamical processes taking place as a consequence
of the removal of one or more constraints in a composite system maintained at constant entropy
and pressure. Let us start from the simple example of § 8.1, adapted here to the case of constant
pressure, and proceed then to suitable generalisations.

Example

A system maintained at constant pressure and composition is divided in two sub-systems of equal
heat capacity (C1p = C2p = Cp) and temperatures T1 and T2, respectively, with T2 > T1. The
two sub-systems, two cylinders with movable pistons, are initially separated by an adiabatic wall
(Fig. 8.4, center). At a given time, the thermal insulation is removed from the wall and the two
sub-systems exchange heat untile they reach the thermal equilibrium at a temperature Tf . The
entropy S of the system remains constant by hypothesis.
Let us consider two extreme cases: a) perfectly irreversible process, b) reversible process.

a) The thermalisation of the sub-systems takes place through an irreversible heat transfer. In
order that the entropy remain constant, the system has to transfer a heat amount Qout to
the ambient (Fig. 8.4, left). The infinitesima heat quantities are connected by the relation
(8.10): |d̄Q2| = |d̄Q1| + |d̄Qout|. The final temperature can be calculated through (8.11)
(where Cv has to be substituted by Cp), obtaining Tf =

√
T1T2.

Once the final temperature Tf is known, the heat quantities can be calculated (again substi-
tuting Cv with Cp):

Q1 = Cp(Tf − T1) > 0 ; Q2 = Cp(Tf − T2) < 0 ; (8.26)

|Qout| = |Q2| − |Q1| = Cp

(√
T2 −

√
T1

)2

. (8.27)

To maintain the entropy S constant, the system has to transfer a heat amount Qout to its
environment. Differently from the case of § 8.1, however, the volume of the system is not
constant. The outgoing heat amount corresponds now to the variation of enthalpy H instead
of the variation of internal energy U :

Qout = ∆U + p∆V = ∆U + ∆(pV ) = ∆H . (8.28)

The enthalpy thus decreases, ∆H = Qout < 0.
The transformation is irreversible. To maintain constant the entropy of the system it is
necessary that the entropy of the ambient increases. The reduction of the system enthalpy
corresponds to an increase of the entropy of the universe (system plus ambient).

b) The thermalisation of the sub-systems takes place irreversibly thanks to a Carnot engine
connecting the two sub-systems (Fig. 8.4, right). Since the entropy has to remain constant,
the final equilibrium temperature is again Tf =

√
T1T2. Also the heat quantities Q1 and Q2

are again given by (8.26).
Contrary to the case of the irreversible transformation, however, no heat is expelled by
the system; on the contary, the Carnot engine produces work W̃ . Since the volume is not
constant, there is also expansion work, so that the work W̃ dosn’t correspond to the variation
of internal energy U , but:

W̃ = ∆U + p∆V = ∆U + ∆(pV ) = ∆H . (8.29)

Again, the enthalpy decreases: ∆H = W̃ < 0.

General conclusions

By generalising the previous example, one can draw the following conclusions about the processes
taking place in closed composite systems with entropy S and pressure p constant, after the removal
of internal constraints:
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Figure 8.4: A composite system maintained, at constant pressure, in a state of constrained equi-
librium by an adiabatic wall (center). The removal of the thermal insulation from the wall triggers
a process of heat exchange between the sub-systems. The system has to maintain the entropy
unaltered. Two possible processes are illustrated: one completely irreversible (left), with emission
of heat, the other reversible (right) with production of work by means of a Carnot engine.

1. For a generic process, ∆H = Q+ W̃ < 0 where W̃ is the work that the system can exchange
with its environment due to the modifications of its internal structure.

2. In completely irreversible processes, the system transfers heat to its environment without
producing work: ∆H = Q < 0.

3. In reversible processes the reduction of enthalpy entirely corresponds to work performed on
the environment: ∆U = W̃ < 0.

The variation of enthalpy ∆H thus measures the maximum work obtainable by the transformation
from the initial state of constrained equilibrium to the final state of non-constrained equilibrium.
The enthalpy H rrepresents thus a sort of potential energy for the work W̃ in systems maintained
at constant entropy and pressure.

8.2.3 Irreversibility and reduction off the enthalpy

One can demosntate that the reduction of the enthalpy H in irreversible transformations of a closed
system maintained at constant s and p corresponds to the increase of entropy in the thermody-
namical universe (system plus ambient). The procedure is similar to that followed for the internal
energy in system with constant s and V , with some relevant differences.

By hypothesis, the entropy of the system is constant (∆Ss = 0), so that

∆Ss + ∆Sa = ∆Sa ≥ 0 (8.30)

1. In a completely irreversible process (Fig. 8.4, left), the internal energy of the system is mod-
ified through emission of heat and exchange of ompression work, ∆Us = −|Qout| − ps ∆Vs =
Qs− ps ∆Vs. The ambient in turn absorbs heat and exchanges compression work, so that its
internal energy is varied according to ∆Ua = Qa − pa ∆Va = +|Qout| − pa ∆Va.
Let us analyse in detail ∆Sa, taking into account that the pressure of the system is constant by
hypothesis ps = pa, that the system is closed and that ∆Vs = −∆Va, so that ∆Us = −∆Ua:

Ta∆Sa = ∆Ua + pa∆Va = −∆Us − ps∆Vs = −∆Hs > 0 ; (8.31)

the increase of the entropy of the universe corresponds to a decreaseof the enthalpy of the
system, ∆Hs < 0.

2. In the reversible process (Fig. 8.4, right) the internal energy of the system is reduced by
the performance of reversible work |W̃out| and the exchange of compression work , ∆Us =
−|W̃out| − ps ∆Vs. The reversible work |W̃out| doesn’t increase the internal energy of the
ambient, so that ∆Ua = −pa ∆Va, where ∆Va = −∆Vs and pa = ps. The entropy balance of
the ambient is thus T∆Sa = ∆Ua + pa ∆Va = 0; again: the reversible processes in isolated
systems don’t produce entropy variations.
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8.2.4 Equilibrium condition

For a closed system with constant entropy S and pressure p the thermodynamical equilibrium is
characterised by a minimum of the enthalpy H. Any deviation, reversible or irreversible, from the
equilibrium state gives rise to an increase of the enthalpy H. In an equilibrium state

δH = 0, ∆H > 0 . (8.32)

In a closed system with constant S and p, the enthalpy H is minimum with respect to any process,
real or virtual, leading the system out of equilibrium.

8.3 Helmholtz free energy F

The Helmholtz free energy F is the Legendre transform of the internal energy U with respect to
the volume (§ 7.2), say

F = U − TS = F (T, V, {ni}) , (8.33)

where T and V are the temperature and the volume of the system and ni are the molar quantities
of the components.
The Helmholtz function is particularly useful for closed systems where temperature T and volume
V are easily controllable; it is typically the case of theoretical calculations, including the statistical
approach to Thermodynamics.

Note: Part III is dedicated to an introduction to Statistical Thermodynamics . We will see in
Chapter 15 that the thermodynamical properties of a simple system with one component are
summarised, in Statistica Thermodynamics, in the partition function Z and that the Helmholtz
function F is connected to the partition function Z by a particularly simple relation:

F = −kBT lnZ . (8.34)

8.3.1 Simple systems in equilibrium

The differential of (8.33) is

dF = −S dT − p dV +
∑

i
µidni . (8.35)

It is convenient to enlighten the similarities and the differences between the differentials (8.35) and
(8.3) of the Helmholtz function F and of the internal energy U .

Compression work

The differential of the Helmholtz function shares with that of the internal energy the second term
d̄W = −p dV , that represents the reversible compression work. Different is instead the first term,
−S dT instead of T dS.
Let us consider a closed system with no internal reactions (dni = 0) and compare the effects of a
compression work performed at constant entropy or at constant temperature.

- If the system is compressed at constant entropy (dS = 0), no exchange of heat takes place
between system and ambient, so that, according to (8.3), the reversible compression work
d̄W is equal to the variation dU of the internal energy.

- If the system is compressed at constant temperature (dT = 0), according to (8.35) the
reversible compression work d̄W is equal to the variation of the Helmholtz free energy:

−p dV = dF [T = constant] (8.36)

Schematically:

S = constant ⇒ d̄Q = 0 ⇒ d̄W = dU

T = constant ⇒ d̄Q 6= 0 ⇒ d̄W

{
6= dU

= dF = dU − T dS
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Example 1: Let us consider a real gas contained in a cylinder closed by a movable piston. A
reversible compression work d̄W = −p dV is performed on the gas.

a) If the cylinder is thermally insulated, d̄Q = T dS = 0, so that d̄W = dU . When the gas
is compressed, the internal energy U increases; by reducing the external pressure one can
recover the work at the expenses of the internal energy U . The internale nergy is a sort of
potential energy for reversible adiabatic compressions.

b) If the cylinder is maintained at constant temperature, heat can be exchanged with the am-
bient, d̄W = dU − T dS = dF . When the gas is compressed, both the internal energy U
and the entropy S of the gas increase; by reducing the external pressure one can recover the
work at the expenses of the Helmholtz free energy F . The Helmholtz free energy is a sort of
potential energy for reversible isothermal compressions.

Example 2: Particularly interesting is the case of ideal gases, for which dU = 0 if dT = 0. For a
reversible isothermal compression of an ideal gas, d̄W = −T dS = dF ; the compression work
reduces the entropy S and increases F .

8.3.2 Thermodynamical processes and Helmholtz function

We study now the role of the Helmholtz free energy in thermodynamical processes taking place
as a consequence of the removal of one or more constraints in a composite system maintained at
constant temperature and volume.
This time we will start from some general considerations on irreversible processes. We will then
re-consider the second example of § 8.1, adapting it to the case of constant temperature instead of
constant entropy.

Irreversibility and reduction of the Helmholtz function

To be maintained at constant temperature T , a system has to be in contact with a reservoir, that
represents its ambient. Let us demonstrate that the increase of the entropy of the thermodynamical
universe (system plus ambient) is accompanied by a reduction of the Helmholtz free energy in a
closed system with constant T and V ..
Starting point is again the axiom of entropy increase in the isolated systems, so that

T∆Ss + T∆Sa ≥ 0 . (8.37)

By hypothesis ∆Vs = 0, so that ∆Va = 0; besides ∆Us = −∆Ua.
Nothing can be a priori said about the entropy variation ∆Ss due to re-adjustements internal to
the system. One can however state that the variation of the entropy of the ambient is connected
to the exchange of energy with the system, so that

T∆Sa = ∆Ua = −∆Us . (8.38)

By substituting (8.38) in (8.37) one obtains the equation concerning only the system (for constant
T ):

T∆Ss −∆Us = −∆Fs ≥ 0 , ⇒ dFs ≤ 0 . (8.39)

Example

The system is a gas enclosed in a cylinder maintained at constant temperature by contact with
a reservoir; the system is divided by a piston in two sub-systems containing each one the same
number of moles n; initially the piston is fixed and pressures and volumes of the two sub-systems
are p1, V1 and p2, V2, respectively, with con p1 > p2 (Fig. 8.5, center). At a given time, the piston
is left free to move, and the system attains a new state of non-constrained equilibrium where the
two sub-systems share the same pressure p and the same volume V .
As we did for internal energy and enthalpy, let us consider again two extreme cases.
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Figure 8.5: A cylinder filled with gas is divided in two sub-systems by a piston. Initially the piston
is fixed (center). When the piston is left free to move, a process is triggered leading to a new
equilibrium condition of the two sub-systems. The global system has to maintain its temperature
unaltered Two possible processes are illustrated: one completely irreversible (left) thhe other
reversible (right).

a) The process is completely irreversible: the piston is moved by the difference of pressure p1−p2

and oscillates around the equilibrium position until it stops by effect of friction (Fig. 8.5, left).
Globally, the system undergoes a variation of internal energy ∆Us and a variation of entropy
∆Ss, whose sign is a priori unknown. The general considerations which led to equation (8.39)
allow us to state that the process takes place with a reduction of the Helmholtz function:
∆F = ∆Us − T∆Ss < 0.

- If the gas can be considered as ideal, more detailed quantitative results can be obtained.
Actually, for ideal gases whet T is constant the internal energy remains constant too,
∆Us = 0. By considering a reversible isothermal transformation connecting the initial
and final states of both sub-systems, one can easily calculate the entropy variation,
∆Ss = nR ln (V 2/V2V1) > 0. In the case of the ideal gas, since ∆U = −∆Ua = 0, the
entropy of the ambient is unchanged ∆Sa = 0; the reduction of the Helmholtz function
F of the system is only due to the increase of the system entropy Ss.

b) The process takes place reversibly, thanks to the connection of the piston to an external
device which progressively adapts the external pressure to the instantaneous difference of
pressure between the two subsystems (Fig. 8.5, right). The system performs a work W̃ on
the external device. The differential energy balance of the two sub-systems is:

dU1 = TdS1 − p1dV1

dU2 = TdS2 − p2dV2

dUs = dU1 + dU2 = TdSs + (p1 − p2)dV2 = TdSs +d̄W̃ (8.40)

There is again a reduction of the Helmholtz free energy,

dUs − T dSs = dFs =d̄W̃ < 0 , (8.41)

that, for the reversible case, corresponds to the work performed by the system on its ambient.
Otherwise stated, ∆F measures the maximum work obtainable by means of a transformation
from an initial state of constrained equilibrium to a final state of non-constrained equilibrium
in a system at constant T and V .

- For the ideal gas at constant temperature, dUs = 0; also in the reversible case the
reduction of the Helmholtz function F of an ideal gas corresponds only to an increase
of its entropy Ss.

8.3.3 Equilibrium condition

For a closed system with constant temperature T and volume V the thermodynamical equilibrium
is characterised by a minimum of the Helmholtz free energy F . Any deviation, reversible or
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irreversible, from the equilibrium state gives rise to an increase of the Helmholtz function F . In
an equilibrium state

δF = 0, ∆F > 0 . (8.42)

In a closed system with constant T and V , the Helmholtz function F is minimum with respect to
any process, real or virtual, leading the system out of equilibrium.

8.4 Gibbs free energy G

The Gibbs free energy G is the Legendre transform of the internal energy U with respect to both
temperature T and pressure p (§ 7.2), say

G = U − TS + pV = H − TS = G(T, p, {ni}) , (8.43)

where T and p are the temperature and the pressure of the system, respectively, and ni are the
molar quantities of the components.
The Gibbs function can also be considered as the Legendre transform of the enthalpy H with
respet to the temperatureT ; for that reason is called ree enthalpy’ too.
The Gibbs function is particularly useful for systems where temperature T and pressure p are
easily controllable; it is the case of typical experimental conditions.
We have also seen, in § 7.2, that for a system with only one component the molar Gibbs free energy
corresponds to the chemical potential µ:

g = G/n = µ . (8.44)

8.4.1 Simple systems in equilibrium

The differential of (8.43) is

dG = −S dT + V dp+
∑

i
µidni . (8.45)

In (8.45), the heat exchanged and the compression work don’t appear.
For a system with constant T and p constant, (8.45) reduces to dG = Σiµidni. The Gibbs
function is particularly suited to processes taking place in closed systems at constant temperature
and pressure, where the composition is varied: chemical reactions and phase transitions. Such
processes are generally irreversible.

8.4.2 Thermodynamical processes and Gibbs function

We want now to study the role of the Gibbs function in processes taking place in closed systems
with T and p constant after the removal of one or more constraints.
As was done for the Helmholtz function, we start from general considerations.

Irreversibility and reduction of the Gibbs function

Let us consider a closed system un equilibrium with its ambient at T and p. We want to demonstrate
that the increase of entropy of the universe (system plus ambient) entails a reduction of the Gibbs
free energy of the system.
Starting point are the relations

T∆Ss + T∆Sa ≥ 0 , ∆Ua = −∆Us , ∆Va = −∆Vs . (8.46)

A priori, the variation of the entropy of the system is unknown. The variation of the entropy of
the ambient is connected to the exchanges of energy and volume with the system, tat is to say

T∆Sa = ∆Ua + p∆Va = −∆Us − p∆Vs . (8.47)
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By inserting now (8.47) in the first one of equations (8.46), one obtains the equation for the system
(with T and p constant)

T∆Ss −∆Us − p∆Vs = −∆Gs ≥ 0 , ⇒ ∆Gs ≤ 0 . (8.48)

The processes taking place after the removal of some constraint in closed systems with constant T
and p entail a reduction of the Gibbs function G.

For the three functions U,H, F , it was possible to make examples of processes taking place in
composite systems initially characterised by imbalances of temperature or pressure.
Such kind of examples are not possible for the Gibbs function. In a system maintained at constant
T and p, the possible processes are caused by initial imbalances of the chemical potentials and
consist in variations of the mole numbers ni of the components.
Such processes have to do with chemical equilibrium (see below, § (8.5)).

Note: Processes triggered by imbalances of chemical potential could anyway take place also in
systems described by the functions U,H, F .

8.4.3 Equilibrium condition

In a closed system with constant temperature T and pressure p, the thermodynamical equilibrium
is characterised by the minimum of the Gibbs function G. Any deviation, reversible or irreversible,
from the equilibrium state gives rise to an increase of the Gibbs function G. In an equilibrium
state:

δG = 0, ∆G > 0 . (8.49)

In a closed system with constant T and p, the Gibbs function G is minimum with respect to any
process, real or virtual, leading the system out of equilibrium.

8.5 The chemical equilibrium

All the differentials of the thermodynamical functions, (8.3), (8.19), (8.35) and (8.45), contain the
sum

∑
i µi dni, where the ni are the numbers of moles of the components of the system.

The sum can refer to different processes concerning the chemical equilibrium:

• In open systems, the terms dni can measure the exchanges of matter with the surround-
ing ambient. The effects of matter exchanges on the internal energy and on the enthalpy
have already been shortly considered above. The topic will be treated in more detail in § 11.3.

• In closed systems, the terms dni measure the internal variations of composition. The topic
is treated immediately below; it is anyway convenient to made since now a distinction:

– in homogeneous systems the terms dni generally refer to chemical reactions,

– in heterogeneous systems the terms dni can refer to phase transitions and/or to matter
transport.

Note: The different types of thermodynamical transformations listed above can obviously take
place at the same time in the same system.

8.5.1 Closed system in thermal and mechanical equilibrium

Let us consider a closed system in thermal and mechanical equilibrium and study the processes
that can modify the amounts ni of the components.
Such processes (chemical reactions and phase transitions) are generally irreversible. One can
demonstrate that the state of the system can anyway be described by thermodynamical coordinates
even in the absence of chemical equilibrium, provided the system be in the thermal and mechanical
equilibrium. It is thus possible to calculate the variations of the thermodynamical functions by
the differential expressions introduced in the previous sections.
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If the system is isolated (dU = 0 and dV = 0), the process can be described in the entropy
representation and entails an increase of the system entropy:

T dS = −
∑

i
µi dni > 0 . (8.50)

If the system is not isolated, the process can be described by one of the thermodynamic functions
U,H, F or G:

dU =
∑
i µi dni < 0 S, V = constant

dH =
∑
i µi dni < 0 S, p = constant

dF =
∑
i µi dni < 0 T, V = constant

dG =
∑
i µi dni < 0 T, p = constant

(8.51)

Even if it is not explicitly apparent in(8.51),the chemical potentials depend on temperature and
pressure, µi(T, P ). The four inequalities (8.51) thus correspond to different cases and give rise to
different equilibrium conditions.

The most interesting case concerns processes taking place at constant temperature T and pressure
p, for which the thermodynamic potential is the Gibbs function.

8.5.2 Chemical reactions and Gibbs function

For a chemical reaction at constant T and p, the direction of the reaction is determined by the
condition that the Gibbs function has to decrease, ∆G < 0. In equilibrium, the Gibbs function is
stationary, δG = 0.
A chemical reaction can be considered, in principle and sometimes also in practice, as a transition
from a state of constrained equilibrium to a state of non-constrained equilibrium.

Example: A mixture of hydrogen and oxygen can remain in a state of equilibrium (that could be
said to be constrained) until a suitable catalyst is introduced, that triggers the reaction of
water formation (in non-constrained equilibrium).

An effective thermodynamical description of chemical reactions will be introduced in § 11.4. There,
the equilibrium condition will be expressed as a function of the chemical potentials of reactants
and products.
Here only some simple examples will be proposed to illustrate the energetic and entropic meaning
of the reduction of the Gibbs function.

Example 1

Let us consider the chemical reaction

A+B → C +D

taking place at constant temperature and pressure.
Initially only the reactants A and B are present, in a state of constrained equilibrium. At a given
time a thermodynamical operation (e.g the insertion of a catalyst) triggers the reaction, that leads
to a final equilibrium state where only the products C and D are present.
Let the reaction be endothermic, that is to say that the enthalpy of the system increases:

∆Hs = H(C) +H(D) − H(A)−H(B ) > 0 .

(The enthalpy variation ∆H can be measured by calorimetric techniques or can be calculated from
the tables of the standard enthalpies of reactants and products).
The progress of the reaction towards the final equilibrium state is characterised by the decrease of
the Gibbs function G:

∆Gs = ∆Hs − T∆Ss < 0 ,

where ∆Ss = S(C)+S(D)-S(A)-S(B) is the variation of the system entropy between the final and
initial states.
The disequality ∆Gs < 0 requires that T∆Ss > ∆Hs. In order that the reaction take place,
the increase of the system enthalpy has to be compensated and overcome by the increase of the
entropic term T∆Ss.
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Example 2

Let us consider the process of oxidation of glucose at constant temperature and ambient pressure:

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O . (8.52)

The reaction is esothermic, that is to say that heat is emitted at constant pressure with reduction
of enthalpy,

∆Hs = −2798 kJ mol−1 < 0 .

The variation of the entropy of the system from the initial state of constrained equilibrium to the
final state of non-constrained equilibrium is positive and is mainly due to the fragmentation of the
complex glucose molecule into simpler molecules:

∆Ss = 241 J K−1mol−1 .

If the process takes place at the temperature T = 310 K (that is the human body temperature,
37◦C), the reduction of the Gibbs free energy is

∆Gs = ∆Hs − T ∆Ss = −2873 kJ mol−1 < 0 .

Let us consider two extreme cases.

a) The reaction is completely irreversible (fast combustion suitably triggered); the reduction
of the system enthalpy corresponds to transfer of heat to the ambient, that correspondingly
increases its entropy, ∆Hs = −T∆Sa > 0; globally, the increase of the entropy of the unicerse
(system plus ambient) is ∆Ss + ∆Sa > 0.

b) The oxidation takes place reversibly, thanks to suitable catalysts, and the chemical work
W̃ = ∆Gs = −2873 kJ mol−1 is obtained (negative because made by the system). The
cariations ∆Ss and ∆Hs only depend of the initial and final equilibrium states, are are thus
the same as in the irreversible case. For a reversible process, the entropy of the universe
(system plus ambient) remains unchanged; the positive variation of the system, ∆Ss > 0,
has to be compensate by a negative variation of the ambient, ∆Sa = −∆Ss < 0. Instead
of emitting heat, as in the irreversible case, the system now absorbs heat T∆Sa from the
ambient; the work W̃ corresponds to the reduction of the enthalpy Hs plus the heat absorbed
from the ambient.

Note: The choice of the components of a system is somewhat arbitrary. For example, in (8.52)
one can consider as components the four compounds: glucose C6H12O6, ogygen O2, carbon
dioxide CO2 and water H2O, whose amounts ni change during the reaction. Alternatively
one could consider as components three atomic species, hydrogen H, carbon C and oxygen O,
whose amounts nj remain instead unchanged, but undergo re-adjustements of their chemical
aggregations.

Further details on chemical equilibrium will be found in Chapter 11.

8.5.3 Phase equilibria and Gibbs function

Let us consider an heterogeneous system containing two phases α and β of the same component
(for example liquid water and water vapour), at constant temperature T and pressure p.
Let µα(p, T ) and µβ(p, T ) be the chemical potentials of the two phases; their values depend on
temperature and pressure.
Initially the two phases are separated by an impermeable wall. When the wall is removed, an
irreversible process is triggered, by which the amounts of the two phases are modified according to
(8.48)

∆G = µα ∆nα + µβ ∆nβ < 0 . (8.53)



106 P. Fornasini: Lectures on Thermodynamics

Since ∆nα = −∆nβ , equation (8.53) becomes

∆G = (µα − µβ) ∆nα < 0 . (8.54)

According to (8.54) if at the pressure p and temperature T the relation between the chemical
potential is µα(p, T ) > µβ(p, T ) then the α phase transforms into the β phase, that is ∆nα < 0 e
∆nβ > 0, and viceversa.
Matter moves from the phase with higher chemical potential to the phase with lower chemical
potential.
The quilibrium condition (8.49) of the two phases α and β requires that

δG = µα dnα + µβ dnβ

= (µα − µβ) dnα = 0 ; (8.55)

the equilibrium is obtained for the values of pressure p and temperature T such that the two phases
share the same chemical potential, µα(p, T ) = µβ(p, T ).
Recall that the chemical potential corresponds to the molar Gibbs free energy, µ = g.

Phase transitions will be considered in more detail in Part V. In particular, the role of the Gibbs
function will be considered in Chapter 23.

8.5.4 Grand-canonical potential Ω

In conclusion of this § 8.5, let us shortly consider the Legendre transform Ω of the internal energy
U with respect to the temperture and the chemical potentials, already introduced in Chapter 7,
equation (7.20)
For simplicity, let us consider a system with only one component, so that

Ω = U − TS + µn , (8.56)

whose differential is
dΩ = −SdT − pdV + ndµ . (8.57)

Let the system be open, so that it can modify the number n of moles of its component, and be
maintained at constant temperature T , volume V and chemical potential µ. In equilibrium, the
maximum condition for the entropy of the universe (system plus ambient) with respect to the
virtual processes leading to states of constrained equilibrium is

T∆Ss + T∆Sa = T∆Ss + ∆Ua − µ∆na ≤ 0

= T∆Ss −∆Us + µ∆ns ≤ 0 (8.58)

As a consequence, from (8.56) with T, V, µ fixed, one gets

∆Ω = ∆Us − T∆Ss + µ∆ns ≥ 0 . (8.59)

The grand-canonical potential is minimum with respect to virtual processes that lead the system
out of equilibrium. Viceversa, processes that lead a system with constant (T, V, µ) from a state of
constrained equilibrium to a state of non-constrained equilibrium entail a reduction of the grand-
canonical potential Ω.



Chapter 9

Response functions

The response functions measure the dependence of the variations of a given thermodynamical
variable on the variations of another variable. In general, the response functions are experimentally
measurable.
In this chapter the most important response functions will be considered:

- heat capacities at constant volume or pressure (§ 9.1),

- isothermal and adiabatic compressibilities (§ 9.2),

- coefficient of thermal expansion (§ 9.3).

Useful connections will be established between the response functions and the thermodynamical
functions of Chapter 8 as well as between the different response functions (§ 9.4).
The study of the conditions of stability for the thermodynamical equilibrium will show that some
response functions (heat capacities and compressibilities) cannot be begative (§9.6).
The response functions are not state functions, their values depend on the type of thermodynamical
process considered.

9.1 Heat capacities and specific heats

The heat capacity of a system is the ratio between the infinitesimal amount of heat absorbed and
the corresponding infinitesimal variation of temperature:

C =
d̄Q

dT
. (9.1)

The values of the heat capacity of a given system depend on the peculiar conditions of the heat
transfer. Particularly important are the heat capacities for the processes taking place at constant
volume or at constant pressure. For reversible transformations, the heat exchangedd̄Q is connected
to the variations of internal energy U or of enthalpy H according to the simple relations (§ 8.2:

for constant volume V , (d̄Q)v = dU = T (dS)v
for constant pressure p, (d̄Q)p = dH = T (dS)p

Accordingly, the heat capacities at constant volume or pressure are expressed by, respectively

Cv =

(
∂U

∂T

)
v

= T

(
∂S

∂T

)
v

Cp =

(
∂H

∂T

)
p

= T

(
∂S

∂T

)
p

(9.2)

From the differential expressions of the Helmholtz function (7.17) and of the Gibbs function (7.19),
one can easily find that the entropy can be expressed as

S = −
(
∂F

∂T

)
v

= −
(
∂G

∂T

)
p

. (9.3)
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By substituting the first and the second expressions of S of (9.3) in the first one and the second
one of the equations (9.2), respectively, one obtains the heat capacities as second derivatives of the
Helmholtz and Gibbs functions, respectively, with respect to the temperature:

Cv = −T
(
∂2F

∂T 2

)
v

Cp = −T
(
∂2G

∂T 2

)
p

(9.4)

As a consequence of the stability of the thermodynamical equilibrium, one can demonstrate that
the heat capacities cannot be negative (§ 9.6): a system that absorbs heat cannot decrease its
temperature.

9.1.1 Specific heats

The heat capacities depend on the amount of matter contained in the given system. The specific
heats are instead independent of the system size. By convention, the heat capacities are denoted
by the uppercase C, the specific heats by the lower-case c.
Two types of specific heats are commonly in use:

- Specific heats per unit mass, measured in kJ K−1 kg−1:

c̃v =
Cv
m

, c̃p =
Cp
m

. (9.5)

- Molar specific heats, measured in J K−1 mol−1:

cv =
Cv
n
, cp =

Cp
n
. (9.6)

In general one measures and list in tables the specific heats per unit mass. The molar specific heats,
more useful for comparisons with microscopic theories, can be obtained multiplying the specific
heats per unit mass by the molar masses (expressed in atomic mass units).

Note 1: To distinguish the specific heats for unit mass and the molar specific heats, we use here
the symbol c̃ for the first ones, c for the second ones.

Note 2: When the mole us used to measure the matter amount, it is necessary to specify the type
of elementary constituents. For example, the expression “one mole of NaCl” has a different
meaning according to whether one refers to a mole of atoms or to a mole of molecules. In the
first case one refers to NA atoms, in the second case to 2NA atoms (NA ' 6.023× 1023 is the
Avogadro number).

9.1.2 Examples

The heat capacities depend on temperature. The experimental measurement of the dependence
on temperature of the heat capacities is one of the most important methods to get information on
how energy is stored in matter.
Equation (9.2) shows that the heat capacity at constant volume Cv is directly linked to the internal
energy U . However, in general it is easier to measure the heat capacity at constant pressure Cp.
The two heat capacities, at constant volume or pressure, are connected by a general relation that
will be obtained in § 9.4.

Example 1: Monatomic idel gas
For the monatomic ideal gas, the heat capacities at constant volume or pressure are indepen-
dent of the temperature and of the atomic species:

Cv =
3

2
nR , Cp =

5

2
nR , (9.7)

where R = 8.31 J K−1 mol−1 is the gas constant. By inverting the derivatives of (9.2) one
finds that the internal energy U and the enthalpy H linearly increase with temperature:

U(T ) = U0 +
3

2
nR (T − T0) , H(T ) = H0

5

2
nR (T − T0) , (9.8)
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where T0 is an arbitrary reference temperature, U0 and H0 are the internal energy and the
enthalpy, respectively, at the temperature T0.
In the kinetic model of the ideal gas the energy is purely kinetic and the equations (9.8)
become

U(T ) =
3

2
nRT , H(T ) =

5

2
nRT . (9.9)

The temperature dependence of U and H expressed in (9.9) is the same for constant volume
as for constant pressure.
By integrating dS = dU/T (at constant volume) or dS = dH/T (at constant pressure) one
finds that the entropy S increases proportionally to the logarithm of T ; the dependences are
different at constant volume and at constant pressure:

Sv(T ) = S0 +
3

2
nR ln

(
T

T0

)
, Sp(T ) = S0 +

5

2
nR ln

(
T

T0

)
. (9.10)

The expression for Sv (at constant volume) in (9.10) is consistent with the fundamental equa-
tion for the ideal gas in the entropy representation (6.64) derived in Chapter 6.
The value of Cv in (9.7) is consistent with the classical theorem of the equipartition of energy,
according to which at each degree of freedom it corresponds a contribution nRT/2 to the
average energy of the system. In the monatomic gas there are three degrees of freedom per
atom (three-dimensional translational motion) and thus three quadratic contributions to the
average energy: 〈mv2

x/2〉, 〈mv2
y/2〉, 〈mv2

z/2〉.
Example 2: Bi-atomic ideal gas

In most cases, the values of the heat capacities of bi-atomic ideal gases, measured at room
temperature (T ' 300 K), are

Cv =
5

2
nR , Cp =

7

2
nR . (9.11)

The experimental value of the constant-volume heat capacity Cv is consistent with the classical
theorem of equipartition of energy if, in addition to the three translational degrees of freedom,
one considers also the two rotational degrees of freedom around the two independent axes
perpendicular to the inter-atomic link, to which two quadratic contributions to the energy of
each molecule correspond, 〈Iω2

1/2〉, 〈Iω2
2/2〉.

Actually, a bi-atomic molecule could store also vibrational energy in one further degree of
freedom, to which two further quadratic contributions to the energy of each molecule would
correspond, 〈µv2/2〉, 〈µω2x2/2〉, where µ is the reduced mass and k the elastic constant. The
constant-volume heat capacity should then be Cv = (7/2)nR instead of (5/2)nR.
The discrepancy between the experimental and theoretical values is explained by Quantum
Mechanics as follows (see also Chapter 31).
The levels of rotational energy are quantised according to the relation

Erot =
L2

2I
=

h̄`(`+ 1)

2I
, (` = 1, 2, 3..., n, ...) (9.12)

The levels of vibrational energy are quantised according to the relation

Evib = (n+ 1/2) h̄ω , (ν = 0, 1, 2, 3..., n, ...) (9.13)

At a given temperature T , the rotational or vibrational levels are excited if ∆Emin < kBT
(where kB ' 8.6 × 10−5 eV/K). For the CO molecule, for example, ∆Erot,min = 3.5 × 10−4

eV and ∆Evib ' 0.27 eV. At the room temperature T = 300 K, kBT ' 0.025 eV, so that
the rotational levels are excited and contribute to the heat capacity while the vibrational
levels are not excited and don’t contribute to the heat capacity. If the temperature is enough
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reduced, the rotational contribution is eliminated, if the temperature is enough increased, the
vibrational contribution is added.

Example 3: Non-metallic crystalline solids
In crystalline solids, the constant-volume heat capacity Cv significantly depends on tempera-
ture. Let us here first consider non-metallic crystals. The temperature dependence of the heat
capacity (and of the specific heat) is different for different substances, but for all substances
it shares two characteristics (Fig 9.1, left):

- At sufficiently high temperatures, typically around room temperature, the value of the
constant-volume heat capacity is independent of temperature, Cv = 3nR, where n is the
number of moles of single atoms. This behaviour is known as the Dulong and Petit rule and
is consistent with the classical law of equipartition of energy between the vibrational modes
of the crystalline structure.

- Et low temperatures, the heat capacity decreases, and, for T → 0, Cv → 0,with Cv ∝ T 3. This
behaviour is inconsistent with classical statistics, but is explained in terms of quantisation
of the vibrational energy levels.

The behaviour at intermediates temperatures as well as the temperature that is conventionally
assumed as the boundary between the classical to the quantum behaviour (known as Debye
temperature) depend on the type of substance.
The difference between the constant-pressure and the constant-volume specific heats, Cp and
Cv, respectively, is much smaller in the crystal than in the gases.
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Figure 9.1: Right: examples of constant-volume molar specific heats cv/3R (the moles refer to
single atoms) for three different crystalline solids. Right: comparison of different contributions to
the molar specific heats of copper Cu, divided by R; the points are experimental values of cp: the
lines are calculated values: total cp (dashed line), vibrational contribution to cv (continuous line),
electronic contribution (dash-dotted line) [from Q. Bian et al., J. Phys. Chem. Solids 69, 168
(2008)].

Example 4: Metallic crystalline solids
In metallic crystalline solids the thermal energy can be stored not only in the vibrations of
the ions of the crystalline lattice but also by the conduction electrons. As a consequence, the
heat capacity (and the specific heat ) of metals is larger than in non-metals.
As a first approximation, the conduction electrons can be considered as free particles. To
calculate their contribution to the heat capacity it is however necessary to take into account
the quantum symmetry properties of the electronic wave-functions and to resort to a spe-
cific statistical theory, the Fermi-Dirac statistics (see Chapter 16). The resulting electronic
contribution to Cv linearly depends on temperature, and is generally much smaller that the
vibrational contribution.
As an example, let us consider copper (Fig 9.1, right); at the temperature T = 315 K, the
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vibrational contribution to the molar specific heat is c
(vib)
v ' 3R ' 25 J mol−1 K−1, while the

electronic contribution is much smaller, c
(el)
v ' 0.21 J mol−1 K−1. At very low temperatures,

however, the linear temperature dependence of c
(el)
v prevails on the parabolic dependence of

c
(vib)
v . At T < 15 K one finds c

(el)
v > c

(vib)
v .

Example 5: The water specific heat
The molar specific heat of water at constant pressure is shown in Fig. 9.2 for different temper-
ature intervals. Here one mole corresponds to the Avogadro number NA of molecules H2O.
The differences between the solid, liquid and gaseous phases are evidenced, as well as the
dependence on temperature.

Let us first consider the gaseous phase. The H2O molecule has nine degrees of freedom:
three translational, three rotational and three vibrational. To the nine degrees of freedom,
12 quadratic contributions to the energy correspond. According to the classical equipartition
of energy , one would expect cv/R = 6 e cp/R = 7. Such values are observed only at high
temperature (Fig. 9.2, left). At low temperature, only translational and rotational degrees of
freedom contribute, and cp/R = 4. The three vibrational modes correspond to values h̄ω of
0.19 eV (“bending”), 0.45 eV (“symmetric stretching”) e 0.46 eV (“asymmetric stretching”),
respectively, and are progressively excited when the temperature increases. The values higher
than cp/R = 7 at very high temperature can be attributed to anharmonicity effects.

Let us consider now the crystalline phase. In the molecular crystal of water (ice), for each mole
one can single out 3NA low-frequency vibrational modes connected to the weak inter-molecular
forces (3R contribution), 3NA intermediate-frequency librational modes due to molecular os-
cillations and 3NA high-frequency modes due to the strong intra-molecular forces (that are
also responsible for the vibrations of the gas molecules). The dependence on temperature
(Fig. 9.2, center) suggests that below 273,K the librational modes are progressively excited,
while the high-frequency vibrational modes are not yet excited.

At last, let us consider the liquid phase (Fig. 9.2, right). The specific heat is about two
times larger in the liquid phase than in the solid and gaseous phases. This fact suggests
that a larger number of degrees of freedom exist in the liquid than in the other phases. The
dependence on temperature is remarkable too, characterised by a minimum at about 310 K.
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Figure 9.2: Molar specific heat at constant pressure of water. Left: in an extended temperature
interval. Center: in a restricted temperature interval, where the differences between the three
phases are best evidenced. Right: an enlarged view of the specific heat of the liquid phase.

Example 6: Non-crystalline solids

In non-crystalline solids, and in particular in glasses, the specific heat can be much different that the
specific heat of the corresponding crystals in the low temperature region. For example, in Fig. 9.3
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Figure 9.3: Specific heat crystalline
(dashed line) and vitreous (continuous
line) SiO2 [from R.C. Zeller e R.O. Pohl,
Phys. Rev. B 4, 2029 (1971)]. Pay at-
tention to the logarithmic scales.
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the specific heats per unit mass of crystalline and vitreous silica are compared sono confrontati i
calori specifici per unità di massa della silice cristallina e vetrosa. The specific heat of crystalline
silica exhibits the low-temperature standard behavior ∝ T 3. The low-temperature specific heat of
the glass is much higher. The origin of this behaviour is not yet completely understood.

9.2 Compressibilities

The compressibility of a system measures the volume variation with respect to the pressure varia-
tion, normalised to the volume.
One distinguishes the isothermal compressibility χT , measured at constant temperature, and the
adiabatic compressibility χS , measured at constant entropy, defined as, respectively,

χT = − 1

V

(
∂V

∂p

)
T

χS = − 1

V

(
∂V

∂p

)
S

(9.14)

Le compressibilities have the dimension of inverse pressure, and are measured in Pa−1 or in bar−1.

Starting from the differentials of the Gibbs function, (8.45), and of the enthalpy, (8.19), one can
express the volume as

V =

(
∂G

∂p

)
T

=

(
∂H

∂p

)
S

. (9.15)

By substituting the volume V of (9.15) in (9.14) one obtains the compressibilities as second deriva-
tives with respect to the pressure of the Gibbs function and of the enthalpy:

χT = − 1

V

(
∂2G

∂p2

)
T

χS = − 1

V

(
∂2H

∂p2

)
S

(9.16)

One can demonstrate, as a consequence of the stability of the thermodynamical equilibrium (see
§ 9.6), that the compressibilities cannot be negative: when the pressure increases, the volume
cannot increase.

The relation between volume and pressure is sometimes measured by the inverse of the compress-
ibilities, called volume moduli :

BT =
1

χT
, BS =

1

χS
. (9.17)

9.2.1 Examples

The compressibilities depend on the thermodynamical state, and in particular on the temperature.
Let us consider some examples.

Example 1: Ideal gases
, From the equations of the reversible isotherm, pV = constant, and of the reversible adiabatic,
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Figure 9.4: Isothermal and adiabatic compressibilities of NaCl (left) and of liquid water (right).
Pay attention to the different horizontal and vertical scales.

pV γ = costante (where γ = cp/cv is the ratio of the constant-pressure to the constant-volume
specific heat) one easily obtains

χT =
1

p
, χS =

1

γp
. (9.18)

The compressibilities of the ideal gases are independent of the temperature but strongly depend
on the pressure. The behaviour of the compressibilities of the ideal gases can be easily inferred
by considering the plots of the reversible isotherms and adiabatics in the pV plane.
To compare with other systems, it is useful to consider that at the atmospheric pressure (1 bar)
the value of the isothermal compressibility of ideal gases is 1 bar−1.

Example 2: Crystalline solid: NaCl
The isothermal and adiabatic compressibilities of NaCl are shown in Fig. 9.4 (left). Both
compressibilities, measured at atmospheric pressure, weakly increase with the temperature.
Notice that the values remain finite for T → 0. At low temperatures χS ' χT , at high
temperatures χT > χS .
The values at atmospheric pressure, χT ' 4× 10−6 bar−1, are small with respect to the ideal
gas values.

Example 3: Liquids
The compressibilities of liquids are generally included between 10−4 and 10−5 bar−1, larger
than those of solids but much smaller than those of gases. In general, the compressibility of
liquids increases with temperature, as a consequence of the weakening of the repulsive forces
between molecules. An exception is water, whose isothermal and adiabatic compressibilities
Fa eccezione l’acqua, le cui compressibilità isoterma e adiabatica decrease with increasing
temperature in a large low-temperature interval (Fig. 9.4, right).

9.3 Coefficient of therml expansion

The coefficient of thermal expansion β of a system measures the variation of volume V with respect
to the variation of temperature T at constant pressure, normalised to the volume:

β =
1

V

(
∂V

∂T

)
p

(9.19)

According to (9.15), the volume is the partial derivative of the Gibbs function with respect to
pressure, so that the coefficient of thermal expansion can be expressed s the mixed second derivative
of the Gibbs function:

β =
1

V

(
∂2G

∂p∂T

)
(9.20)
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The coefficient f thermal expansion is measured in K−1.

9.3.1 Linear thermal expansion

The coefficient of linear thermal expansion measures the variation of a length ` with respect to
the variation of temperature:

α =
1

`

(
∂`

∂T

)
p

. (9.21)

The coefficient of linear thermal expansion may depend on the direction. Experimentally, in solids
one measures the coefficients of linear expansion α. To recover the volume coefficients (9.19) it is
necessary to know the relation between β and α, that depends on the symmetry properties of the
system.
If the axes of the crystal cells are orthogonal, the volume coefficient β is connected to the three
linear coefficients along the directions x, y, z by the simple relation

β = αx + αy + αz . (9.22)

Actually, since V = `x`y`z, one has

β =
1

V

(
∂`x
∂T

)
p

`y`z +
1

V
`x

(
∂`y
∂T

)
p

`z +
1

V
`x`y

(
∂`z
∂T

)
p

=
1

`x

(
∂`x
∂T

)
p

+
1

`y

(
∂`y
∂T

)
p

+
1

`z

(
∂`z
∂T

)
p

= αx + αy + αz .

In crystals with non orthogonal axes (monoclinic and triclinic systems) the relation between the
linear and volume coefficients is more complicated.
In isotropic systems (gases, liquids, glasses, crystals with cubic symmetry) the linear expansion is
independent of direction, so that β = 3α.

9.3.2 Examples

The coefficient of thermal expansion depends on the thermodynamical state, and in particular on
temperature. Let us consider some examples.

Example 1: Ideal gas
From the thermal equation of state pV = nRT one deduces that at constant pressure the
volume linearly increases with temperature and that

β =
1

T
. (9.23)

When the temperature increases, the coefficient of thermal expansion of the ideal gas rapidly
decreases; the molar volume increases proportional to the temperature: v = RT/p.

Example 2: Crystalline solid: NaCl
In crystalline solids the temperature dependence of the coefficient of thermal expansion is sim-
ilar to that of the specific heat: β → 0 when T → 0, while at high temperatures β approaches
a constant value. The case of NaCl is shown in Fig. 9.5 (left).
While the specific heat can be calculated with very good approximation by treating the atomic
vibrations within the harmonic approximation, the thermal expansion depends on the anhar-
monicity of the vibrational potential energy; a perfectly harmonic crystal would not be affected
by thermal expansion.
The relation between specific heat and coefficient of thermal expansion will be considered in
more detail in § 9.4.

Example 3: Liquid water
The coefficient of thermal expansion of water is negative for temperatures lower than 4 ◦K
(Fig. 9.5, right).

Example 4: Negative thermal expansion in crystals
Not always is the thermal expansion positive. For example, some crystals with anisotropic
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structure exhibit negative expansion in one direction, at least in a given temperature interval,
and positive expansion in the remaining two directions.
A little number of cubic crystal exhibit isotropic negative expansion. In some crystals the
negative expansion is relatively weak and confined in a limited temperature interval: it is the
case of silicon, germanium and some crystals with the zincblende structure; some examples
are shown in Fig 9.6 (right).
In some crystals the negative expansion can be strong and present in large temperature in-
tervals; some examples are shown in Fig. 9.6 (left). Particularly interesting is zirconium
tungstate, whose thermal expansion was found in 1996 to be negative from 2 to 1050 K.

9.3.3 Thermal expansion and entropy

An altenative expression of the thermal expansion coefficient can be found taking into account the
Maxwell relations introduced in § 7.3. From (7.45) one gets

β =
1

V

(
∂V

∂T

)
p

= − 1

V

(
∂S

∂p

)
T

(9.24)

The thermal expansion, say the dependence of volume on temperature at constant pressure is
connected to the dependence of entropy on pressure at constant temperature. The last member of
(9.24) can be further expanded as(

∂S

∂p

)
T

=

(
∂S

∂V

)
T

(
∂V

∂p

)
T
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so that, introducing the isothermal compressibility (9.14), the thermal expansion coefficient be-
comes:

β = χT

(
∂S

∂V

)
T

. (9.25)

Since the compressibility χT cannot be negative (as we will see in § 9.6), according to (9.25)

- the expansion is positive if the entropy S increases when the volume increases,

- the expansion is negative if the entropy S decreases when the volume V increases.

Example 1: Let us consider the ideal gas case.
A positive variation of temperature ∆T > 0 at constant pressure p gives rise to a positive
volume variation ∆V > 0. According to (9.24), the coefficient of thermal expansion is thus
positive. The process entails input of heat Q > 0, variation of internal energy ∆U > 0 and
production of work W < 0. The entropy variation is ∆S = ncp ln(Vf/Vi).
Let us now consider equation (9.25). A positive isothermal variation of volume, ∆V > 0 (T
constant), gives rise to a positive variation of entropy, ∆S > 0. The process entails input of
heat Q > 0 and production of work W < 0 but no variations of internal energy, ∆U = 0. The
entropy variation is ∆S = nR ln(Vf/Vi).

Example 2: The coefficient of thermalexpansion of liquid water is negative in the temperature
interval betwe en0◦ and 4◦ C. The negative expansion can be connected, through equation
(9.25), to the breaking of tetrahedral hydrogen bonds as a consequence of compression and to
the consequent increase of entropy.

9.4 Relations among the response functions

The different response functions are not independent. The theory depicted in previous chapters
allows one to establish some relations among the response functions. Here we consider three
particularly important relations:

- the difference between the heat capacities at constant pressure and volume,

- the ratio between heat capacities at constant pressure and volume,

- the relation among thermal expansion, heat capacities and compressibilities.

9.4.1 Difference of heat capacities

Heat capacities at constant volume and at constant pressure are different. One can demonstrate
(see below) that the difference can be expressed as a function of the coefficient of thermal expansion
and the isothermal compressibility as follows:

Cp − Cv =
TV β2

χT
, cp − cv =

Tvβ2

χT
, (9.26)

where V is the volume, v = V/n is the molar volume.
From (9.26) one can draw the following general conclusions:

• The constant-pressure heat capacity is never smaller than the constant-volume heat capacity,
Cp ≥ Cv (because χT > 0 always).

• When T → 0, the difference Cp − Cv → 0 (because β → 0 and χT > 0).

• If β = 0, then Cp = Cv.

Example 1: For the ideal gas, where β = 1/T, χT = 1/p,

Cp − Cv =
TV β2

χT
=
pV

T
= nR , cp − cv = nR . (9.27)
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(continuous lines) and at constant pressure
(dashed lines) for an ideal gas and for NaCl.

The difference between the two heat capacities is independent of temperature (Fig. 9.7).

Example 2: In crystalline solids the difference Cp − Cv increases with temperature and is gener-
ally negligible at low temperatures ed è generalmente trascurabile a basse temperature. The
specific heats of NaCl are compared with the specific heats of an ideal gas in Fig. 9.7.

Demonstration of (9.26)

Let us consider the amount of heat reversibly exchanged by a pure substance, d̄Qrev = T dS, and
express the entropy as a function of two different state variables,

S(T, p, n) , S(T, V, n) , (9.28)

where n is mainatined constant (dn = 0). It is worth noting that (9.28) are not fundamental
equations, because they don’t contain the complete information on the thermodynamic systems
which would be instead contained in the function S(U, V, n). Equations (9.28) are anyway suitable
for the sought demonstration.
By differentiating (9.28) one gets the two expressions

T dS = T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp = Cp dT + T

(
∂S

∂p

)
T

dp , (9.29)

T dS = T

(
∂S

∂T

)
v

dT + T

(
∂S

∂V

)
T

dV = Cv dT + T

(
∂S

∂V

)
T

dV . (9.30)

Let us now subtract (9.30) from (9.29)

0 = (Cp − Cv) dT + T

(
∂S

∂p

)
T

dp − T

(
∂S

∂V

)
T

dV . (9.31)

The two partial derivatives appearing in (9.31) vannot be easily measured. It is thus convenient
to substitute them by means of the Maxwell relations (7.45) and (7.44) of § 7.3:

(Cp − Cv) dT = T

(
∂V

∂T

)
p

dp + T

(
∂p

∂T

)
v

dV . (9.32)

Equating the differential dT from (9.32) to the differential of the function T (p, V ) one gets:

dT =
T

Cp − Cv

(
∂V

∂T

)
p

dp+
T

Cp − Cv

(
∂p

∂T

)
v

dV =

(
∂T

∂p

)
v

dp+

(
∂T

∂V

)
p

dV . (9.33)

Since p and V are independent variables, the coefficients of dp as well as the coefficients of dV in
the second and in the third members of (9.33) must be equal.
Let us focus the attention on the coefficients of dV ; by equating them and exploiting the identities
(7.49) and (7.51) one gets

Cp − Cv = T

(
∂p

∂T

)
v

(
∂V

∂T

)
p

= −T
(
∂V

∂T

)2

p

(
∂p

∂V

)
T

(9.34)

whence (9.26).
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9.4.2 Ratio between heat capacities

One can demonstrate (see below) that the ratio between the heat capacities is equal to the ratio
between the compressibilities:

Cp
Cv

=
χT
χS

. (9.35)

From (9.35) one can draw the followint general conclusions:

• Since Cp ≥ Cv, also χT ≥ χS .

• When Cp = Cv, then χT = χS .

Example: For the ideal gas, where, χT = 1/p, χS = 1/γp,

Cp
Cv

=
χT
χS

= γ . (9.36)

Demonstration of (9.35)

Let us start again from the expressions T dS of (9.29) and (9.30) and take again advantage of the
Maxwell relations (7.45) and (7.44) of § 7.3:

T dS = Cp dT + T

(
∂S

∂p

)
T

dp = Cp dT − T
(
∂V

∂T

)
p

dp , (9.37)

T dS = Cv dT + T

(
∂S

∂V

)
T

dV = Cv dT + T

(
∂p

∂T

)
v

dV . (9.38)

Let us now consider a process at constant entropy. By imposing dS = 0 in (9.37) and (9.38) one
obtains

Cp (dT )s = T

(
∂V

∂T

)
p

(dp)s , Cv (dT )s = −T
(
∂p

∂T

)
v

(dV )s (9.39)

whence the ratio

Cp
Cv

= −
(
∂V

∂T

)
p

(
∂T

∂p

)
v

(
∂p

∂V

)
S

=

(
∂V

∂p

)
T

(
∂p

∂V

)
S

, (9.40)

and (9.35). In the last equation the identity (7.51) has been used.

9.4.3 Thermal expansion and Grüneisen function

The dependence on temperature of the thermal expansion coefficient of solids is similar to that of
the heat capacities. To focus the attention on the peculiar behaviour of different substances it is
convenient to decompose the thermal expansion coefficient β as the product of a number of factors,
according to the following procedure.
By exploiting the identity (7.51) one can evidence the contribution of the isothermal compressibil-
ity:

β =
1

V

(
∂V

∂T

)
p

= − 1

V

(
∂V

∂p

)
T

(
∂p

∂T

)
V

= χT

(
∂p

∂T

)
V

(9.41)

The derivative of pressure with respect to temperature can be further expanded(
∂p

∂T

)
V

=

(
∂p

∂U

)
V

(
∂U

∂T

)
V

(9.42)

to evidence the contribution of the constant-volume heat capacity too:

β = χT
Cv
V

[
∂p

∂(U/V )

]
V

. (9.43)
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In (9.43) the derivative of pressure with respect to the internal enrgy U has been substituted by
the derivative with respect to the density of internal energy U/V .
The third factor on the right in (9.43)

γ =

[
∂p

∂(U/V )

]
V

(9.44)

is called Grüneisen function. The thermal expansion coefficient can be finally expressed as

β = γ χT
Cv
V

= γ χT
cv
v

(9.45)

where the ratio between the molar specific heat cv and the molar volume v has been introduced in
the last equality.
According to (9.45), the thermal expansion can be decomposed in three logical (not temporal !)
steps:

1. An increase of temperature corresponds to an increase of internal energy, measured by the
constant-volume specific heat cv (never negative).

2. The increase of internal energy gives rise to a variation of pressure, that can be positive or
negative, and is measured by the Grüneisen function (9.44). If γ > 0, an increase of internal
energy gives rise to an increase of the internal pressure with respect to the equilibrium
pressure (say tothe constant external pressure); if γ < 0, an increase of internal energy gives
rise to a decrease of internal pressure.

3. Since the system has to remain in equilibrium with its ambient at constant (external) pres-
sure, the possible upward trend of the internal pressure due to heating (γ > 0) has to be
compensated by a reduction of the pressure obtained through an increase of the volume (χT is
never negative); viceversa, a possible downward trend of the internal pressure due to heating
(γ < 0) has to be compensated by an increase of the pressure obtained through a reduction
of the volume.

The dependence of the Grüneisen function on temperature is peculiar for each substance. Inpar-
ticular, since both χT and Cv are non negative, the possible negative sign of the thermal expansion
coefficient β corresponds to the negative sign of the Grüneisen function.
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Figure 9.8: Thermal expansion of NaCl. From left to right: coefficient of volume thermal expansion
β, constant-volume molar specific heat cv, isothermal compressibility χT and Grüneisen function
γ. The four functions are connected by (9.45); the variations of the molar volume v are very small,
from 0.0264 L/mol at 10 K to 0.027 L/mol at 290 K.

Note: Don’t mistake the symbol γ of the Grüneisen function for the ratio γ = Cp/Cv dbetween the
heat capacities of ideal gases.

Example 1: For the monatomic ideal gas, starting from the state equations pV = nRT and
U = 3nRT/2, one finds that the Grüneisen function is constant, γ = 2/3. One can easily
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Figure 9.9: Evaluation of the variation of the Gibbs function between a reference state 0 and a
generic state 1. Left: lthe variation of the state function G is independent of the transformation
path (provided it is reversible). Right: a possible convenient integration path.

verify (9.45) by inserting the known values of β, χT and Cv.

Example 2: An example of the different functions appearing in (9.45) is given for the NaCl crystal
in Fig. 9.8. The Grüneisen function of NaCl is always positive, its values are of the order of
unity with evident variations in the low temperature region.

9.5 Response functions and Gibbs function

It has been previously stated that the knowledge of one of the thermodynamical potentials U,H, F,G
as a function of its independent coordinates corresponds to the knowledge of all the thermody-
namical properties of a system. Once the response functions have been introduced, one can show
how the expression of a thermodynamical potential can be obtained from experiment.

To this aim, let us focus our attention on a closed system with one component, so that dn = 0.
The independent variables more easily controlled in an experiment are the pressure p and the
temperature T : we will then consider the Gibbs function G(T, p, n). The state of the system
can be represented as a point in the (T, p) plane (Fig. 9.9). To each point of the (T, p) plane it
corresponds a value of the Gibbs function G (to within an arbitrary additive constant, equal for all
points). Since G is a state function, its variation ∆G between any two points of the (T, p) plane
doesn’t depend on the specific transformation connecting the two points.

Our problem is the following: once an arbitrary reference value G0 in a point (T0, p0) has been
chosen, how can the values of G in any other point (T, p) be evaluated ?
The problem can be solved by the experimental measurement of some response functions.
The response functions which depend on the independent variables p and T , that is Cp, β and
χT , are quite easily measurable. The three above response functions are connected to the second
derivatives of the Gibbs function:

Cp = −T
(
∂2G

∂T 2

)
p

, β =
1

V

(
∂2G

∂T ∂p

)
, χT = − 1

V

(
∂2G

∂p2

)
T

. (9.46)

Since we are considering a system with only one component, it is convenient to refer to the molar
quantities cp = Cp/n, g = G/n, v = V/n, and re-write (9.46) as:

cp = −T
(
∂2g

∂T 2

)
p

, β =
1

v

(
∂2g

∂T ∂p

)
, χT = −1

v

(
∂2g

∂p2

)
T

. (9.47)

Once a value has been arbitrarily attributed to the Gibbs function for a given reference state “0”,
g0 = g(T0, p0), the molar Gibbs function can be calculted for any other state “1” by means of an
integral along any reversible path (Fig. 9.9, left):

g(T1, p1) = g (T0, p0) +

∫ 1

0

dg . (9.48)
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It is convenient to choose an easy integration path; for example (Fig. 9.9, right) one can consider
the sequence of

• an isobaric transformation at the pressure p0 from (T0, p0) to (T1, p0);

• an isothermal transformation at the temperature T1 from (T1, p0) to (T1, p1).

By inserting the differential of the molar Gibbs function, dg = −s dT + v dp into (9.48), one gets

g(T1, p1) = g (T0, p0)−
∫ T1

T0

s(T, p0) dT +

∫ p1

p0

v(T1, p) dp . (9.49)

The first integral of (9.49), at constant pressure p0, requires the knowledge of the molar entropy
s, that in turn can be calculated from the knowledge of the constant-pressure molar specific heat:

s(T, p0) = s (T0, p0) +

∫ T

T0

cp(T
′)

T ′
dT ′ . (9.50)

The value s0 = s(T0, p0) in (9.50) can be arbitrarily chosen; in some cases it could be evaluated on
the grounds of the Third Principle (S → 0 for T → 0, see Chapter 20).
The second integral of (9.49), at constant temperature T1 costante, requires the knowledge of the
molar volume v, that in turn can be calculated from the knowledge of the isothermal compress-
ibility:

v(T1, p) = v (T1, p0)−
∫ p

p0

v χT (T1, p
′) dp′ . (9.51)

The value v0 = v(T1, p0) in (9.51) can be measured.

In conclusion, the molar Gibbs function g can be evaluated from the knowledge of the specific heat
cp and of the dependence of volume on pressure, to within the additive constants g0 = g(T0, p0)
and s0 = s(T0, p0).

The molar Gibbs function corresponds to the chemical potential, g = µ. Later on, in § 11.2, we
will see how the chemical potential of the ideal gases can be calculated.

9.6 Stability of thermodynamicl equilibrium

In § 6.2 it was shown that the condition of thermodynamical equilibrium for an isolated system is
that the entropy S be maximum with respect to all the possible virtual processes initiating from
the initial equilibrium state: ∆S < 0.
The thermodynamical description has then been extended to non-isolated systems, by introducing
the energy representation (§ 6.3) and the thermodynamical potentials in the energy representation
(Cap. 8). For each different choice of the independent thermodynamical coordinates the condi-
tion of equilibrium corresponds to a minimum condition of the corresponding thermodynamical
potential.
Now it is time to analyse the stability of the thermodynamical equilibrium; we will see that the
stability condition for isolated systems entails the presence ofsome constraints on the response
functions.

9.6.1 General considerations

In Mechanics, the equilibrium can be stable, metastable, unstable or indifferent. The condition
of stability depends on the shape of the potential energy surface as a function of the generalised
coordinates. A mechanical system can be in a state of unstable equilibrium, if external forces are
completely absent.

In Thermodynamics equilibrium is necessarily stable. A thermodynamical system is made by an
extremely large number of elementary constituents, and it is thus impossible to avoid microscopic
fluctuations with respect to the state of equilibrium.
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For example, in an isolated system, the fluctuations give rise to transfers of extensive quantities
U, V, ni among the different parts of the system, and are described, at the macroscopic level, as
virtual processes. Were an equilibrium state unstable, fluctuations could be possible leading to an
increase of entropy, ∆S > 0; the system could then spontaneously settle into the new state with
larger entropy.
The ability of a thermodynamical system in equilibrium to recover from the unavoidable fluctuation
is a consequence of the Axiom II of § 5.3; it is sometimes referred to as “Le Chatelier’ principle”.

It is anyway important to stress that states of metastable equilibrium can be obtained and main-
tained for relatively long times in particular conditions. Metastable states of an isolated system
are characterised by a relative maximum of the entropy S that don’t correspond to the absolute
maximum; a typical example is the diamond phase of carbon. Non-equilibrium states can also
sometimes be obtained and maintained; an important example are the solids in the vitreous state.
Such metastable and non-equilibrium states are present when the energy barrier to be overcome
in order to reach the stable equilibrium state is higher with respect to the extent of the possible
fluctuations (see Capter 22). The extent of the fluctuations depends in turn on kinetic factors at
the microscopic level.

9.6.2 Stability conditions

Let us consider a closed system with one component. The independent thermodynamical coordi-
nates are U, V, n. The thermodynamic function is the entropy S(U, V, n).
The condition of stability of the thermodynamical equilibrium entails the following constraints
(9.52), (9.53), (9.54) on the response functions, whose demonstration will be given in § 9.6.3.

Thermal stability

The stability of thermodynamical equilibrium requires that the constant-volume specific heat be
positive:

cv > 0 (9.52)

According to equation (9.26) of § 9.4, the constant-pressure specific heat cannot be smaller than
the constant-volume specific heat, so that cp > 0 too.

Let us try to better grasp the physical relation of (9.52) with the stability of equilibrium. In a state
of equilibrium, the temperature is homogeneous in the entire system. Let us consider a virtual
process by which an amount of heat is transferred from sub-system 1 to sub-system 2. According
to (9.52), the sub-system 2 increases its temperature and sub-system 1 reduces its temperature.
The fluctuation creates an unbalance of temperature, that in turn gives rise to a heat flux from
sub-system 2 to sub-system 1 and brings back the system to equilibrium. The energy fluctuations
are thus spontaneously re-absorbed by the system.

Note: In crystals, when T → 0 also the specific heat cv → 0. Actually, the temperature T = 0 is
unattainable (Third Law of Thermodynamics, Chapter 20), so that the inequality cv > 0 is
always valid. Notice that, when cv decreases, the temperature gradients created by a given
energy fluctuation increase.

Mechanical stability

The stability of the thermodynamical equilibrium requires that the isothermal compressibility be
positive:

χT > 0 (9.53)

According to (9.35) of § 9.4, the ratio between adiabatic and isothermal compressibilities is always
positive, so that χS > 0 too.

Let us try to better grasp the physical relation of (9.53) with the stability of equilibrium. Fro
concreteness, let us consider a gas enclosed in a cylinder divided in two equal sub-systems by a
sliding piston. In the state of equilibrium, the pressure is homogeneous in the entire system. Let
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us consider a virtual process by which the piston moves, reducing the volume of sub-system 1 and
correspondingly increasing the volume of sub-system 2. According to (9.53) and to the definition
(9.14) of compressibility, the sub-system 2 decreases its pressure and the sub-system 1 increases
its pressure. The fluctuation creates an unbalance of pressure, that in turn gives rise to a transfer
of volumes from sub-system 2 to sub-system 1 and brings back the system to equilibrium. The
volume fluctuations are thus spontaneously re-absorbed by the system.

Chemical stability

At last, the stability of thermodynamical equilibrium requires that(
∂µ

∂n

)
pT

> 0 (9.54)

Let us try to better grasp the physical relation of (9.54) with the stability of equilibrium. For
concreteness, let us consider a gas enclosed in a rigid cylinder. In the equilibrium state, the
chemical potential µ is homogeneous in the entire system. Let us consider a virtual process by
which matter is transferred from one half of the system (syb-system 1) to the other half (sub-system
2). The sub-system 2 increases its density and, according to (9.54), increases its chemical potential
too; viceversa, sub-system 1 decreases its density and its chemical potential. The fluctuation crates
an unbalance of chemical potential, that in turn gives rise to a flux of matter from sub-system 2
to sub-system 1. The dentity fluctuations are thus spontaneously re-absorbed by the system.

9.6.3 Demonstration of (9.52), (9.53) and (9.54)

Let here short hint at the demonstration of the three inequalities (9.52)-(9.54), without entering
into mathematical details.
Let us again consider a closed and isolated system with one component, described by the extensive
variables U, V, n, that will be generically denoted by the symbol Xi. In order to study the effects
of a fluctuation with respect to the equilibrium state, let us divide the system in two equal sub-
systems, labeled by the index α = 1, 2.
Let us consider a virtual process consisting in the exchange of energy U , volume V and matter n
between the two subsystems.
The differential entropy variation of each sub-system is given by the well-known relation

dS(α) =

(
∂S(α)

∂U (α)

)
V,n

dU (α) +

(
∂S(α)

∂V (α)

)
U,n

dV (α) +

(
∂S(α)

∂n(α)

)
V,U

dn(α)

=
∑
i

(
∂S(α)

∂X
(α)
i

)
dX

(α)
i . (9.55)

Let us now consider the entropy variation of each sub-system for a finite fluctuation. Such a
variation can be expanded in power series with respect to the variations of the extensive variables
∆Xi. Let us consider only the first two terms of the expansion. For each one of the two sub-systems
(α = 1, 2) it is

∆S(α) = S(α) − S(α)
0

=
∑
i

(
∂S(α)

∂X
(α)
i

)
0

∆X
(α)
i +

1

2

∑
ij

(
∂2S(α)

∂X
(α)
i ∂X

(α)
j

)
0

∆X
(α)
i ∆X

(α)
j , (9.56)

where the index 0 labels the equilibrium condition.
The total variation of the entropy of the system, according to the stability condition, has to obey
the equation

∆Stot = ∆S(1) + ∆S(2) < 0 . (9.57)
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The contribution to ∆S of the simple sums in (9.56) is null,

∑
i

(
∂S(1)

∂X
(1)
i

)
0

∆X
(1)
i +

∑
i

(
∂S(2)

∂X
(2)
i

)
0

∆X
(2)
i = 0 , (9.58)

because ∆X
(2)
i = −∆X

(1)
i and the partial derivatives in (9.58), corresponding to the intensive

variables, are equal in equilibrium conditions.
The entropy variation of the entire system due to the finite fluctuation is then determined by the
double sums in (9.56):

∆Stot =
1

2

∑
α=1,2

∑
ij

(
∂2S(α)

∂X
(α)
i ∂X

(α)
j

)
0

∆X
(α)
i ∆X

(α)
j ≤ 0 . (9.59)

Equation (9.59) is a null or negative quadratic form. To obtain the stability conditions some
algebraic steps have to be made. The un-interested reader can skip the demonstration and directly
go the the final expression (9.69).

Let us rewrite (9.59) in an extended form, where the different variables are now distinguished:

∆Stot =
1

2

∑
α=1,2

∆Uα

[
∂

∂Uα

(
∂Sα
∂Uα

)
∆Uα +

∂

∂Vα

(
∂Sα
∂Uα

)
∆Vα +

∂

∂nα

(
∂Sα
∂Uα

)
∆nα

]
+∆Vα

[
∂

∂Uα

(
∂Sα
∂Vα

)
∆Uα +

∂

∂Vα

(
∂Sα
∂Vα

)
∆Vα +

∂

∂nα

(
∂Sα
∂Vα

)
∆nα

]
(9.60)

+∆nα

[
∂

∂Uα

(
∂Sα
∂nα

)
∆Uα +

∂

∂Vα

(
∂Sα
∂nα

)
∆Vα +

∂

∂nα

(
∂Sα
∂nα

)
∆nα

]
By substituting (

∂Sα
∂Uα

)
=

1

Tα
,

(
∂Sα
∂Vα

)
=
pα
Tα

,

(
∂Sα
∂nα

)
= −µα

Tα
, (9.61)

equation(9.60) can be re-written as

∆Stot =
1

2

∑
α=1,2

{
∆Uα∆

(
1

Tα

)
+ ∆Vα∆

(
pα
Tα

)
− ∆nα∆

(
µα
Tα

)}
. (9.62)

By expanding

∆

(
1

Tα

)
= − 1

T 2
α

∆Tα (9.63)

∆

(
pα
Tα

)
=

1

Tα
∆pα −

pα
T 2
α

∆Tα (9.64)

∆

(
µα
Tα

)
=

1

Tα
∆µα −

µα
T 2
α

∆Tα (9.65)

substituting
∆Uα = Tα ∆Sα − pα ∆Vα + µα ∆nα (9.66)

and reducing the similar terms one obtains a simpler form of (9.62):

∆Stot =
1

2T

∑
α=1,2

[−∆Tα ∆Sα + ∆pα ∆Vα −∆µα ∆nα] . (9.67)

Let us now assume Tα, Vα, nα as independent variables and express the variation of each one of
the three dependent variables ∆Sα,∆pα,∆µα as a first-order expansion of the three independent
variables.
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Taking into account the definitions of the response functions and taking advantage of the Maxwell
relations, one gets the new quadratic form

∆Stot =
1

2

∑
α=1,2

∆Tα

[
−Cv
T

∆Tα −
β

χT
∆Vα +

µα
Tα

∆nα

]
+∆Vα

[
+
β

χT
∆Tα −

1

VαχT
∆Vα +

(
∂pα
∂nα

)
∆nα

]
(9.68)

+∆nα

[
−µα
Tα

∆Tα −
(
∂µα
∂Vα

)
∆Vα −

∂µ

∂nα
∆nα

]
The non-diagonal terms can be reduced.
It remains a diagonal form with respect to the three variables T, V, n:

∆Stot = − 1

2T

∑
α=1,2

{
Cv
T

[
∆T (α)

]2
+

1

V χT

[
∆V (α)

]2
+
∂µ

∂n

[
∆n(α)

]2}
< 0 (9.69)

Since the fluctuations ∆T (α),∆V (α),∆n(α) are independent, the inequality (9.69) entails the three
conditions (9.52), (9.53) and (9.54).
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Chapter 10

Thermodynamical proceses

The formalism introduced in the previous chapters allows us to analyse in this chapter some
thermodynamical processes relatively simple but of great practical importance. We will limit our
attention to simple closed systems with only one component.
The first two cases concern the reversible isothermal and adiabatic compressions of any system
(§ 10.1 and § 10.2, respectively), that is the two types of transform which compose the Carnot cycle
t (§ 10.3).
We will then focus our attention on gases and consider the effects of a free expansion (§ 10.4) and
of a Joule-Thomson expansion (§ 10.5).

10.1 Reversible isothermal compression

Let us consider a closed system with one component, maintained at constant temperature and sub-
mit the system to a reversible compression by increasing the external pressure p (which corresponds
to the system pressure for a reversible transformation). We want to analyse the energy balance
and in particular to understand whether the system absorbs or gives heat during the compression.
The energy balance is given by

dU = d̄Q+d̄W = T dS − p dV . (10.1)

Since we are studying the effect of pressure on a system maintained at constant temperature, it
is convenient to choose the pressure p and the temperature T as independent coordinates, so that
entropy S and volume V are functions of p and T .
By differentiating the functions S(T, p) and V (T, p), taking into account that dT = 0 and using th
Maxwell relation (7.45), equation (10.1) can re-written as:

dU = T

(
∂S

∂p

)
T

dp− p
(
∂V

∂p

)
T

dp = −T
(
∂V

∂T

)
p

dp− p
(
∂V

∂p

)
T

dp . (10.2)

Note: Let us stress the physical meaning of the Maxwell relation (7.45):(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

. (10.3)

The sign of the thermal expansion is connected to the ratio between the entropy variation and
the pressure variation at constant temperature. The thermal expansion of a system is positive
if its entropy decreases when the system is compressed and viceversa.

Let us now introduce in (10.2) the response functions χT (isothermal compressibility) and β (co-
efficient of thermal expansion), defined in § 9.2 and 9.3, respectively:

dU = −TV β dp + pV χT dp . (10.4)
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From (10.4) one can easily evidence the effects of an increase of pressure (dp > 0) on the energy
balance of any system.

1. The work done on the system is always positive, because χT > 0:

d̄W = pV χT dp > 0 . (10.5)

2. The sign of the absorbed heat
d̄Q = −TV β dp (10.6)

, depends on the sign of the coefficient of thermal expansion β:

– if β > 0, the system emits heat when compressed; actually, according to (10.3) the
entropy decreases when the pressure increases;

– if β < 0, the system absorbs heat when compressed; actually, according to (10.3) lthe
entropy increases when the pressure increases.

.

3. The variation of internal energy

dU = (−T β + pχT )V dp (10.7)

can be positive or negative:

– if β < 0, dU > 0 always;

– if β > 0, the sign of dU is not a priori determined.

Example 1: Ideal gas

By substituting in (10.4) the values β = 1/T and χT = 1/p given by (9.23) and (9.18), respectively,
one obtains dU = 0. The work done on the system is thus equal the emitted amount of heat, and
viceversa.
According to (10.5), in a reversible isothermal transformation of the ideal gas d̄W = V dp. One
can easily verify, on the grounds of the relation pV = costante, that d̄W = −p dV = V dp.

Esemple 2: liquid water

At atmospheric pressure, the thermal expansion of water is negative (β < 0) in the temperature
interval from 0◦C to 4◦C, is positive (β > 0) above 4◦C. For T=4◦C the expansion is null (β = 0).
Let us consider the behaviour at the three temperatures 0, 4 and 10◦C. In a positive compression,
dp > 0, the second term of (10.4), giving the work done on the system, is positive for all the three
temperatures.

- For T = 0◦C, since β < 0, the compression is accompanied by absorption of heat, so that
dU > 0.

- For T = 4◦C, since β = 0, there is no heat exchange, so that dU =d̄W > 0.

Table 10.1: Coefficients of thermal expansion and isothermal compressibilities of liquid water and
of the NaCl crystal for some selected temperatures. In the last column, the values of −βT + χT p
at atmospheric pressure (p = 1 bar), to be inserted in (10.7), are listed.

T β χT −βT + χT p
(10−6 K−1) (10−6 bar−1)

H2O liquid 0◦C −67. 51.5 +1.8× 10−2

10◦C +89. 48.8 −2.5× 10−2

NaCl 10 K 0.17 3.94 +2.2× 10−6

100 K 75.8 4.05 −7.5× 10−3
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- For T = 10◦C, since β > 0, the compression is accompanied by heat emission; to evaluate
the sign of dU it is necessary to calculate the factor (−T β + pχT ) in (10.7); from the values
of β and χT for water at T = 10◦C (Table 10.1) one can easily see that the internal energy
decreases, dU < 0.

Example 3: NaCl crystal

The coefficient of thermal expansion β of NaCl is always positive; its variations with temperature
are much stronger than the variations of the isothermal compressibility χT (Table 10.1).
Let us consider the effect of a reversible isothermal compression, dp > 0. For low temperatures (e.g.
at 10 K) the mechanical term, always positive, dominates, and the energy U increases when the
pressure increases. At high temperatures (e.g. at100 K) the entropic term dominates and dU < 0
when dp > 0.

10.2 Reversible adiabatic compression

In a reversible adiabatic compression no heat is exchanged between the system and its ambient,
d̄Q = 0. The energy balance is simple, the variation of the internal energy is entirely due to work,
dU =d̄W . It is anyway interesting to see how the temperature varies when the pressure is varied.
Let us start from the function S(T, p): for a reversible adiabatic transformation

d̄Q = T dS = T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp = 0 . (10.8)

From (10.8) one can easily obtain the relation connecting temperature and pressure for the re-
versible adiabatic transformation:(

∂T

∂p

)
S

= −

(
∂S
∂p

)
T(

∂S
∂T

)
p

= − T

Cp

(
∂S

∂p

)
T

= +
T

Cp

(
∂V

∂T

)
p

=
Tvβ

cp
. (10.9)

The second last equality is supported by the Maxwell relation (7.45); in the last equality the molar
volume and the molar specific heat have been introduced.
According to (10.9), the sign of the temperature variation caused by a reversible adiabatic variation
of pressure depends on the sign of the coefficient of thermal expansion β.

- If β > 0, the compression causes heating, the expansion causes cooling.

- If β < 0, the compression causes cooling, the expansion causes heating.

Example 1: Ideal gases

By inserting the coefficient of thermal expansion of the ideal gas β = 1/T in (10.9), one can see
that an adaibatic compression always gives rise to an increase of temperature. The extent of the
temperature variation depends however on the number of atoms per molecule; for example:
for monatomic gases

cp =
5

2
R so that

(
∂T

∂p

)
S

=
2v

5R
; (10.10)

for bi-atomic gases

cp =
7

2
R so that

(
∂T

∂p

)
S

=
2v

7R
. (10.11)

for a given pressure variation dp, the variation of temperature is larger for the monatomic gases
than for the bi-atomic ones.

Let us now consider the variation of internal energy. For a reversible adiabatic transformation of
an ideal gas, pV γ = constant, where γ = cp/cv, so that

dU = d̄W = −p dV =
1

γ
V dp . (10.12)
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Figure 10.1: Carnot cycles for an engine and a refrigerator in the (S, T ) plane (left) and in the
(T, S) plane (right).

Since γ = 1.66 for monatomic gases and γ = 1.4 for bi-atomic gases, equation (10.12) shows that,
for a given pressure variation dp, the variation of internal energy is smaller for the monatomic
gases than for bi-atomic ones.
The same result can be obtained from (10.9):

dU = Cv dT = Cv

(
∂T

∂p

)
S

dp = Cv
TV β

Cp
. (10.13)

Example 2: Liquid water

Fro water, β < 0 below 4◦C and β > 0 above 4◦C. Therefore:

- for T < 4◦C, compression causes cooling, expansion causes heating,

- for T > 4◦C, compression causes heating, expansion causes cooling.

Example 3: NaCl crystal

The coefficient of thermal expansion β is always positive for NaCl, an adiabatic compression thus
always causes an increase of temperature.

10.3 Carnot cycle

A Carnot cycle is made by two reversible adiabatic transformations and two reversible isothermal
transformations (§ 4.3). After any cyclic transformation the internal energy reverts to its initial
value, ∆U = 0; therefore, for an entire cycle Q = −W .
In the (S, T ) plane a Carnot cycle is always represented by a rectangle, independent of the compo-
sition of the system. The area of the rectangle corresponds to the net amount of heat exchanged
by the system with the two reservoirs.

10.3.1 Carnot cycle in the (S, T ) plane

In general, the extensive coordinate S is chosen as abscissa and the intensive coordinate T as
ordinate (Fig 10.1, left). For this hoice:

- the engine cycle is is run clockwise:

Q = T2(S2 − S1) + T1(S1 − S2) = (T2 − T1)(S2 − S1) > 0 ; (10.14)

- the refrigerating cycle is run anti-clockwise

Q = T2(S1 − S2) + T1(S2 − S1) = (T2 − T1)(S1 − S2) < 0 . (10.15)

If the temperature T is chosen as abscissa and the entropy S as ordinate, the rotation directions
are inverted, the engine cycle is run anti-clockwise and the refrigerating cycle clockwise (Fig 10.1,
right).
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10.3.2 Carnot cycle in the (V, p) plane

The shape of the Carnot cycle in the (V, p) plane depends on the substance composing the system.
The area within the cycle always measures the net work exchanged by the system with its ambient.

According to § 10.1 and 10.2:

- for reversible isothermal transformations

d̄W = pV χT dp , d̄Q = −TV β dp , (10.16)

- for reversible adiabatic transformations

dT =
TV β

Cp
dp . (10.17)

The signs of both d̄Q and dT depend on the sign of the coefficient of thermal expansion β. Let us
consider below the examples of two systems with β positive and negative, respectively. For both
systems the engine cycle in the two planes (S, T ) and (V, p) is studied. Let us begin both cyclic
transformations from the point (S1, T2) of the plot in Fig. 10.1, left.

Example 1: Ideal gas, β > 0

Since β > 0, the sign of d̄Q is opposite to the sign of dp.

1–2 Reversible isothermal transformation T : S1, T2)→ (S2, T2)
d̄Q = T dS > 0⇒ dp < 0,d̄W < 0; the engine absorbs heat and does work.

2–3 Reversible adiabatic transformation at high S
d̄Q = 0 , dT < 0⇒ dp < 0,d̄W < 0; the engine does work.

3–4 Reversible isothermal transformation at high T
d̄Q = T dS < 0⇒ dp > 0,d̄W > 0; the engine releases heat and absorbs work.

4-1 Reversible adiabatic transformation at low S
d̄Q = 0 , dT > 0⇒ dp > 0,d̄W > 0; the engine absorbs work.

The engine cycle is run clockwise in bot the (V, p) and (S, T ) planes. In the (V, p) plane the points
of the high-temperature isotherm are above the points of the low-temperature isotherm.

Example 2: Liquid water between 0 and 4 ◦C, β < 0

Since β < 0, the sign of d̄Q is equal to the sign of dp.

1–2 Reversible isothermal transformation at high T
d̄Q = T dS > 0⇒ dp > 0,d̄W > 0; the engine absorbs both heat and work.

2–3 Reversible adiabatic transformation at high S
d̄Q = 0 , dT < 0⇒ dp > 0,d̄W > 0; the engine absorbs work.

3–4 Reversible isothermal transformation at low T
d̄Q = T dS < 0⇒ dp > 0,d̄W < 0; the engine releases heat and performs work.

4-1 Reversible adiabatic transformation at low S
d̄Q = 0 , dT > 0⇒ dp < 0,d̄W < 0; the engine performs work.

The engine cycle is again run clockwise in both the (S, T ) and (V, p) planes. In the (V, p) plane,
however, the points of the high-temperature isotherm are below the points of the low-temperature
isotherm.
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10.4 Joule effect: free adiabatic expansion of a gas

The adiabatic free expansion of a gas, bot real or ideal, is an irreversible process. Defined values
of the thermodynamical coordinates exist for both the initial and final equilibrium state, not for
the intermediate non-equilibrium states of the process.
It is convenient to describe the initial and final equilibrium states by the values of temperature
and volume, (Ti, Vi) and (Tf , Vf ), respectively. Also the internal energy U is defined only for the
initial and final equilibrium states. Since the expansion is free and adiabatic, W = 0 e Q = 0, so
that ∆U = Uf − Ui = Q+W = 0: the internal energy remains unchanged.

Our goal now is to check whether the free adiabatic expansion of a gas is accompanied by a variation
of the temperature, as well as if the possible variation of temperature depends on the extent of the
expansion.

The problem was experimentally studied by Joule in the first half of the XIX Century. Once
established an initial state was (Ti, Vi) he measured the final temperature Tf as a function of the
volume of the final state Vf . The pairs of values(Tf , Vf ) are conveniently plotted in the (T, V ) plane.
The trend of the discrete points (Tf , Vf ) (Fig. 10.2, left) can be approximated by a continuous
line, that represents a reversible path. From the function T (V ) one obtains the Joule coefficient

η =

(
∂T

∂v

)
U

, (10.18)

where v is the molar volume.

The dependence of the Joule coefficient η on the response functions can be found by means of the
following procedure. Let us first consider the reversible variation of internal energy as a function
of the variations of temperature and volume:

dU = T dS − p dV = Cv dT +

[
T

(
∂S

∂V

)
T

− p
]
dV . (10.19)

Taking advantage of the Maxwell relation (7.44) and of the identity (7.51), one can substitute(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

= −
(
∂p

∂V

)
T

(
∂V

∂T

)
p

, (10.20)

whence, introducing the response functions,

dU = Cv dT +

[
T

(
∂p

∂T

)
V

− p
]
dV = Cv dT +

[
T
β

χT
− p
]
dV . (10.21)

Let us now consider again the continuous line joining the experimental points (Tf , Vf ) of the free
expansion (Fig. 10.2, left). By setting dU = 0 in (10.21) and considering molar quantities, one
obtains two equivalent expressions of the Joule coefficient:

η =

(
∂T

∂v

)
U

= − 1

cv

[
T

(
∂p

∂T

)
v

− p
]

(10.22)

= − 1

cv

[
T
β

χT
− p
]
. (10.23)

Example 1: Ideal gas. One can easily verify, on the grounds of (10.22) or (10.23) and of the
thermal equation of state pV = nRT , that the Joule coefficient is null for the ideal gas, η = 0.
The free adiabatic expansion of the ideal gas doesn’t give rise to temperature variations.

Example 2: Real Van der Waals gas. Real gases can be described with good approximation by the
Van der Waals equation of state (§ 24.5); for one mole(

p+
a

v2

)
(v − b) = RT , (10.24)

where a, b are two constants whose value depends on the type of gas:
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Figure 10.2: Left: free adiabatic expansion of real gas, plot of experimental points Tf vs Vf ; the
dashed line best fitting the points has a negative slope. Right: Joule-Thomson expansion of a
real gas, plot of experimental points Tf vs Pf ; the dashed line best fitting the points is downward
concave and can exhibit a maximum, corresponding to the inversion temperature Tinv.

- the parameter b > 0 (the “covolume”) takes into account the fact that that the molecules
have a finite volume (in the ideal gas molecules are instead punctiform), so that the volume
really available to the real gas is smaller than the volume of the container;

- the parameter a > 0 depends on the attractive forces of interaction between molecules, which
reduce the pressure p measured on the walls of the container with respect to the pressure in
the interior.

From (10.24) one can obtain the pressure p and its first derivative

p =
RT

v − b
− a

v2
,

(
∂p

∂T

)
V

=
R

v − b
(10.25)

which, inserted in (10.22), give

η =

(
∂T

∂v

)
U

= − 1

cv

a

v2
< 0 . (10.26)

The free adiabatic expansion of a Van der Waals gas always gives rise to a temperature
reduction: ∆U = 0,∆T < 0.
By integrating (10.26) one obtains the temperature variation as a function of the variation of
the molar volume:

Tf − Ti = − a

cv

(
1

vi
− 1

vf

)
. (10.27)

Example 3: Let us consider the case of one mole of nitrogen N2, initially at the temperature
Ti = 300 K and at atmospheric pressure pi = 105 Pa= 1 bar. From available tables one can get
the values of the Van der Waals parameters : a = 0.14 Pa m6 mol−2, b = 3.4× 10−5 m3 mol−1.
The value of b is negligible with respect to the molar volume of the ideal gas. For Ti = 300 K,
the initial molar volume is vi = 25× 10−3 m3 mol−1.
If the volume is doubled by the free expansion, vf = 2vi, from (10.27) one gets that the
variation of temperature is ∆T = −0.13 K.

Example 4: For a comparison, let us consider again the expansion of the previous example: 1
mol of nitrogen N2 doubles its volume, vf = 2vi, but suppose that the adiabatic expansion
be reversible, with performance of work. In the ideal gas approximation, the reduction of
temperature now amounts to ∆T = −72 K.

By comparing the last two examples, one can see that the free expansion is not an effective method
for reducing the temperature of a gas.

10.5 Joule-Thomson effect

Cooling by free adiabatic expansion of a real gas is too weak for most practical applications.
Significant reductions of temperature can instead be obtained by throttling the gas through a thin
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Figure 10.3: Schematic representation of the Joule-Thomson effect. Left: initial equilibrium state,
all the gas is on the left of the porous plug. Right: final equilibrium state, all the gas is on the
right of the porous plug. The intermediate states are non-equilibrium states; the transformation
is not reversible.

hole or a porous material (Joule-Thomson effect).

Description of the process

A gas, contained in an adiabatic vessel, is force to go through a porous plug (or a thin hole),
maintaining two constant pressure pi and pf in front and past of the porous plug, with pi > pf
(Fig. 10.3).
The initial state (Ti, pi) and the final one (Tf , pf ) are equilibrium states: all the gas is in front
or past the separating porous plug; in the two states the initial and final volumes, Vi and Vf ,
respectively, are different. The process is irreversible: one cannot recover the initial state without
modifying the two values of pressure. As a consequence, the intermediate states cannot be described
in terms of thermodynamic coordinates.
The process is adiabatic, there is no exchange of heat with the environment, Q = 0. An amount of
work has to be done on the gas, and ∆U = W . Since the internal energy is a state function, one
can calculate the variation ∆U by considering any reversible process connecting the initial state
to the final state:

∆U = Uf − Ui = W = −
∫ 0

Vi

pi dV −
∫ Vf

0

pf dV = piVi − pfVf . (10.28)

From (10.28) one obtains

Ui + piVi = Uf + pfVf , that is Hi = Hf . (10.29)

In the Joule-Thomson expansion, the enthalpy f of the final equilibrium state is equal to the
enthalpy Hi of the initial equilibrium state. One cannot attribute a value of entropy to the
non-equilibrium intermediate states (one cannot thus say that “entropy is conserved” during the
process)

The Joule-Thomson coefficient

Our goal now is to check whether the Joule-Thomson expansion is accompanied by a variation of
the temperature, as well as if the possible variation of temperature depends on the extent of the
expansion. The problem was experimentally studied by J. Joule in cooperation with W. Thomson
(lord Kelvin) in the middle of the XIX Century.
The experiment consists in choosing an initial state (pi, Ti) and in measuring the temperature Tf
for different values of the final pressure pf . The result of the experiment can be plotted with the
pressure p as abscissa and the temperature T as ordinate. The plot consists in a set of points,
corresponding to the initial pair (pi, Ti) and to all the measured final pairs (pf , Tf ) (Fig. 10.2,
right). All points are characterised by the same value of the enthalpy H = Ui + piVi. By fitting
a continuous line to the experimental points, one obtains an iso-enthalpic curve T (p) (each one of
the thin lines in Fig. 10.4).
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Figure 10.4: Iso-enthalpic curves for hydrogen (thin lines). The thick line joins the maximum
points of all the iso-enthalpic curves. The intersection of the thick line with the ordinate axis
(p = 0) gives the maximum inversione temperature (T = 202 K) .

From the curve T (p) at constant enthalpy one can calculate the Joule-Thomson coefficient

µj =

(
∂T

∂p

)
H

. (10.30)

In general an iso-enthalpic curveis downward concave. The maximum value of the curve corre-
sponds to its inversion temperature Tinv:

• in the low-pressure region where µj > 0 the expansion gives rise to cooling,

• in the high-pressure region wherei µj < 0 the expansion gives rise to heating.

If the initial condition (Ti, pi) is varied, one can obtain different sets of (T, p) points fitted by
different iso-enthalpic curves. At each iso-enthalpic curve it corresponds an inversion temperature
Tinv. The case of hydrogen is shown in Fig. 10.4.

For any value of enthalpy H, a Joule-Thomson expansion taking place in a region with µj > 0
gives rise to a decrease of temperature and can be used to cool the gas.

The inversion temperature corresponding to the pressure p = 0 is the maximum inversion tem-
perature Tmax,inv. For temperatures higher than the maximum inversion temperature, the Joule-
Thomson coefficient is always negative, µj < 0, and the expansion always gives rise to an increase
of temperature.

The Joule-Thomson effect can thus be used to cool a gas only below its maximum inversion
temperature. The maximum inver sion temperature is different for different gases; for example:

• for nitrogen, Tmax,inv = 621 K; the cooling of nitrogen by Joule-Thomson effect can take place
from ambient temperature down to the condensation temperature (78 K);

• for hydrogen Tmax,inv = 202 K; to cool hydrogen by the Joule-Thomson effect down to the
condensation (20.28 K) it is necessary to cool it previously below 202 K by other techniques,
for example by contact with liquid nitrogen or by means of a reversible adiabatic expansion;

• for helium Tmax,inv ' 40 K; also to cool helium by the Joule-Thomson effect it is necessary
to previously cool it below 202 K by other techniques, typically by means of a reversible
adiabatic expansion.
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Figure 10.5: Joule-Thomson coefficients of different gases measured at atmospheric pressure, in
K bar−1, as a function of temperature.

Joule-Thomson coefficient and response functions

Let us now express the Joule-Thomson coefficient µj as a function of the response functions. To this
aim, let us consider a reversible process at constant enthalpy in the (p, T ) plane. The differential
of molar enthalpy is

dh = T ds+ v dp , (10.31)

where s is the molar entropy and v is the molar volume. By expressing the molar entropy as a
function of (T, p) one obtains

dh = T

(
∂s

∂T

)
p

dT + T

(
∂s

∂p

)
T

dp+ v dp

= cp dT −

[
T

(
∂v

∂T

)
p

− v

]
dp

= cp dT − (Tvβ − v) dp . (10.32)

By imposing dh = 0 one finds

µj =

(
∂T

∂p

)
H

=
v

cp
(βT − 1) . (10.33)

As a consequence:

if β > 1/T , then µj > 0 and the process gives rise to cooling;

if β < 1/T , then µj < 0 and the process gives rise to heating.

Example: For ideal gases β = 1/T , so that µj = 0. For a Joule-Thomson expansion of an ideal gas,
Tf = Ti; from the thermal equation of state one gets that pfVf = piVi. Then, since Hf = Hi,
it is also Uf = Ui and W = 0.

The Joule-Thomson coefficients of different gases at atmospheric pressure are compared in Fig. 10.5.



Chapter 11

Chemical equilibrium

This chapter contains an introduction to chemical equilibrium, that is equilibrium with respect to
transport of matter and to chemical reactions.
In particular, we will advance our understanding of the meaning of the chemical potentials, intro-
duced in (6.5) and (6.6) and up to now little onsidered (for example at the end of § 6.2).
In § 11.1 the analytic expression of the chemical potential is calculated for a particularly simple
system, the ideal gas.
In § 11.2 the mixtures of ideal gases are considered: the total entropy of a mixture is expressed
as a function of the entropies of the components (Gibbs theorem); the irreversible mixing of ideal
gases is then considered and the role of the chemical potentials is evidenced.
In § 11.3 the problem of matter exchange in open systems is shortly considered.
At last, § 11.4 is dedicated to some basic concepts on the equilibrium of chemical reactions, such
as the degree of advancement and the affinity. We will take particular advantage of such concepts
in Part VI, dedicated to the Thermodynamics of irreversible processes.

11.1 Chemical potential of ideal gases

11.1.1 Chemical potential and molar Gibbs function

As is was shown in § 7.2, equation (7.30), the chemical potential µ of a substance corresponds to
its molar Gibbs function g:

µ = g = u+ pv − Ts = h− Ts . (11.1)

Equation (11.1) has a general validity. The explicit dependence of g on the variables T and p
depends on the type of substance. From the differential dG of (8.45) one can obtain the molar dg
for a pure substance in a closed system (where dn = 0):

dµ = dg = −s dT + v dp . (11.2)

From (11.2) we can draw a first general conclusion. The molar volume v is obviously positive;
according to the statistical interpretation which will be given in Part III, the molar entropy s is
non negative. Therefore the chemical potential µ = g increases when the temperature decreases or
when the pressure increases.

In the rest of this § 11.1 some general expressions will be derived, valid for any substance, to focus
then the attention on the simplest case, that is on the ideal gas.

11.1.2 Thermodynamical quantities of ideal gases

The independent coordinates for the Gibbs function are the temperature T and the pressure p. We
will then start from the expression of u, h and s as a function of T and p to calculate g = h− Ts.
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Internal energy

By generalising the procedure of § 10.1, let us express the differential of the internal energy as a
function of temperature and pressure for any substance:

du = T ds− p dv

= T

(
∂s

∂T

)
p

dT + T

(
∂s

∂p

)
T

dp − p

(
∂v

∂T

)
p

dT − p

(
∂v

∂p

)
T

dp

= cp dT − Tvβ dp − pvβ dT + pvχT dp

= [cp − pvβ] dT + [pχT − Tβ]v dp , (11.3)

where β and χT are the coefficient of thermal expansion and the isothermal compressibility, re-
spectively.

For the ideal gas, from the thermal equation of state pv = RT one gets β = 1/T e χT = 1/p (see
Chapter 9.By inserting these values in (11.3) one finds that for the ideal gas

du = cp dT −RdT = cv dT . (11.4)

According to (11.4), the variation of the internal energy of the ideal gas only depends on the
temperature. To calculate the finite variation of the molar internal energy from a reference state
(Tr, pr) and any other state (T, p) the integration with respect to the temperature is sufficient:

u = ur +

∫ T

Tr

cv dT . (11.5)

Example: For a monatomic ideal gas cv = 3R/2, independent of T . Therefore u = ur+(3/2)R(T −
Tr).

Enthalpy

By the same procedure used for (11.3), one finds that the differential of enthalpy for any substance
is

dh = T ds+ v dp

= cp dT − Tvβ dp + v dp

= cp dT + [1− Tβ]v dp . (11.6)

For the ideal gas, for which β = 1/T ,
dh = cp dT . (11.7)

The molar enthlpy h of an ideal gas in a generic state (T, p) can be calculated from the molar
enthalpy hr of the reference state (Tr, pr) by an integration with respect to the sole temperature:

h = hr +

∫ T

Tr

cp dT . (11.8)

Example: For a monatomic ideal gas cp = 5R/2, independent of T . Therefore h = hr+(5/2)R(T −
Tr).

Entropy

Let us first find the general expression of T ds as a function of temperature and pressure. By using
the Mawell relation (7.45), one finds, for any substance, f

T ds = cp dT + T

(
∂s

∂p

)
T

dp = cp dT − T
(
∂v

∂T

)
p

dp = cp dT − Tvβ dp . (11.9)
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For the ideal gas, for which β = 1/T , equation (11.9) becomes

T ds = cp dT − v dp . (11.10)

The molar entropy s of an ideal gas in a generic state can be calculated from the molar entropy
sr of an arbitrary reference state r by integrating (11.10):

s = sr +

∫ T

Tr

cp
dT

T
−
∫ p

pr

v

T
dp = sr +

∫ T

Tr

cp
dT

T
−R ln

p

pr
, (11.11)

where Tr and pr are temperature and pressure of the reference state.
By introducing the new reference constant s0 = sr +R ln pr, equation (11.11) becomes

s = s0 +

∫ T

Tr

cp
dT

T
−R ln p = R [σ(T )− ln p] . (11.12)

where σ(T ) is an increasing function of the sole temperature T .

Example: For a monatomic ideal gas, cp = 5R/2, independent of T . Therefore Rσ(T ) = sr +
R ln pr + (5/2)R ln(T/Tr).

Note: Pay attention to the measurement units in passing from ln(p/pr) to ln p−ln pr. The argument
of a logarithm is a dimensionless quantity. In the expression ln p, p has to be considered not
as the physical quantity “pressure’, but its numerical value with respect to a well defined unit.
Both p and pr have then to be measured in the same unit, e.g the bar.

Gibbs function, chemicl potential

Once the molar enthalpy h ant the molare entropy s have been calculated, the molar Gibbs function
of an ideal gas can be obtained by

g = h− Ts = hr +

∫ T

Tr

cp dT −RT [σ(T )− ln p] = RT [φ(T ) + ln p] , (11.13)

where in the last equality the function φ(T ) depending on the sole temperature has been introduced.

Therefore the chemical potential µ = g of an ideal gas can be written as

µ = µ0(T ) +RT ln p con µ0(T ) = RT φ(T ) . (11.14)

The dependence of the chemical potential on pressure is evident in (11.14): at constant temperture,
the chemical potential increases as the logarithm of the pressure.

Real gases

The behaviour of real gases is different from that of ideal gas, due to the presence of interaction
forces between the molecules, attractive at relatively large distances, repulsive at very short dis-
tances. For the real gases, the expression of the chemical is anyway similar to that of the ideal gas
(11.14): the difference is that the pressure p is substituted by the fugacity f , a quantity which is
anyway closely conneted to the pressure: µ = µ0(T ) +RT ln f .

11.2 Mixtures of ideal gases

To better grasp the meaning and the role of the chemical potential, it iuseful to consider the
relatively simple case of the mixing of ideal gases. Let us study first the general properties of the
mixtures of ideal gases and then the process of irreversible mixing of two or more ideal gases.
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11.2.1 Mixtures of ideal gases, Gibbs theorem

Let us consider a mixture of N ideal gases enclosed in a volume V at the total pressure P , and let
nk be the number of moles of the k-th component.

Molar fraction

The molar fraction of the k-th component is the ratio

xk =
nk∑
k nk

. (11.15)

From the thermal equation of state of ideal gases one obtains the relation between the total pressure
P of the mixture and the partial pressures pk of the components:

P =

∑
nk
V

RT =
∑

k

[nk
V
RT
]

=
∑

k
pk . (11.16)

The partial pressure pk of gas k is the pressure that nk moles of the gas k would exert if they were
alone in the volume V .
According to (11.17), the total pressure P is the sum of the partial pressures pk.
Each partial pressure is thus connected to the total pressure by the relation

pk =
nk
V
RT =

nk∑
nk

P = xkP . (11.17)

Entropy of the mixture

We seek now the relation between the entropy S of the mixture and the entropies Skof the single
component ideal gases. For the sake of simplicity, let us consider a mixture of only two gases, A1

and A2, initially contained in the left half of a vessel of total volume V and maintained at the
temperature T (Fig. 11.1, left).
Our goal is to perform an isothermal reversible transformation to a final state in which the two
gases separately fill up each one one half of the vessel (Fig. 11.1, right).
To this aim, we take advantage of two semi-permeable membranes, that allow the selective passage
of some gases and forbid the passage of other. The practical construction of semi-permeable
membranes is far from trivial, their theoretical use is however always possible.
Let us use a sliding frame including half of the total volume V , closed on its left by a membrane
permeable only to gas A1, on its right by a membrane impermeable to both gases. A membrane
permeable only to the gas A2 is fixed in the middle of the vessel.
In the initial state the mixture is maintained in the left part of the vessel by the impermeable
membrane on the right of the frame (Fig. 11.1, left). Let us now slide the frame to the right
without friction (Fig. 11.1, center); the frame drives to the right the gas A2 and leaves the gas A1

on the left half of the vessel. At the end of the process, the two gases are completely separated
(Fig. 11.1, right).

A1+A2 A1 A2A1 A2

p1+p2

vacuum

p1 p1+p2 p2

Figure 11.1: Reversible isothermal separation of two ideal gases A1 and A2. The vessel is divided
in two equal parts by a membrane permeable only to the gas A2. The mobile frame is made by a
right wall impermeable and by a left wall permeable only to the gas A1.
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Figure 11.2: Spontaneous adiabatic mixing of ideal gases.

The transformation is by hypothesis reversible and isothermal; there are no finite differences of
pressure on the two sides of the frame, since on the two walls (left and right, respectively) the
same pressure p2 is exerted in opposite directions.

The energy balance is the following:

∆U = 0 (for an ideal gas at constant temperature)
W = 0 (the frame is in mechanical equilibrium)
Q = ∆U −W = 0

Since tre transformation is reversible, Q = T ∆S = 0. Therefore there is no variation of entropy:
the entropy of the mixture of two ideal gases is equal to the sum of the entropies of the two single
gases.

The conclusion is generalised to the case of any number of gases by the Gibbs theorem: the entropy
of a mixture of ideal gases is equal to the sum of the entropies of the components,

Gas ideale: Smiscela =
∑

k
Sk (11.18)

By reversing the motion of the frame in Fig. 11.1 one can reversibly mix the two gases, again with
no entropy variation.

Note: If the gases of the mixture are not ideal, ∆U 6= 0 for an isothermal transformation; the
interaction potential energy can be different for the different pairs A1A2, A2A2 and A1A2.
Therefore not necessarily ∆S = 0.

(?) Discuss the case of a reversible adiabatic separation and mixing of two gases (instead of
isothermal).

11.2.2 Spontaneous mixing of ideal gases

We have just seen that the reversible separation and the reversible mixing of two or more ideal
gases takes place Without entropy variations.

We focus our attention now on the irreversible spontaneous mixing of ideal gases. Let us consider
a vessel with rigid insulating walls, divided in N vessels containing N different ideal gases at
the same temperature T and pressure P (Fig. 11.2, left). When the internal walls separating the
internal vessels are removed, the gases are irreversibly mixed (Fig. 11.2, right).

The energy balance is:

W = 0 (the vessel walls are rigid)
Q = 0 (the vessel walls are adiabatic)

∆U = Q+W = 0

Because the gases are ideal and ∆U = 0, then ∆T = 0.

Moreover the initial pressure had the same value P for all the gases. Since nor temperature nor
volume are varied, the final pressure of the mixture is again P .
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Entropy variation

The process of mixing of ideal gases described above takes place at constant internal energy U and
volume V . The evolution criterion of the irreversible process consists in the increase of the entropy
function S(U, V ). We want now to calculate the entropy increase.

The initial entropy is the sum of the entropies of the single gases, each one of which is at the
pressure P ; the molar entropy of a single gas is given by (11.12), so that the initial total entropy is

Si = R
∑

k
nk [σk(T )− lnP ] . (11.19)

According to the Gibbs theorem (11.18), the final entropy of the mixture of ideal gases, each one
of which is at the partial pressure pk, is the sum of the partial entropies, so that

Sf = R
∑

k
nk [σk(T )− ln pk] . (11.20)

The entropy variation is

∆S = Sf − Si = −R
∑

k
nk ln

pk
P

= −R
∑

k
nk lnxk > 0 . (11.21)

The value ∆S of (11.21) is called entropy of mixing.

Example: Let us consider the mixing of two ideal gases, 1 mol of gas A, 1 mol of gas B. By means
of (11.21) one finds

∆S = −2R ln(0.5) = 2R ln 2 . (11.22)

For what concerns entropy, the mixing of the two gases is equivalent to the sum of the separated
free expansions of the two gases.

Note 1: Let us compare the irreversible mixing of two ideal gases of the previous example with
the reversible mixing (the opposite of the separation process of Fig. 11.1). In the second case
(reversible) the two gases share the same density before and after mixing, in the first case
(irreversible) the densities are reduced by mixing.

Note 2: For the irreversible mixing of real gases the conclusions drawn for the ideal cases are not
valid. For real gases pk 6= xkP and Smixture 6=

∑
k Sk. Anyway, also for real gases the mixing

gives rise to an increase of entropy, ∆S > 0.

Extreme case: indistinguishablel gases, Gibbs paradox.

A interesting case is encountered when the difference between the gases are progressively reduced
until they become undistinguishable. For the sake of simplicity let us consider only two identical
gases, A1 = A2. In this case the above treatment of the entropy of the mixture and of the mixing
process have to be revisited.

1. Entropy of the mixture. Two indistinguishable gases cannot be separated by any semi-
permeable membrane. During the of Fig. 11.1, if the two gases are indistinguishable, the
pressure is uniform in the entire region on the left of the impermeable wall of the sliding
frame. If the process takes place with W = 0, it corresponds to an irreversible free expan-
sion, and DeltaS > 0. In order that the process be reversible, it is necessary to exert a force
on the frame, so that W 6= 0 and hence T ∆S 6= 0. The Gibbs theorem (11.18) thus doesn’t
apply.

2. Irreversible mixing. If the gases are indistinguishable, it makes no sense to speak of mixing.
By removing the separating wall there is no entropy increase, Sf = Si. Equation (11.21)
doesn’t apply.

The statistical interpretation of the entropy within the framework of Classical Physics (see Part III),
cannot explain the different behaviour of distinguishable and indistinguishable gases. To this differ-
ence, apparently anomalous, the name was given of Gibbs paradox. As we will se in Chapter 16, the
Gibbs paradox is solved within the framework of Quantum Mechanics, where a different statistical
treatment is reserved to distinguishable and indistinguishable particles.
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Variation of the Gibbs function

The process of spontaneous mixing of ideal gases considered above takes place not only at constant
internal energy U and volume V , but also at constant temperature T and pressure P . The evolution
criterion of the irreversible process corresponds not only to an increase of entropy but also to a
decrease of the Gibbs function G(T, P ).

Let us calculate the reduction of the Gibbs free energy for the mixing of ideal gases. Beginning
from the expression of the molar Gibbs function (11.13) and taking into account that G =

∑
nkgk,

one obtains:

(i) Initial state: Gi = RT
∑
k nk [φk(T ) + lnP ]

(f) Final state: Gf = RT
∑
k nk [φk(T ) + ln pk]

Therefore

∆G = RT
∑

k
nk lnxk < 0 . (11.23)

Note 1: The variation of G in the mixing process depends on the temperature T but not on the
total pressure P .

Note 2: Only for an ideal gas can the two conditions U, V constant and T, P constant take place
together; for a real gas the two conditions are incompatible.
For the irreversible mixing of two or more real gases the two cases have to be separately
considered:
a) at constant U and V , the process takes place with increase of entropy, ∆S > 0;
b) at constant T and P , the process takes place with decrease of the Gibbs function, ∆G < 0.

Variation of enthalpy

As it was shown above, for ideal gases the process of mixing doesn’t give rise to increase of internal
energy U and of volume V . Threfore the enthalpy H is unchanged too:

∆H = ∆U + P ∆V = 0 (ideal gas) . (11.24)

The variation of the Gibbs function G, since T is constant, can be calculated as

∆G = ∆H − T ∆S < 0 (ideal gas) . (11.25)

Since ∆H = 0, equation (11.25) shows that for an ideal gas the reduction of the Gibbs function is
only due to the increase of the entropy.

For real gases, the variation of internal energy is not zero in the mixing processes, owing to the
influence of the forces of interaction between molecules; therefore ∆H 6= 0 too.

Equation (11.25) holds for any system maintained at constant T, P also for non gaseous systems.
While however the variation of entropy is always positive in the mixing processes, ∆S > 0, the
sign of ∆H depends on the relation between the interaction forces in the different pairs A1 − A1,
A1−A2 and A2−A2. If the forces in the homologous pairs A1−A1 and A2−A2 are stronger than
the forces in the heterologous pairs A1 − A2, it can be that ∆H > T ∆S; in such a case ∆G > 0
and the mixing process cannot take place. The above considerations are particularly relevant for
the study of liquid and solid solutions.

11.2.3 Role of the chemical potential

To better grasp the meaning of the chemical potential µ, that for pure substance corresponds to
the molar Gibbs function µ = g, let us consider the two cases of the mixing of ideal gases and of
the transport of matter.
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1) Chemical potential and mixtures of ideal gases

For an ideal gas at pressure p, equation (11.13) shows that the chemicl potential is

µ = g = RT [φ(T ) + ln p] . (11.26)

For a mixture of ideal gases at the total pressure P , where pk = Pxk and xk are the partial pressure
and the molar fraction of gas k, the Gibbs function is

G =
∑

k
nkµk = RT

∑
k
nk [φk(T ) + ln P + lnxk] . (11.27)

The chemical potential of the k-th component of the mixture is

µk = RT [φk(T ) + ln P + lnxk] . (11.28)

The dependence of the chemical potential µk on the concentration xk can be better grasped by
considering the two extreme cases:

- if xk → 0, then µk → −∞,

- if xk → 1, then µk → g (single non mixed gas).

Example: mixing of two ideal gases

Let consider a vessel divided i two equal parts, 1 and 2, by an impermeable wall. Initially, part 1
contains 1 mol of gas A, part 2 contains 1 mol of gas B (Fig. 11.3, left). Ad a given time the wall
is removed and the gases mix. (Fig. 11.3, center). The final state f is a mixture of gases A + B
which takes up the entire vessel (Fig. 11.3, right).
Let us study the variations of the concentrations of the two gases, measured by the molar fraction
xk (11.15), from the initial to the final state.

Initial state Flows Final state

x
(1)
A = 1; x

(2)
A = 0 A : (1)→ (2) x

(f)
A = 0.5

x
(1)
B = 0; x

(2)
B = 1 B : (2)← (1) x

(f)
B = 0.5

Once the concentrations xk are known, making use of (11.28), one can now calculate the chemical
potentials µk of the initial and final states. In the initial state, the chemical potentials are different
for the two gases in the two sub-systems. In the final state, the chemical potentials are equal.

Initial state Variation Final state

µ
(1)
A = RT [φA(T ) + lnP ] decreases

µ
(f)
A = µ

(1)
A − 0.693RT

µ
(2)
A = −∞ increases

µ
(1)
B = −∞ increases

µ
(f)
B = µ

(2)
B − 0.693RT

mu
(2)
B = RT [φB(T ) + lnP ] decreases

Let us now consider the Gibbs function of the entire system. In the initial state

Gin = µ
(1)
A nA + µ

(2)
B nB , (11.29)

because all the gas A is in part 1 and all the gas B is in part 2.
In the final state

Gfin = µ
(f)
A nA + µ

(f)
B nB . (11.30)

Since µ
(1)
A > µ

(f)
A and µ

(2)
B > µ

(f)
B , it is easy to see that Gfin < Gin, that is that G decreases in the

process of mixing at constant T and P .



11. Chemical equilibrium 145

1 2

Gas BGas A

1 2

A
B A + B

Initial state Final state

Figure 11.3: Mixing of two gases A and B. Left: initial equilibrium state, the two gases are
separated in the parts 1 and 2 of the vessel. Center: the process of mixing. Right: final equilibrium
state.

2) Chemical potential and transport of matter

In the process of gas mixing, studied above, an initially heterogeneous system (two separate gases)
becomes homogeneous (mixture of gases). In other systems, a process can connect an initial
heterogeneous state to a final heterogeneous heterogeneous as well; it is the case, for example, of
systems where two or more phases of the same material are present, and an amount of matter is
transferred from one phase to the other.
Let us now analyse the role of the chemical potential in thermodynamical processes characterised
by transport of matter.

Let us consider a system with a number of components, in equilibrium at constant T and P and
divided in two sub-systems (1) and (2). The equilibrium condition (8.54) requires that the chemical
potentials of all the components are equal:

µ
(1)
k = µ

(2)
k . (11.31)

Example: transport of matter between two phases

Let us consider a closed system made by two phases α and β of the same material (for example
liquid water and water vapour).
The two phases are characterised by the chemical potentials µα(T, p) and µβ(T, p), respectively. If
µα < µβ , then a transport of matter takes place from the β phase to the α phase.
If the temperature T and the pressure p are maintained constant, the process of transport of matter
from β to α continues until the β phase completely disappears (Fig. 11.4, left).
If the system is instead isolated, the progressive transformation of the β phase to the α phase mod-
ifies temperature and pressure, so that the chemical potentials µα(T, p) and µβ(T, p) are modified
(Fig. 11.4, right). The process stops when one of the two phases disappears or when new values of
temperature and pressure are attained for which µα(T, p) = µβ(T, p).

Example: Let us consider water H2O and let α be the liquid phase, β the vapour phase. For fixed
temperature T = 400 K and prssure p = 1 bar, the transformation α → β takes place with
the complete vaporisation of the liquid phase. For fixed temperature and volume, instead, the

Constant pressure isolated system

!

""

!

"
"!

Figure 11.4: Transport of matter between the two phases α and β maintained at T, and p constant
(left) or in a rigid and isolated vessel (a right).
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transformation α→ β gives rise to a progressive increase of the pressure p, and to the conse-
quent variations of the two chemical potentials µα(T, p) and µβ(T, p), so that at equilibrium,
where µα = µβ both phases are still present.

11.3 Open systems

In § 11.2 we delt with thermodynamical processes in which the total amounts ni of chemical species
remain constant. In what follows we consider the processes in which ni can be modified:

a) due to the exchange of matter between the system and its ambient (in this § 11.3); in such
cases the system is open;

b) due to a chemical reaction in a closed system (in the next § 11.4); in such cases anyway the
chemical species are modified, not their basic constituents, that is the atomic species.

Let us consider an open system with only one component, which exchanges matter with its ambient.

Open system, entropy varition

The total entropy of the system is S = ns. Its reversible variation

dS = nds+ s dn (11.32)

is due to both the variation of molar entropy ds and to the variation dn of the number of moles.
The variation of molare entropy is in turn connected to the reversible flow of heat by the relation
ds = d̄q/T (where d̄q is the amount of heat absorbed by one mole of matter). Therefore (11.32)
can be re-written as

dS = d̄Q/T + s dn . (11.33)

In conclusion, the variation of entropy is due to two causes:

- the reversible exchange of heat d̄Q with the ambient (as for closed systems),

- the exchange of matter, carrying the molar entropy s, with the ambient.

For open systems d̄Q 6= T dS also for reversible processes.

Open system, energy balance

Let us now consider the variation of internal energy for an open system with one component:

dU = T dS − p dV + µdn . (11.34)

Substituting dS = nds+ s dn and µ = g = h−Ts, where h is the molar enthalpy, (11.34) becomes

dU = Tn ds− p dV + h dn . (11.35)

Since the exchanged heat is d̄Q = Tn ds, from (11.35) one obtains the energy balance:

dU = d̄Q− p dV + h dn . (11.36)

The variation of the internal energy of an open system is thus due to:

- heat exchange d̄Q,

- exchange of compression work −p dV ,

- exchange of matter carrying molar enthalpy, h dn; the enthalpic term can in turn be decom-
posed as h dn = u dn + pv dn; the contribution to the energy variation of the system is due
to both the transport of molar energy u and to the work done for the introduction of new
matter.

It is easily verifid that the variation of enthalpy is

dH = Tn ds+ V dp+ h dn . (11.37)

At constant pressure, dp = 0, (11.37) reduces to (8.25) of § 8.2.
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11.4 Chemical reactions

Let us come back to the closed systems and introduce some basic concepts of the Thermodynamics
of chemical reactions.

11.4.1 Nomenclature

Let us schematise a chemical reaction with the following notation:

− ν1A1 − ν2A2 ⇀↽ ν3A3 + ν4A4 , (11.38)

where

a) Ai are the chemical species which participate to the reaction (they could be nuclear species
or elementary particles for other types of reactions);

b) on the left of the symbol ⇀↽ are the reactants, on the right are the products of the reaction;
to represent a generic case, in (11.38) two reactants and two products have been considered;
in real cases the number of reactants and of products can obviously be different;

c) νi are the stoichiometric coefficients, whose signs are conventionally chosen as follows:

νi < 0 for the reagents,

νi > 0 for the products.

The above convention on the sign of the stoichiometric coefficients allows one to formally
rewrite (11.38) as

0 ⇀↽
∑

i
νiAi . (11.39)

Examples: The following two examples should clarify the use of the sign of stoichiometric coeffi-
cients:

2O ⇀↽ O2 (ν1 = −2; ν3 = 1)
2H2 + O2 ⇀↽ 2H2O (ν1 = −2; ν2 = −1; ν3 = 2)

(11.40)

Scale factor of a chmical reaction

For the sake of simplicity, we consider here only chemical reaction for which the maximum amounts
of reactants and of products are proportional to the respective stoichiometric coefficients.

Example: Let us consider the second of the reactions of (11.40): when the reaction is completely
on its left side, we suppose that exactly 2 mol of H2 and 1 mol of O2 are present, while when
the reaction is completely on its right side we suppose that exactly 2 mol of H2O are present.

We want now to express the molar quantities ni of all the components as a function of only one
scale factorcn0. If the equilibrium of the reaction (11.38) is completely on the left , that is only
reactants are present, then

nmax
1 = −ν1 n0 , nmax

2 = −ν2 n0 , (11.41)

while if the equilibrium of the reaction is completely on the right, that is only products are present,
then

nmax
3 = ν3 n0 , nmax

4 = ν4 n0 . (11.42)

Degree of advancement of a chemical reaction

The degree of advancement of a chemical reaction is measured by a parameter ξ defined as

ξ =
nmax

1 − n1

nmax
1

=
nmax

2 − n2

nmax
2

=
n3

nmax
3

=
n4

nmax
4

. (11.43)

It is evident that 0 ≤ ξ ≤ 1:
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- when the equilibrium is completely on the left (only reactants), ξ = 0,

- when the equilibrium is completely on the right (only products), ξ = 1.

By inserting (11.41) and (11.42) in (11.43), the numbers of moles of reactants and of products can
be expressed as a function of the parameter ξ and of the scale factor n0:

nreag = −n0 νreag (1− ξ) , nprod = n0 νprod ξ (11.44)

(it is worth to remind that by convention νreag < 0 and νprod > 0).
The variations of the numbers of moles of the single components can be expressed as a function of
the variation of the degree of advancement that is of a sole parameter, by the simple relation

dni = n0 νi dξ (11.45)

11.4.2 Evolution criterion

In general, a chemical reaction is an irreversible process. One can imagine an initial condition
of constrained equilibrium, in which the reactant don’t actually react, for example because it is
necessary to cross an energy barrier in order to trigger the reaction. The reaction can be triggered
by a suitable thermodynamical operation (lighting of a spark, insertion of a catalyst, removal of
an anti-catalyst). The reaction terminates in a state of non-constrained equilibrium.

Note: A chemical reaction can be thermodynamically described also in the absence of chemical
equilibrium, provided the thermal and mechanical equilibria are guaranteed (see Zemansky,
§ 16.7). That’s why one can make use of the differential notation typical of equilibrium Ther-
modynamics.

Fundamental axiom

Let us recall the differential expression of the energy variation:

dS =
1

T
dU +

p

T
dV −

∑ µi
T
dni . (11.46)

For a reaction taking place in an isolated system (where ∆U = 0,∆V = 0), according to the
fundamental axiom of § 5.3 the evolution criterion is ∆S > 0. The first two terms on the right of
(11.46) are null. Therefore during the reaction the term∑ µi

T
dni (11.47)

decreases and becomes zero when the final equilibrium is achieved. The values of the chemical
potentials µi depend on the values of temperature and pressure, that change during a process
taking place in an isolated vessel.

If the system is not isolated (if for example it is maintained at constant temperature and/or
pressure) the fundamental axiom of entropy increase has to be referred to the thermodynamical
universe, sum of the system and its ambient:

∆Stot = ∆S + ∆Samb > 0 . (11.48)

Isothermal reactions

From now on, we consider chemical reactions taking place in a closed non-isolated system, main-
tained at constant temperature T . In such a case, the variation of the ambient entropy is
∆Samb = −Q/T , where Q is the amount of heat absorbed by the system. The evolution cri-
terion (11.48) becomes

Q− T ∆S < 0 . (11.49)

Equation (11.49) shows that the emission of heat (Q < 0, exothermic reaction) and the increase of
entropy (∆S > 0) positively contribute to the evolution. Obviously also an endothermic reaction
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(Q > 0) can spontaneously take place, provided the heat absorption be accompanied by a suitable
decrease of the entropy, so that (11.49) is fulfilled.

We can now go further in the analysis of isothermal reactions, by considering two different cases:
constant volume or constant pressure.

Isothermal reactions at constant volume

If, in addition to temperature, the volume is maintained constant, the absorbed amount of heat
is equal to the variation of internal energy, Q = ∆U . By introducing the Helmholtz function
F = U − TS and recalling that, at constant temperature T , ∆F = ∆U − T ∆S, the evolution
criterion (11.49) becomes

∆F = ∆U − T ∆S < 0 . (11.50)

Isothermal reactions at constant pressure

If, in addition to temperature, the pressure is maintained constant, the absorbed amount of heat
is equal to the variation of enthalpy, Q = ∆H. By introducing the Gibbs function G = H − TS
and recalling that, at constant temperature T , ∆G = ∆H − T ∆S, the evolution criterion (11.49)
becomes

∆G = ∆H − T ∆S < 0 . (11.51)

Equation (11.51) corresponds to (11.48) because −T ∆H measures the entropy variation of the
ambient, and ∆S measures the variation of entropy of the system. At low temperatures, T ∆S
is generally small with respect to ∆H, so that ∆G ' ∆H: at low temperatures the exothermic
reactions are favoured.

11.4.3 Equilibrium conditions

From now on, we only deal with chemical reactions taking place ina closed system maintained at
constant temperature T and pressure p. The evolution criterion, given by (11.51), is ∆G < 0. The
equilibrium condition with respect to the degree of advancement ξ of the reaction is dG = 0.
At constant temperature and pressure,

(dG)Tp =
∑

i
µidni = n0

(∑
i
µiνi

)
dξ . (11.52)

Therefore the equilibrium condition dG = 0 corresponds to∑
i
µiνi = 0 . (11.53)

In general, the chemical potentials depend on the temperature T , on the pressure p and on the
concentration of the single chemical species. Here we consider the case of constant T and p; while
the reaction takes place, the degree ξ of the reaction changes so that also the values ni and the
concentrations of the chemical species change; as a consequence also the chemical potentials µi are
modified.
The reaction is at equilibrium when the degree of advancement has the value ξe for which (11.53)
is fulfilled.

Example: Let us consider the reaction
O2 ⇀↽ 2O ,

of the type −ν1A1 ⇀↽ ν2A2 according to te nomenclature of (11.38), with ν1 = −1, ν2 = 2.
The equilibrium condition (11.53) becomes in this case

−µ(O2) + 2µ(O) = 0 .

Therefore, in equilibrium µ(O2) = 2µ(O), that is, the chemical potentials weighted by the
stoichiometric coefficients are equal.
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Heat of reaction

By substituting in (11.53) the expression µi = gi = hi−Tsi of the chemical potentials, one obtains
for the equilibrium conditions ∑

i
νihi = T

∑
i
νisi . (11.54)

The sum on the left side is the heat of reaction ∆H =
∑
i νihi. Since the stoichiometric coefficients

of the reactants are negative and those of the products are positive, one can easily see that the
heat of reaction ∆H is the difference between the sum of the molar enthalpies of the products (p)
and the sum of the molar enthalpies of the reactants (r), each one weighted by the corresponding
stoichiometric coefficient:

∆H =
∑

i
νihi =

∑
p
νphp −

∑
r
|νr|hr . (11.55)

Ideal gases, equilibrium constant

By substituting, in the equilibrium condition (11.53), the chemical potential of ideal gases (11.28)

µi = RT [φi(T ) + ln P + lnxi] (11.56)

and separating the terms depending on temperature from the terms depending on pressure, one
obtains the law of mass action∑

i
[νi ln P + νi lnxi] =

∑
i
νiφi(T ) . (11.57)

The first member of (11.57) can be re-written as∑
i
[νi ln P + νi lnxi] = ln

[
P

∑
νi
∏

xνii

]
(11.58)

so that the law of mass action is generally expressed as

P
∑
νi
∏

xνii = K(T ) , (11.59)

where K(T ) is the equilibrium constant

lnK(T ) = −
∑

i
νiφi(T ) . (11.60)

The law of mass action connects the equilibrium molar fractions of the chemical species to the
temperature.

Example: Let us consider the gaseous reaction

O2 ⇀↽ 2O .

From (11.59) one gets

K(T ) = P
xO2

x2
O

.

Heat of reaction and equilibrium constant

Let us recall that the functions φi(T ) appearing in (11.60) are defined in (11.13)

φi(T ) =
h0i

RT
+

1

RT

∫ T

T0

cpi dT −
s0i

R
− 1

R

∫ T

T0

cpi
dT

T
. (11.61)

By differentiating φi with respect to T one obtains the molar enthalpies at the temperature T :

∂φi
∂T

= − hi
RT 2

. (11.62)
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Figure 11.5: Schematic plot of the Gibbs function G as a function of the degree of advancement ξ
of a chemical reaction. For the equilibrium value ξe, the affinity is null, A = 0.

Let us now differentiate the equilibrium constant K from (11.60) with respect to T

∂ lnK

∂T
= −

∑
i
νi
∂φi
∂T

=
∆H

RT 2
. (11.63)

Equation (11.63), called Van’t Hoff isobar, connects the heat of reaction ∆H to the derivative
of the equilibrium constant. It is used experimentally to evaluate ∆H from the values of molar
fractions xi.

Note: The expression of φi(T ) contains the two constants h0 and s0. The values h0 of each chemical
species are calculated with respect to the standard molar enthalpies of chemical elements,
whose value is assumed as zero. The non-arbitrariness of K(T )is an experimental proof of the
Third Law (S → 0 when T → 0).

11.4.4 Affinity of a chemical reaction

Let us always consider chemical reactions taking place at constant T and p. As it has been already
stated, the thermodynamical description of a chemical reaction is possibie even out of equilibrium,
provided thermal and mechanical equilibria are guaranteed.
In the differential (11.52) of the Gibbs function at constant T and p

(dG)Tp = n0

(∑
i
µiνi

)
dξ , (11.64)

the sum
∑
i µiνi, that is null in conditions of chemical equilibrium, can be used also to measure

the distance of a reaction from equilibrium.
The affinity of a reaction is defined as

A = −
∑

i
µiνi = −

(
∂G

∂ξ

)
Tp

1

n0
(11.65)

thus corresponding, to within the sign, to the derivative of G with respect to ξ (Fig. 11.5). In
equilibrium conditions A = 0. If A > 0, the reaction goes forward (ξ increases). If A < 0, the
reaction goes backwards (ξ decreases).
Equation (11.64) can thus be synthetically written as

(dG)Tp = −n0Adξ . (11.66)

Example 1: Let us again consider the reaction

O2 ⇀↽ 2O .

The affinity is A = µ(O2)− 2µ(O). If A > 0, that is µ(O2) > 2µ(O), the reaction transforms
O2 in 2O. If A < 0, that is µ(O2) < 2µ(O), the reaction transforms 2O in O2.
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The affinity corresponds to the difference of the chemical potentials, weighted by the stoichio-
metric coefficients.

Example 2: Let us consider a reaction among ideal gases. The chemical potential of each gas is
given by (11.53): µi = RT [φi(T ) + ln P + lnxi]. The affinity is

A = −
∑

i
µiνi = RT

[
lnK(T )− ln

(
P

∑
νi
∏

i
xνii

)]
,

where K(T ) is the equilibrium constant.

Affinity and entropy production

The affinity of a chemical reaction measures the tendency of an irreversible process to take place,
as is the case of the gradients of temperature and pressure.
The variation of entropy (11.46)

dS =
1

T
dU +

p

T
dV −

∑ µi
T
dni .

for a chemical reaction at constant T and p can be expressed as

dS =
1

T
d̄Q+ n0

A

T
dξ , (11.67)

where d̄Q = dU + p dV is the exchanged heat and A is the affinity.

Anticipating the language of the Thermodynamics of irreversible processes (Part VI), one can
distinguish, for the total entropy variation dS, the contribution due to the exchange with the
ambient dSe and contributions due to entropy creation within the sytem dSi. In (11.67)

1. deS =d̄Q/T is the variation of the system entropy caused by the exchange of heat with the
ambient; deS > 0 or deS < 0 according to whether the reaction is endothermic or exothermic.

2. diS = n0 (A/T ) dξ is the variation of the system entropy due by the entropy creation caused
by the irreversible chemical reaction; diS > 0 always.

Affinity and Gibbs function

The differential of the Gibbs function is

dG = dH − T dS . (11.68)

Tking into account that at constant pressure dH =d̄Q, and substituting in (11.68) the expression
dS of (11.67), one gest

dG = −n0Adξ . (11.69)

The reduction of the Gibbs function, dG < 0, during the reaction corresponds to the creation of
entropy, diS > 0.

Heat and entropy

The energy balance of a closed system maintained in thermal and mechanical equilibrium is

dU = d̄Q− p dV . (11.70)

The differential of the internal energy (6.8) can be also expressed as a function of the affinity A

dU = T dS − p dV +
∑

i
µi dni = T dS − p dV − n0Adξ . (11.71)

Comparing (11.71) with (11.70) one gets

d̄Q = T dS − n0Adξ . (11.72)

The axchanged heat corresponds to the contribution deS of the total entropy variation dS of the
system.
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11.4.5 Stability of chemical equilibrium

The equilibrium condition of a chemical reaction is
∑
µiνi = 0, that is A = 0.

It has been demonstrated in § 9.6 that the stability of chemical equilibrium for a system with one
component requires that (

∂µ

∂n

)
Tp

≥ 0 . (11.73)

The equilibrium condition (11.73) can be generalised to the case of chemical reactions. For more
than one component, the chemical potential µ of (11.73) has to be substituted by

∑
µiνi, and the

deviation from equilibrium is measured by dξ instead of by dn. The stability condition of chemical
equilibrium is thus

∂

∂ξ

[∑
µiνi

]
≥ 0 , ovvero

(
∂A

∂ξ

)
Tp

≤ 0 . (11.74)

If a chemical reaction is in equilibrium, ξ = ξe, a positive variation of ξ at constant T and p gives
rise to a reduction of A, and viceversa. Otherwise stated, the affinity A varies in such a way as to
drive the system towards equilibrium.
Considering the Gibbs function (Fig. 11.5 ), in equilibrium conditions(

∂2G

∂ξ2

)
Tp

= −n0

(
∂A

∂ξ

)
Tp

≥ 0 . (11.75)

11.4.6 Thermodynamics and Chemical Kinetics

Thermodynamics deals with equilibrium conditions; out of equilibrium, Thermodynamics allows
one to calculate the affinity, that is the force driving a chemical reaction. Thermodynamics doesn’t
deal with the velocity of chemical reactions. The velocity of chemical reactions is studied by
Chemical Kinetics.
The direction of a chemical reaction is reagenti→prodotti if the Gibbs free energy of the products
is lower than the one of the reactants.
The velocity of the reaction depends on the height of the potential barrier to be overcome, called
the acivation energy Ea.
The velocity of a chemical reaction can be increased

a) by increasing the temperature, thus reducing the ratio Ea/kBT ;

b) by using catalysts, that reduce Ea.
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Part III

Statistical Thermodynamics
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Part III contains a tutorial introduction to Statistical Thermodynamics.

Statistics allows the interpretation of the laws and of the quantities of macroscopic Thermody-
namics, introduced in Part I and Part II, in terms of the microscopic structure of matter. The
largest is the number of elementary constituents of a system (atoms, molecules, normal vibrational
modes, photons, ...), the more stable become some of its average properties, that correspond to
macroscopic thermodynamic quantities.
In particular, by statistical methods one can attribute an intuitive meaning to the entropy and to
the Second Law of Thermodynamics.

In Chapter 12, the classical and quantum descriptions of systems containing an exceedingly large
number of elementary constituents are reviewed, and the basic concept of statistical ensembles is
introduced.
Chapter 13 is devoted to the micro-canonical ensemble, suited for the treatment of isolated systems.
The simplest intuitive statistical interpretation of entropy is given within the framework of the
micro-canonical ensemble.
Chapter 14 is devoted to the canonical ensemble, suited for the treatment of systems maintained at
constant temperature and volume. The canonical approach is very powerful and allows a relatively
simple connection between the macroscopic thermodynamic quantities and the structure of the
energy levels of a system containing a large number of elementary constituents. To this micro-
macro connection is devoted Chapter 15.

For the sake of completeness, Part III is concluded by Chapter 16, devoted to the Particle Statistics.



Chapter 12

Introduction to Statistical
Thermodynamics

This chapter begins (§ 12.1) with an introductory discussion of the main differences between the
macroscopic approach of the previous Parts I and II and the statistical approach of this Part III.
The classical and quantum description of the microscopic states of a single particle and of a system
of many particles are rewiewed in § 12.2 ad § 12.3, respectively. The basic methods of statistics
are introduced in § 12.4, and in particular § 12.5 is devoted to the basic concept of statistical
ensembles.

12.1 Macroscopic Thermodynamics and statistical approach

Let us begin our discussion by reviewing some relevant concepts of the macroscopic Thermody-
namics, introduced in Part I and Part II.

- The equilibrium state of a thermodynamic system is described by a limited number of macro-
scopic variables, such as the internal energy U , the volume V , the temperature T , and so
on. For example, to characterise the state of a simple system with one component, only two
coordinates are sufficient, such as pressure and temperature (p, T ) or internal energy and
volume (U, V ).

- The criterion of spontaneous evolution between two equilibrium states of an isolated system,
triggered by the removal of some constraints, is the increase of entropy S.

- A number of laws of general character, suited for whichever system, independent of its con-
stitution, are deduced fro a very small number of simple axioms.

- The thermodynamical properties of a given system (a real gas, a solid, a magnetic system,
and so on) can be obtained by measuring a small number of macroscopic quantities and
determining the correlations among them; the experimental results are summarised in a
small number of empirical equations of state, from which one can obtain the fundamental
equation S = S(U, V,Ni) or other equivalent fundamental equations.

The axioms and the laws of macroscopic Thermodynamics prescind from the very nature of the
considered system. This property explains the broad range of applicability of macroscopic Ther-
modynamics to systems of very different nature.
It is however in some respects unsatisfactory the fact that two fundamental quantities, that is
the entropy S and, to a lesser extent, the temperature T are not amenable to a simple intuitive
interpretation, as is instead the case for the mechanical quantities such as the volume V or the
pressure p.
The development of the atomistic theory allowed one to consider the thermodynamic systems as
composed by an exceedingly large number of microscopic constituents, typically atoms or molecules.
In the second half of the XIX century a big effort was made, mainly by J.K. Maxwell, L. Boltzmann
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and J.W. Gibbs, to find an interpretation of the temperature and of the Second Law funded on the
microscopic structure of the thermodynamical systems. The basic idea is that the thermodynamical
quantities can be connected to some average properties of the microscopic state of the system.

The main difficulty of this approach is that the microscopic state cannot be exactly known. In
Classical Physics one cannot actually measure the instantaneous values of position and velocity
of a very large number (' 1023) of atoms or molecules; and in any case the measures would be
affected by experimental uncertainties. In Quantum Physics one should take into account also the
uncertainty principle, that limits the accuracy of simultaneous measures of position and velocity.

Moreover, a given macroscopic state can correspond to a very large number of possible microscopic
states. For example, let us consider a gas contained in a rigid isolated vessel, with constant internal
energy U and volume V ; the well defined macroscopic thermodynamical state can in principle
correspond, from the point of view of classical Physics, to an infinite number of microscopic states,
that is to an infinite number of possible distributions of positions and velocities of the molecules.
Otherwise stated, one can have only a partial knowledge of the microscopic state of a given system.

The evaluation of some average properties of an ensemble starting from a limited number of pieces
of information is a frequently encountered problem, not only in strictly scientific fields, but also in
sociology, demography, and so on; the problem can be solved by statistical methods, that can be
different for different applications.

A reader expert in Physics is familiar with the statistical methods employed in the laboratories
to evaluate the average value and the uncertainty of a physical quantity on the base of a limited
number of measurements. In that case, one estimates the properties of an infinite population (the
ensemble of all the possible results of measurement of a physical quantity) on the base of a limited
sample (the values actually measured in the laboratory).

In the present case of Thermodynamics, the statistical methods allow the evaluation of some
relevant average properties of the microscopic state of a system, made by an exceedingly large
number of elementary constituents, on the base of a limited number of information elements.
To this aim, the basic instrument is represented by the statistical ensembles, first introduced by
J.W. Gibbs. A statistical ensemble is a collection of a very large number of copies of the considered
macroscopic system; each copy is characterised by a different microscopic state, compatible with
the known macroscopic properties (e.g. the internal energy U and the volume V ). The different
microscopic states corresponding to different copies of the system are considered as equiprobable.
The average microscopic properties of the system are calculated as averages on the copies of the
the system making up the statistical ensemble.

We will deeply analyse the concept of statistical ensemble and its use later on, in §12.4 and §12.5.
Let us here summarise the basic properties of Statistical Thermodynamics.

- The microscopic structure of thermodynamical systems is considered; the systems are made
by an exceedingly large number of elementary constituents and of microscopic quantities
describing their state.

- In order to cope with the exceedingly large number of microscopic variabes it is necessary
to resort to statistical methods. It is just the exceedingly large number of elementary con-
stituents which allows some average properties to be stable in time and to be connected to
the relevant quantities of the macroscopic Thermodynamics.

- One can attribute a microscopic meaning to the quantities entropy S and temperature T
and give a microscopic interpretation to the principle of entropy increase in isolated systems
(Second Law of Thermodynamics).

- In a limited number of simple cases one can deduce the equations of state from the microscopic
structure and the forces of interaction between elementary constituents.

In Statistical Thermodynamics, the energy is assumed as a primitive concept. As in the ax-
iomatic approach of macroscopic Thermodynamics of Part II, also in Statistical Thermodynamics
the conservation of energy is assumed as already established, explained by the symmetry of the
fundamental interaction forces with respect to time translations.
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Starting point of Statistical Thermodynamics is thus the concept of microscopic state and of its
analytic description.
In what follows, the elementary constituents of a thermodynamic system are conventionally called
”particles”, whether they actually be particles (typically atoms or molecules) or collective excita-
tions (e.g. the normal modes of vibration of a solid or of an electromagnetic field).

The description of the microscopic state of a thermodynamic system is actually far from trivial,
and is different for the classical and quantum approaches. In what follows, we will consider first the
description of the state of a single particle (§ 12.2) and then of a thermodynamic system containing
an exceefingly large number of particles (§ 12.3). The fundamental concept of statistical ensemble
will be considered in§ 12.5.

12.2 Microscopic state of a single particle

For concreteness, let us consider a system made by a single helium atom (He), free to move in a
cubic vessel of side L=0.1 m. Let us suppose that the collisions of the atoms with the wall of the
vessel are elastic, so that the kinetic energy of the atom remains constant. At last, let us assume
that the kinetic energy of the atom be ε = 0.04 eV= 6.4 × 10−21 J (corresponding to the average
kinetic energy of helium atoms in a vessel maintained at the temperature of 300 K); such an energy
value is small with respect to the excitation and ionisation energies of electrons in an He atom, so
that for our purposes the atom can be considered as structureless.
This simple example should allow us to stress the main differences between the classical and
quantum approaches.

12.2.1 The classical approach

According to classical Physics, the dynamical state of the atom is characterised by the instantaneous
values of the three spatial coordinates and of the three components of the linear momentum. The
six values x, y, z, px, py, pz identify a point in the abstract six-dimensional phase space.
As time goes on, the atom moves along a trajectory in the three-dimensional real space; the
spatial coordinates and the momentum components are progressively modified; correspondingly,
the representative point in the six-dimensional phase space moves along a trajectory too.
Within the vessel, the trajectory of the atom is rectilinear, with constant px, py, pz values. When
the atom impinges on a wall of the vessel, it is elastically scattered and one of the momentum
components changes its sign.

(?) Plot a possible trajectory in different two-dimensional projections of the phase space: x− y,
... x− px, ... px − py, ...

The evolution of the dynamical state of the atom is perfectly deterministic.
By varying the initial conditions, one can obtain infinite different trajectories in both the real and
phase spaces. All the possible trajectories have anyway to be consistent with the conservation of
kinetic energy

ε =
1

2m
(p2
x + p2

y + p2
z) = constant . (12.1)

Because of (12.1), the three momentum components are not independent: the possible trajectories
in the six-dimensional phase space are constrained to belong to a five-dimensional hyper-surface.

Actually, one should take into account the fact that the collisions of the atom with the vessel walls
are generally not perfectly elastic, so that the conservation of energy (12.1) is not perfectly fulfilled.
Moreover, the possible experimental measurement of the dynamical state at a given time is affected
by uncertainty, that corresponds to an uncertainty of the energy value ε. As a consequence, the
trajectory in the phase space is constrained within a layer of points characterised by energy values
ε±δε instead of within the five-dimensional hyper-surface ε=constant, of zero thickness. This topic
will be considered again later on.
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12.2.2 The quantum approach

In the quantum approach, because of the Heisenberg uncertainty principle, one cannot know at the
same time the exact values of the coordinates and of their conjugate momenta; as a consequence,
the concept of trajectory in both the real and phase spaces is meaningless.
A stationary state of an atom with energy ε within in a cubic vessel of side L is expressed, in the
Dirac formalism, as

|ψn(t)〉 = |φn〉 e−iεt/h̄ , (12.2)

where the exponential exp(−iεt/h̄) gives the trivial dependence on time and |φn〉 is a solution of
the time-independent Schrödinger equation

H |φn〉 = ε |φn〉 . (12.3)

H is the Hamiltonian operator, corresponding to the total energy (in the present case the energy
is purely kinetic). The states |φn〉 are energy eigenstates. Different states |φn〉 can be solutions of
(12.3) for a given value of energy ε: the eigenvalue ε of energy is thus degenerate.

The meaning of (12.2) and (12.3) can be more easily grasped if the equations are projected in
the coordinate reprentation. In the coordinate representation, the states |ψn(t)〉 correspond to
three-dimensional stationary waves

ψnxnynz
(x, y, z, t) = ψnx

(x, t)ψny
(y, t)ψnz

(z, t) ; (12.4)

The finite size of the vessel imposes discrete values to the components of the wave-vectors: ~k = ~p/h̄:
kx = nxπ/L, ky = nyπ/L, kz = nzπ/L.
The relation between the energy ε and the components of the wave-vectors is

ε =
h̄2

2m
(k2
x + k2

y + k2
z) =

π2h̄2

2L2m
(n2
x + n2

y + n2
z) , (12.5)

where the ni are positive integer numbers. To a given energy value ε different terns of values
(nx, ny, nz), say different eigenstates, can correspond: as already observed, the energy eigenvalue
ε is degenerate.
Each energy eigenstate is thus characterised by three integer numbers, that is by a point in a three-
dimensional abstract lattice spanned by the values (nx, ny, nz). The three-dimensional abstract
lattice spanned by the discrete values (nx, ny, nz) can be considered as the quantum analogue of
the classical phase space.

The energy eigenstates |φn〉 are not the only possible quantum states of the system, that is of the
helium atom. Any linear combination of the eigenstates |ψn〉 = |φn〉 exp(−iεt/h̄), that is

|Ψ(t)〉 =
∑
n

cn(t)|φn〉 , (12.6)

is again a solution of the Schrödinger equation and thus represents a possible a possible quantum
state of the atom. The meaning of the coefficients cn(t) of (12.6), that contain the trivial depen-
dence on time, is the following. A suitable measurement performed on the system in the state
|Ψ(t)〉 will give as a result a well defined eigenstate |φn〉, with probability |cn|2. The coefficients
have to satisfy the normalisation condition of the probability theory

∑
|cn(t)|2 = 1.

Note: By means of superpositions (12.6) of states of different linear momenta one can obtain wave-
packets. In a wave-packet the linear momentum is not univocally defined; the uncertainty of
the linear momentum allows the reduction of the uncertainty of the position and a partial
spatial localisation.

A state such as |Ψ(t)〉 of (12.6) is said to be a “pure state”, whose knowledge corresponds to the
full knowledge of the dynamical quantum state of the atom. Once a system has been prepared in
a state |Ψ〉 at the time t = 0, its time evolution is determined by the time-dependent Schrödinger
equation.
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Let us stress the difference between classical state and quantum state. In the classical case, the
state of a particle is characterised by a point in the phase space. In the quantum case, not only
is the simultaneous knowledge of position and momentum impossible; the quantum state can also
be a linear superposition (12.6) of many eigenstates of the linear momentum, so that the state of
the particle is characterised by all the discrete points of the (nx, ny, nz) space which correspond to
the eigenstates |φn〉 of (12.6), each one weighted by the corresponding probability |cn|2.

The expectation value of an observable quantity A in the pure state |Ψ(t)〉 is 〈A〉 = 〈Ψ|A|Ψ〉. By
exploiting the projection (12.6), the expectation value 〈A〉 can be referred to the base states |φn〉:

〈A〉 =
∑
nm

c∗ncm〈φn|A|φm〉 =
∑
nm

c∗ncmAnm ; (12.7)

the values Anm are called the matrix element of the variable A in the base |φn〉.
Note: To simplify the notation, A will here identify both the observable quantity and the corre-

sponding quantum operator.

Also in the quantum approach, as in the classical approach, a perfectly defined energy ε is not
realistic. In addition to the reasons already considered for the classical case, in the quantum case
one should take into account that, because of the principle of uncertainty energy-time, obtaining
an exact value of energy would require an infinite observation time.
Also in the quantum case, thus, one has to consider an interval of energy values ε ± δε, to which
it generally corresponds a very large number of terns (nx, ny, nz).

The density matrix

It is now convenient to introduce an alternative description of the pure states |Ψ(t)〉, as a pre-
liminary step to the statistical study of many-particle systems. The new description more clearly
enlightens the probability distribution of the pure state in the (nx, ny, nz) space.
Let us first stress that the coefficients cn(t) are the projections of the pure state |Ψ(t)〉 on the
eigenstates |φn〉

cn(t) = 〈φn|Ψ(t)〉 . (12.8)

As a consequence, the products

c∗ncm = 〈φn|Ψ〉〈Ψ|φm〉 = wmn (12.9)

can be considered as the matrix elements in the base {|φm〉} of an operator w = |Ψ〉〈Ψ|, called the
density operator.
The normalisation condition of the cn coefficients for a pure state can be expressed in terms of the
trace of the density matrix, that is of the sum of its diagonal elements:∑

n
|cn|2 =

∑
n
wnn = Tr(w) = 1 . (12.10)

The expectation value (12.7) of an observable A can be expressed in the alternative form in terms
of the density matrix:

〈A〉 =
∑
nm

c∗ncmAnm =
∑
nm

〈φm|Ψ〉〈Ψ|φn〉〈φn|A|φm〉

=
∑
nm

〈φm|w|φn〉〈φn|A|φm〉

=
∑
m

〈φm|wA|φm〉 = Tr(wA) ; (12.11)

it is the trace of the product wA of the two matrices. In the second last equality, the closure
relation

∑
n |φn〉〈φn| = 1 has been exploited.



162 P. Fornasini: Lectures on Thermodynamics

12.3 Microscopic state of a many-particle system

Let us now consider a system composed by a number N of particles; for the systems of ther-
modynamical interest, N is an exceedingly large nuber, typically of the order of the Avogadro
number.
To take advantage of the previous treatment of a single particle, let us again consider a cubic
vessel of side L=0.1 m and suppose that the vessel contains helium gas in standard conditions
of temperature and pressure, so that N ' 1022. Let us neglect, for the moment, any interaction
between atoms, and consider the collisions of atoms with the vessel walls as perfectly elastic. At
last, let us suppose, again for the moment, that all the atoms have the same energy ε.

12.3.1 Ideal model

Classical description

In the classical approach, the instantaneous microscopic state of the system is characterised by the
values of the 3N coordinates and of the 3N components of the linear momenta of the N atoms:
qi, pi(i = 1, ...3N). At a given time, the state of the system is characterised by N points in the real
three-dimensional space and by a single point in the 6N -dimensional abstract phase space. The
total energy of the system is the sum of the energies of the single atoms, E = Nε. As time goes on,
each atom moves along its own trajectory in the three-dimensional real space; the entire system
moves along a single trajectory in the 6N -dimensional phase space. Because the total energy E
is constant by hypothesis, the representative point in the phase space is constrained to move on a
(6N -1)-dimensional hyper-surface.

Quantum description

In the quantum approach, each eigenstate of a single atom i is characterised by three integer
numbers, nix, niy, niz. A system of N atoms has f = 3N degrees of freedom (three for each atom).
The total energy E of the system is Nε.
The eigenstates |Φs〉 o the energy E of the entire system are obtained by solving the time-
independent Schrödinger equation

H0 |Φs〉 = E |Φs〉 , (12.12)

where H0 is the unperturbed Hamiltonian, which does’n take into account the possible interactions
between the gas atoms.
All the possible eigenstate of the system are represented by a lattice of 3N integer values (nix,niy, niz),
where i = 1...N , in an abtract 3N -dimensional space. Each single eigenstate |Φs〉 of the system is
thus represented by a single point of the discrete lattice.

The pure quantum state of the system, in its more general form, is represented by a linear combi-
nation of the system eigenstates

|Ψ(t)〉 =
∑
k

cs(t)|Φs〉 , (12.13)

where, if no interactions are present between the atoms, the ck(t) coefficients only contain the
trivial dependence on time.
The linear superposition (12.13) is conveniently described by means of the density operator w =
|Ψ〉〈Ψ| which, projected on the energy eigenstates, gives rise to the density matrix wmn = 〈Φn|Ψ〉〈Ψ|Φm〉.
A pure state (12.13), linear combination of energy eigenstates, is represented by a cluster of points
of the lattice of 3N integer values (nix,niy, niz), each point being weighted by a diagonal element
wkk of the density matrix.

Note: In the classical case, the state of the system is represented by a single point in the phase
space; the points moves along a trajectory even is no interactions between atoms are present.
In the quantum case, a pure stationary state is represented by a cluster of points in the lattice
of quantum numbers (nix,niy, niz) which remains unaltered if no interactions between the
atoms are present.
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12.3.2 Realistic description

The above descriptions, both classical and quantum, of a many-atomic system are not realistic, for
at least two reasons, that are analysed below.

1.

The ideal gas model in which the atoms share the same purely kinetic energy is clearly unrealistic.
First of all, it is practically impossible to prepare a system in which all the atoms have exactly
the same energy ε. Secondly, all the atoms interact; even for noble gases the interaction, although
very weak (Van der Waals forces), is not negligible. As a consequence, the total energy E of the
system, even if it is maintained constant by external constraints, is differently distributed among
the different atoms and between the potential and kinetic components.

In the classical description, this means that on the (6N -1)-dimensional hyper-surface in the phase
space, corresponding to the total energy E, a much larger number of states is possible, and also
a much larger number of trajectories, with respect to the case in which all atoms share the same
constant energy ε.

In the quantum description, the groups of 3N discrete values in the 3N -dimensional (nix,niy, niz)
space are constrained by the condition

∑
i εi = E, that is less restrictive than E = Nε.

The presence of interactions between the atoms and with the vessel walls requires that, in the
Schrödinger equation, an interaction term Hint has to be added to the unperturbed Hamiltonian
H0. For weak interactions, one can resort to perturbative methods (further details can be found
in standard texts on quantum mechanics). The instantaneous state of the system can again be
described by a linear combination (12.13) of stationary energy eigenstates; the effects of the inter-
actions are transitions of the systems among the different stationary states. As time goes on, the
cluster of points representing the system in the (nix,niy, niz) lattice moves.

2.
In practice, no system can be considered as completely isolated. The interaction of the system with
its environment, even if weak, affect the microscopic state of the system and continuously modify
its total energy E. In general, the fluctuations with respect to the average value E are small, but
not completely negligible. In addition, one has to consider the contribution of the measurement
uncertainty and, in the quantum case, of the time-energy uncertainty. In conclusion, the total
energy of the system should be considered as included in a layer of width δE around the nominal
value E.
This situation is easily understood in the classical case, where the energy values can be continuously
changed; it requires more attention in the quantum case, where the energy values are quantised.
For a system with a very large number of elementary constituents, the possible levels of total
energy E are very densely spaced (consider for example the energy difference between two levels
characterised by 3N−1 equal quantum numbers niα and the residual quantum number differing by
the unity), so that also very weak interactions with the environment can modify the total energy
of the system.

Note: It is interesting to compare the quantum description of a simple system, such as the atomic
structure, and of a macroscopic system. To maintain an atom in the stationary state of its
electronic structure is relatively easy, because the interactions of the atom with its environment
are generally weak with respect to the energy difference between the ground state and the
first excited levels of the atom. For a macroscopic system the situation is completely different,
because the distance between the total energy levels is very small.

12.3.3 Other examples

Up to now we have referred to the particularly significant case of a gas contained in a vessel. Let
us now shortly consider two other simple examples, that will be analysed in more detail later on
and for which only the quantum approach is relevant.

Example 1: A system consists in N independent harmonic oscillators (it is the case of the simplified
Einstein model for the atomic vibrations in crystalline solids). The degrees of freedom are
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f = N . The energy of the i-th oscillator is εi = (1/2 + ni) h̄ω. The energy levels are not
degenerate. The microstate of the system is characterised by the N values ni, that is by the
amounts of energy stored in each oscillator.

Example 2: A system consists in N independent spins, with fixed spatial positions. Each spin can
assume two values, up and down. The degrees of freedom are f = N . The microstate of the
system is characterised by the orientations of all the N spins.

The examples up to now considered refer to systems of “weakly interacting” particles, for which
the microscopic state of the entire system can be easily expressed in terms of the microscopic
states of the single constituents. In any case, the residual weak interactions (due for example to
the collisions between the gas molecules) contribute to the evolution of the microscopic state of
the system.
The condition of weak interaction, that can be treated by perturbative methods in the quantum
cases, facilitates the understanding of the foundations of the statistical description, but is not
strictly necessary. Also the systems whose elements are strongly interacting can be treted by
statistical methods, as will be explained later on.

12.4 The methods of StatisticalThermodynamics

Aim of Statistical Thermodynamics is to connect the macroscopic thermodynamical quantities to
average properties of the microscopic states of a system.
Let us consider a system maintained in a state of macroscopic equilibrium: as time goes on,
its microscopic state is continuously modified. A first approach to the problem of the micro-
macro relation consists in trying to connect the macroscopic quantities to suitable averages of
time-dependent microscopic properties, that is to connect the macroscopic quantities to the time
averages of microscopic properties.
However, because of the very large number of particles and of the complexity of the interactions
involved, a description of the microscopic time evolution of a thermodynamical system is far from
trivial, if not totally out of question, both for a classical approach, by following the trajectory of
the system in the phase space, and for a quantum approach, by following te evolution of a pure
state like (12.13). Moreover, an a priori evaluation of the duration of the time interval sufficient
to obtain significant averages is far from trivial too.

The alternative and most effective solution of the problem, first suggested by G.W. Gibbs, consists
in substituting the time averages with canonical averages. The canonical averages are obtained by
comparing the instantaneous microscopic states of an exceedingly large number of copies of the
same macroscopic system. A suitably built up set of the copies of the system is called a statistical
ensemble.

General properties of statistical ensembles

The statistical ensembles are made by a very large number of copies of a given system, that share
the same macroscopic properties (e.g. the internal energy or the temperature) but differ in the
properties of the microscopic state (e.g. the distribution of ebergy among the different atoms).
The statistical ensembles are built up differently for different situations, as will be shown later on
in § 12.5. We consider here only their general properties, that are different for the classical and the
quantum case, respectively.
It is worth noting that the statistical ensembles can describe not only the properties of systems in
thermodynamical equilibrium, but also the evolution of systems out of equilibrium.

Classical case: lthe density in the phase space

For concreteness, let us again consider the example of a gas maintained in a vessel with constant
volume and total energy. In the classical case, the microscopic state of an N -particle system is
represented by a point in the 6N -dimensional phase space, whose position evolves in time according
to the laws of Newton Mechanics.
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A statistical ensemble is made by a large number N of copies of the given system; the statistical
ensemble is thus represented by N independent points in the phase space, each one of which moves
in time according to the Newton Mechanics. Clearly the number N , though in principle arbitrary,
has to be very large and the statistical ensemble has to guarantee a fair representation of the
different possible microscopic states; this point will be considered in more detail later on.

Since the number N of copies of the system is arbitrarily large, the number of points (that is of
systems) per unit volume of the phase space is conveniently represented by a phase density ρ(q, p, t),
where by (q, p) all the coordinates and momenta of the particles are synthetically indicated and t
is time.

As time goes on, the single systems composing the statistical ensemble move along different trajec-
tories of the 6N -dimensionale phase space; the phase density ρ(q, p, t) is correspondingly modified
in time. The properties of the density ρ(q, p, t) are established by the Liouville theorem, derived
from Newton Mechanics principia. The main conclusion of the Liouville theorem is that dρ/dt = 0,
say that the total derivative of the phase density ρ with respect to time is always null: the phase
density remains constant along the trajectories of the systam in the phase space; as a consequence,
also the volume dv occupied by a number dN of points at a given time is not modified as the
points move along their trajectories (the single trajectories can anyway progressively diverge and
the volume dv can progressively loose compactness, still maintaining unaltered its total value).

Let us now consider the particular case of a system in a state of macroscopic equilibrium, that is of
thermodynamical equilibrium. In such a case, the macroscopic properties of the system are time
invariant; therefore, the properties of the statistical ensemble are time invariant too. Therefore,
the phase density has to be stationary, its value has to be time invariant in every point of the
phase space, so that its partial derivative with respect to time is null:

∂ρ(q, p)

∂t
= 0 (for macroscopic equilibrium) . (12.14)

Two solutions of (12.14) are particularly important from the physical standpoint:

1. ρ(q, p)= constant in the portion of phase space which fulfils the given macroscopic conditions;
this solution corresponds to the microcanonical statistical ensemble, suitable to describe
systems at constant total energy (§ 12.5 and Chapter 13);

2. ρ(q, p) = ρ(α): that is ρ can be expressed as a function of a quantity α which is a constant
of motion, typically energy; this solution corresponds to the canonical statistical ensemble,
suitable o describe systems maintained at constant temperature (§ 12.5 and Chapter 14).

As already observed, an exact determination of position and velocity of the single particles is
actually impossible event in the classical case; the instantaneous state of the entire system cannot
thus be realistically represented by a a single point in the phase space. To take into account
the uncertainties of positions and velocities, it is convenient to divide the phase space in volume
elements δv, whose extent (equal for all elements) corresponds to the uncertainty of the microscopic
state of the system. To the microstates belonging to a given volume element δv of the phase space
one attributes a value of probability δP =

∫
δv
ρ(q, p, t) dv, corresponding to the integral of the

phase density ρ within the volume δv.
The transition from the continuous description in terms of phase density ρ to the discrete descrip-
tion in terms of volume elements δv and corresponding probability values δP plays an important
role in the classical statistical definition of the entropy as well as in the connection between the
classical and quantum approaches, as we will see later on.

Quantum case: the statistical density matrix

In the quantum case, a single system is described by a pure stationary state (12.13), linear su-
perposition of many energy eigenstates, that can be conveniently described by the density oper-
ator w = |Ψ〉〈Ψ| and by its projection on the energy eigenstates, that is by the density matrix
wmn = 〈Φn|Ψ〉〈Ψ|Φm〉.
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For an ideal gas of N atoms, a single energy eigenstate |Φs〉 is represented by a point in the
discrete lattice of the possible values (nix, niy, niz) in an abstract 3N -dimensional space. A pure
state (12.13) is represented by a cluster of points, each one weighted by the corresponding diagonal
element of the density matrix ws = wss. Because of the weak interactions among the atoms and
with the vessel walls, the cluster of points evolves as time goes on.

A statistical ensemble is made by a large number N of copies of the given system. The representa-
tion of the statistical ensemble in the (nix, niy, niz) lattice is made by N independent clusters, each
one of which corresponds to a pure state (12.13). Because of the interactions among the atoms
and with the vessel walls, the set of clusters evolves as time goes on.
The statistical ensemble is thus a mixture of pure states |Ψk〉, each one of which is characterised
by a density operator wk = |Ψk〉〈Ψk| which gives its distribution of the energy eigenstates.
Each pure state of the statistical ensemble is characterised by a probability Pk (corresponding to
the probability of the volume elements δv of the phase space in the classical case).
The statistical ensemble is conveniently described, in the quantum case, by the statistical density
operator w̃, defined as the sum of the densities wk of the single pure states, weighted by the
corresponding probabilities Pk:

w̃ =
∑
k

pk wk =
∑
k

Pk |Ψk〉〈Ψk| . (12.15)

The statistical density takes into account two different probabilistic effects, the first one intrinsic
to the quantum description, the second one due to the statistical mixture; the two contributions
are indistinguishable in practice, even if they correspond to two intrinsically different effects: a
pure state is a linear combination of eigenstates, and as such subject to interference effects, the
statistical ensemble is a simple weighted sum of pure states.
The expectation value of an observable quantity A can be expressed as a function of the matrix
elements of the statistical density operator, that is as a function of the elements of the statistical
density matrix:

〈A〉 =
∑
k

pk
∑
mn

(ck)m(ck)∗nAnm =
∑
k

pk
∑
mn

〈φm|wk|φn〉〈φn|A|φm〉

=
∑
m

〈φm|w̃A|φm〉 = Tr(w̃A) . (12.16)

The expectation value of an observable A is thus the trace (sum of the diagonal elements) of the
product of the two matrices representing w̃ and A in the base |φn〉.
One can easily verify that Tr(w̃) = 1.

12.5 Statistical ensembles

Statistical Thermodynamics makes use of statistical ensembles, that is of sets of copies of a given
system sharing the same macroscopic properties but differing in the microscopic properties.
The statistical ensembles can be built up in different modes depending on the conditions imposed
to the given thermodynamical system.

12.5.1 Statistical ensembles for systems in equilibrium

Let us consider here the three statistical ensembles most frequently used to study the properties
of systems in thermodynamical equilibrium.

Microcanonical statistical ensemble

The microcanonical statistical ensemble is made by copies of isolated systems, that is of systems
with constant energy E ± δE; the uncertainty δE takes into account the unavoidable interactions
of the system with its environment.
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The microcanonical ensemble is based on a fundamental postulate, that is on the hypothesis of
equal a priori probability of all the microstates, that is of the equi-probability of the singe systems
that compose the ensemble. The validity of such a fundamental postulate is basically guaranteed
by the practical verification of its consequences.

- In the classical case, the microcanonical ensemble is represented by a set of points in the
phase space, grouped in a layer corresponding to the energy values between E and E + δE.
The equal a priori probability implies that the phase density ρ(q, p) is uniform in the allowed
energy layer.

- In the quantum case, the microcanonical ensemble is represented by a set of points in the
lattice spanned by the values of quantum numbers corresponding to the possible energy
eigenstates. To each one of these points it corresponds the same probability Pk

The microcanonical ensemble, that will be considered in detail in Chapter 13, is the statistical
equivalent of the entropy representation in the macroscopic Thermodynamic (Chapter 5). The
microcanonical ensemble is very important from the fundamental point of view, since it allowed
Boltzmann to obtain the famous simple relation (13.9) between the entropy and the number of
microstates. It has however less practical interest, due to the difficulty of the enumeration of the
microstates in not so simple systems, as well as because Thermodynamics seldom has to deal with
really isolated systems.

Canonical statistica ensemble

The canonical statistical ensemble is made by copies of a given system maintained at constant
volume and temperature; to that purpose, the system is in contact with a reservoir with which it
can exchange energy E. The canonical ensemble is thus connected to thermal equilibrium and to
the statistical definition of temperature.
The canonical ensemble, that will be considered in detail in Chapter 14, is the statistical equivalent
of the Helmholtz representation of macroscopic Thermodynamics (Chapter 7). The phase density
(in the classical case) and the microstates probability (in the quantum case) are not uniform, as
is the case of the microcanonical ensemble, but obey a well defined distribution as a function of
energy, the so-called canonical distribution.
One will see in Chapter 15 that all the laws of Thermodynamics valid for closed systems with a
constant number of elementary constituents can be derived from the study of the properties of the
canonical ensemble. One will also see that, for systems with a very large number of constituents, the
energy distribution is sharply peaked around the average value, so that the canonical distribution
is suitable to describe also systems which are practically isolated.

Grancanonical statistical ensemble

The grancanonical statistical ensemble is made by copies of a given system maintained at constant
volume and in contact with a reservoir which allows the exchange of bot energy and matter; the
grandcanonical ensemble is connected to the definition of the chemical potential (in addition of
temperature).
In the following, the grandcanonical ensemble will be no more considered.

12.5.2 The ergodic problem

The method of statistical ensembles, developed by J.W. Gibbs at the end of the XIX century, has
been particularly effective in the development of Statistical Mechanics and Statistical Thermody-
namics. The macroscopic quantities are obtained as averages over all the systems composing a
statistical ensemble (the canonical averages), calculated at a given time.
At the beginning of the development of Statistical Mechanics, L. Boltzmann focussed is atten-
tion on the time evolution of a single system. Within this approach, the macroscopic quantities
should be obtained as time averages on the microscopic states of a single system, calculated over
a conveniently long time interval.
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The equivalence of the two approaches, that is the equivalence of canonical averages and time
averages, is far from obvious. The study of this equivalence represents the so called ergodic problem,
whose details can be found in the specialised literature.



Chapter 13

Microcanonical ensemble. Entropy

In this chapter, we deal with the statistics of isolated thermodynamical systems. To that purpose,
we resort to the microcanonical ensemble, made by an exceedingly large number of copies of an
isolated system.

At first, we will state the fundamental postulate of equiprobability of the microstates for a system
in macroscopic equilibrium (§ 13.1). By a procedure similar to tat of Chapter 5, we will then
analyse the processes triggered by the removal of constraints within the system in equilibrium
(§13.2). By considering the ratio between the number of microstates corresponding to the initial
macrostate of constrained equilibrium and to the final macrostate of non-constrained equilibrium,
we will state the fundamental relation connecting the entropy to the number of microstates (§13.3).

Some examples of calculation of the number of microstates in some particularly simple systems
will be presented in §13.4.

In conclusion of the chapter, some hints will be given on the possibility of statistically describing
the processes connecting two equilibrium states, the initial one and the final one (§13.5).

13.1 Equiprobability of microstates

Variability of microstates

In principle, an isolated system should be characterised by a constant value of total energy E.

Actually, because of the unavoidable weak interactions of the system with its environment, we have
already stressed in §12.3 that the energy value fluctuates within a layer δE around the nominal
value E, with δE � E. In §12.3 we have also seen that the particles constituting a macroscopic
systems interact among themselves and that such an interaction cannot be completely eliminated.

These two factor (the interactions internal and external to the system) cause a continuous variation
of the microstates as time goes on.

As it was already stated in § 12.4 and 12.5, the statistical approach to Thermodynamics is based
on canonical averages over statistical ensembles rather than on time averages over a single system.

The ensemble of a very large number N of copies of an isolated system is called microcanonical
ensemble.

Quantum description of microstates

To single out and possibly count the microstates corresponding to a given macrostate it is conve-
nient to resort to a quantum perturbative approach. The Hamiltonian of the system is expressed
as

H = H0 + H1 , (13.1)

where:

169
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H0 is the unperturbed term, that takes into account the leading properties of the system, typ-
ically the behaviour of the particles considered as independent in a system with constant
energy E,

H1 is the perturbation term, that takes into account the weak interactions among the particles
and with the environment.

Example 1: For a diluted gas, H0 is a purely kinetic term, sum of the kinetic energies of single
atoms, and corresponds to the ideal gas approximation. The term H1 is due to the weak
interaction among the molecules and with the vessel walls.

Example 2: Let us consider a crystal and focus our attention on the vibrations of atom around their
equilibrium positions. In this case, the potential energy contributions due to the interaction
among the atoms are not negligible with respect to the kinetic energies. Within the harmonic
approximation (in which only the quadratic contributions to the Hamiltonian are considered)
one can anyway express the dynamic behaviour of the system in term of collective vibrations
of atoms, the so called “normal modes”. The normal modes can be considered as independent
particles described by and unperturbed Hamiltonian H0; ithe term H1 of (13.1) takes into
account the weak interactions among normal modes.

Let us consider as possible microscopic states of the system the eigenstates of the unperturbed
Hamiltonian H0, corresponding to the total energy E; such eigenstate will be labelled by the
indices r, s, ....

Example 1: In the ideal-gas case, the microstates differ by the different ways in which the total
energy E is distributed among the atoms, and, for each atom, by the different values of the
linear momentum components.

Example 2: For an harmonic crystal, the microstates differ by the different ways in which the total
energy E is distributed among the different normal modes.

The weak interactions among the particles and with the environment, taken into account by the
perturbation term H1 6= 0 of the Hamiltonian, give rise to continuos transitions of the system
among the different eigenstates of H0, that is r → s.
As time goes on, the system is characterised by different microstates. In the statistical ensem-
ble picture, this situation is taken into account by a microcanonical ensemble whose constituent
systems are in different microstates r, s, ....

Probability of the microstates

Let Pr be the probability of the eigenstate r of the unperturbed Hamiltonian H0, tcorresponding
to one of the possible microstates of the system.

In the microcanonical ensemble Nell’insieme statistico micro-canonico, made by N (→ ∞) inde-
pendent copies of the given isolated system, the probability Pr is the ratio between the number
Nr of systems characterised by the microstate r and the total number N of systems of the entire
microcanonical ensemble:

Pr =
Nr
N

=
number of system in the r state r

total number of systems
(13.2)

Obviously, the normalisation condition of probability theory holds:∑
r
Pr = 1 . (13.3)

Note: The microcanonical picture allows one to consider all the possible microstates of an isolated
system. One could then, in principle, follow the evolution of a system which modifies the
different probabilities Pr of the microstates as time goes on, for example in the transition
from a non-equilibrium state to an equilibrium state (see §13.5 later on). This possibility
would not be guaranteed by an approach based of the time averages over a single system.
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Equiprobability postulate

In any state of a system (in equilibrium or out of equilibrium) the probabilities Pr can . assume any
value, provided the normalisation condition §13.3 is fulfilled. It is anyway reasonable to expect
that the probabilities Pr could depend on time only out of equilibrium (this statement will be
justified in § 13.5); as a consequence, the normalisation condition (13.3) could be differently stated:∑

r
Pr = 1 at equilibrium ;

∑
r
Pr(t) = 1 out from equilibrium (13.4)

Let us now focus our attention on the equilibrium states.

For a system in equilibrium, it is reasonable to assume that all the different possible microstates
are equivalent; otherwise stated, there is no reason to believe that some microstates can have a
larger weight than other.

This intuitive assumption led to the statement of the fundamental postulate of Statistical Ther-
modynamics:

In a statistical microcanonical ensemble, made by N isolated systems in thermdynamical
equilibrium, when N →∞ the frequency of any microstate is equal to the frequency of
any other microstate.

Therefore, in equilibrium all the microstates are equiprobable:

Pr = Ps = constant (∀ r, s) [isolated system in equilibrium] (13.5)

If Ω is the total number of possible microstates of the system, due to the equiprobability, the
normalisation condition (13.4) can be re-written, for a system in equilibrium, as

1 =
∑

r
Pr = ΩPr , so that Pr =

1

Ω
. (13.6)

The validity of the fundamental equiprobability postulate for microstates of systems in macorscopic
equilibrium is founded on the verification of its consequences, and in particular on the possibility
of reproducing the laws of macroscopic Thermodynamics.

Relaxation time

When studying the macroscopic Thermodynamics in Parts I and II, we observed that thermody-
namic systems spontaneously evolve from non-equilibrium to equilibrium states.

This behaviour is taken into account by Statistical Thermodynamics too. In this Part III we mainly
deal with systems in macroscopic equiibrium. ci occuperemo prevalentemente della descrizione degli
stati di equilibrio. The statistical evolution of systems out of equilibrium will be shortly considered
in § 13.5.

We only recall here that the time duration of a transition from a non-equilibrium to an equilibrium
state is measured by the relaxation time τ . Relaxation times can differ by various orders of
magnitude for different systems: they are very short for the free expansion of a gas, they can be
very long for the plastic deformation of a solid body.

The peculiar description of a phenomenon depends on the relation between the relaxation time τ
and the time of experimental observation texp:

a) when τ � texp, the system attains very quickly equilibrium, and one can safely resort to the
methods of equilibrium statistica;

b) when τ � texp, the process is very slow, so that, during the relatively short observation time,
one can again resort to the methods of equilibrium statistics;

c) when ' texp, is is necessary to resort to the methods of Physical Kinetics.
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13.2 Thermodynamical processes in isolated systems

We want now to find a direct connection between the microscopic and macroscopic descriptions.
We will be able to give a statistical interpretation of the Second Law and of entropy in terms of
the count of microstates.
To this aim, let us deal again with the “fundamental problem” introduced in § 5.2 within the
macroscopic approach. Let us consider an isolated system in an initial state of constrained equi-
librium, remove the constraints and wait until a new condition of non-constrained equilibrium is
established. The fundamental problem consists in determining the properties of the final state as
a function of the properties of the initial constrained state.
In § 5.2, the macroscopic analysis of the fundamental problem led to state the postulate of entropy
increase in isolated systems. The analysis of the fundamental problem will be now performed in
statistical terms by considering the behaviour of microstates.

Thermodynamical processes and microstates of the system

For simplicity, let us consider an isolated system divided in only two sub-systems by an internal
constraint. For concreteness, think of a vessel divided in two parts by a rigid and impermeable
wall and suppose that the two parts, 1 and 2, are filled with a diluted gas at the same pressure.
The statistical description is made through a microcanonical ensemble composed by N copies of
the given isolated system.

In the initial state of constrained equilibrium, the macroscopic states of sub-systems 1 and 2 corre-
spond to Ω1 and Ω2 possible microstates, consistent with the constraint. Globally, the macroscopic
state of the entire system corresponds to

Ωi = Ω1 Ω2 (13.7)

microstates (eigenstates of H0) consistent with the constraints. Because the state is an equilibrium
state, according to the fundamental postulate all the microstates are equiprobable. This means
that, in the microcanonical ensemble, each microstate corresponds to the same number of system
copies.

After the constraint removal, a larger number of microstates is at disposal of the system: Ωf � Ωi.
Immediately after the constraint removal, however, only about Ωi microstates are present. Other-
wise stated, not all the possible microstates are present with the same probability: the macrostate
is a non-equilibrium state: in the microcanonical ensemble, different microstates correspond to a
different number of system copies.

The interactions among the particles and the environment (term H1 of the Hamiltonian) give rise
to continuous transition among the different possible microstates. Through this mechanism, the
probabilities of all the Ωf final microstates progressively equilibrate until (after a relaxation time
τ) the final equilibrium state is obtained.



Initial state
(constrained
equilibrium)

Ωi
equiprobable

states


constraint
removal

=⇒


Non− equilibrium

state

Ωf � Ωi
non

equiprobable states


τ

=⇒



Final state
(non-constrained

equilibrium)

Ωf
equiprobable

states


We considered here the simple case of constraint removal in a vessel completely filled with gas. In
any case of more complicated isolated systems the same conclusion is found. The transition from
a state of constrained equilibrium to a state of non-constrained equilibrium entails an increase of
the microstates at disposal of the system:

Ωf � Ωi . (13.8)
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Example 1: Free expansion of a gas. Let us consider a vessel divided in two equal parts, A and
B. Initially part A is filled with N = 1023 gas molecules, part B is empty. The macrostate
corresponds to Ωi microstates. At a given time, the partition is removed and the gas diffuses in
part B. Each molecule can now be in part A or part B with equal probability: at each initial
microstate it correspond now 2N final microstates (2 per molecole). The total number of final
states is Ωf = 2N Ωi. The probability that, in the final state, a microstate corresponding to
the initial state (that is with all the molecules in part A) is P = 0.5N = Ωi/Ωf .

Example 2: Removal of an adiabatic constraint. Let us consider a vessel divided in two parts A and
B by an adiabatic wall. Initially the two parts are filled with a gas at different temperatures,
TA and TB . The macrostate icorresponds to Ωi = ΩAΩB different microstates, that in turn
correspond to the different modes by which the energies EA and EB of the two sub-systems
are distributed among the atoms. When the adiabaticity constraint is removed, the two sub-
systems reach a new equilibrium condition at the same temperature. The total energy EA+EB
is now distributed among the atoms in a number Ωf � Ωi of modes. Contrary to the previous
example, however, the calculation of the ratio Ωf/Ωi is far from trivial.

13.3 Entropy

The conclusion of the previous § 13.2 allows one to establish a simple connection between the
number of microstates and the entropy for isolated systems in equilibrium.
Let us again consider the thermodynamical process triggered by the removal of a constraint in a
system composed by two sub-systems and compare the macroscopic description, based in entropy
S (§ 5.2), with the microscopic descripiton, based on the number Ω of microstates.

Schematically:

MACRO

MICRO

Initial state

Si = S1 + S2

Ωi = Ω1Ω2

irrev. process
=⇒

Final state

Sf > Si

Ωf > Ωi

Both S and Ω can be expressed as a function of the macroscopic parameters which describe the
state of the system, e.g. (U, V, ni).
Two main conclusions can be drawn from the above schema:

a) in a composite system, the entropies of the components are added, the number of microstates
are multiplied;

b) any irreversible process in an isolated systems gives rise to an increase of both the entropy
and the number of microstates.

These conclusions suggest the possibility of a connection between the entropy S and the number
of microstates Ω.

Boltzmann definition of the entropy

The connection between entropy and the number of microstates was suggested by L. Boltzmann
in the second half of the XIX century. For an isolated system in equilibrium the relation between
entropy S and number of microstates Ω is

S = kB lnΩ . (13.9)

Equation (13.9) transforms the products Ω1Ω2 into sums S1 + S2. The quantity S so defined is
positive and additive and increases in the irreversible processes in isolated systems.
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The Boltzmann constant kB connects the logarithm of a pure number (Ω) with a quantity (the
entropy S) previously defined as the ratio between energy and temperature. The approximate
value of the Boltzmann constant is kB ' 1.38× 10−23 J/K ' 8.6× 10−5 eV/K.

Let us analyse in detail equation (13.9).

a) The Boltzman definition allows the attribution of an intuitive meaning to the entropy, at
least for isolated systems in equilibrium. This is a remarkable progress with respect to the
Clausius definition (Chapter 4) and to the axiomatic assumptions of Chapter 5

b) Also the postulate of entropy increase for the irreversible processes in isolated systems can
be intuitively better understood.

c) Since the number Ω of microstates can in principle be univocally defined, the Boltzmann
definition (13.9) allows the attribution to entropy of an absolute value; there is no need for
the arbitrary additive constant of macroscopic Thermodynamic. We will consider this topic
in more detail in § 13.4, by comparing the classical and quantum descriptions of a diluted
gas.

d) Obviously Ω ≥ 1, so that S ≥ 0. The entropy cannot assume negative values.

From the operative point of view, however, the computation of the number Ω of microstates is
generally far from trivial (the topic will be considered in more detail in § 13.4). For that reason,
the canonical ensemble, that refers to systems maintained in contact with a heat reservoir, is by
far more useful than the microcanonical ensemble, as we will see in Chapters 14 and 15.

Reversibility and irreversibility

In an isolated system, the spontaneous processes connecting two equilibrium states (typically
triggered by the removal of constraints) are intrinsically irreversible.
From the macroscopic point of view, an irreversible process in an isolated system gives rise to an
increase of entropy S. From the statistical point of view, is gives rise to an increase of the number
of microstates Ω.
The Boltzmann equation (13.9) connects the mcorscopic and microscopic descriptions.

Example: Let us consider again the free expansion of 1 mol of an ideal gas from the volume V to
the volume 2V . We have already found that macroscopically ∆S = R ln 2. Let us now use
the statistical definition of entropy:

∆S = Sf − Si = kB(lnΩf − lnΩi) = kB ln(Ωf/Ωi) . (13.10)

It is easy to see that Ωf/Ωi = 2NA , where NA is the Avogadro number (each molecule doubles
the number of states at her disposal) . Therefore

∆S = kB ln2NA = kB NA ln2 ⇒ kB NA = R , (13.11)

where R is the universal gas constant.

A perfectly reversible process in an isolated system should take place maintaining the value of the
entropy S constant. From the statistical point of view, a reversible process would require that the
number Ω of microstates accessible to the system be constant and that the microstates remain
equiprobable.
To picture a reversible process in a perfectly isolated system is far from trivial ...

Metrological remarks

The International System of units (SI) is based on seven base quantities: time interval, length,
mass, temperature, amount of substance, intensity of electrical current, luminous intensity.
In 2018 the 26th General Conference of Weights and Measures (C.G.P.M.) re-defined all the seven
base units connecting their values to seven fundamental constants, which are assumed as exact
constants. The new definitions are operative since May 2019.
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The seven fundamental constants include the Boltzmann constant, whose exact value is

kB = 1.380 649× 10−23 J/K (13.12)

and the Avogadro number, whose value is

NA = 6.022 140 76× 1023 (13.13)

The universal gas constant, R = kB NA has thus an exact value too. Moreover, the definition of
the kelvin, temperature unit, now refers to the value of the Bolzmann constant.

Consequences of the uncertainty of energy

In § 13.2 and 13.3 we considered a constant total energy E, neglecting the unavoidable uncertainty
δE due to the interaction of the system with its environment.
In what follows, we show that the influence of the uncertainty δE on the number Ω of microstates
and on the entropy S is actually negligible.

One can demonstrate that Ω ∝ Ef , where f is the number of degrees of freedom of the system.
An intuitive explanation is the following. The total energy E is the sum of f terms, each one
corresponding to the energy stored in a single degree of freedom; when the total energy E increases,
the number of modes in which it is distributed among the different degrees of freedom increases
proportionally to Ef .
The uncertainty δE is generally much smaller than E, although it is larger than the spacing
between the energy levels of the system. Let ω(E) = dΩ/dE be the density of states of the system
corresponding to the energy E: the number of microstates of the system in the energy interval δE
around the value E can be expressed as

Ω(E) = ω(E) δE . (13.14)

Let us now consider two different uncertainty values, δE and δ′E. One has:

Ω(E) = ω(E) δE; Ω′(E) = ω(E) δ′E; ⇒ Ω′ = Ω
δ′E

δE
. (13.15)

The entropy S depends on the logarithm of Ω, and

ln Ω′ = ln Ω + ln
δ′E

δE
' f lnE + ln

δ′E

δE
. (13.16)

The number f of degrees of freedom is generally very large (of the order of 1023); the second
termln(δ′E/δE) in (13.16) is negligible with respect to the first one, so that the value of entropy
S can be considered as largely independent of the value of δE.

Entropy as a function of energy

The number of microstates increases as Ω(E) ∝ Ef , where f is the number of degrees of freedom,
if the total energy of the system is not too low. When the system energy is large, S = kB lnΩ '
kB f lnE.
In the quantum approach, the energy of a system has a finite lower limit E0, corresponding to the
energy of the ground state.
When E → E0, the number Ω of microstates decreases considerably, and the value of the entropy
S becomes negligible, S → 0. This topic will be considered in more detail in Chapter 20, devoted
to the Third Law of Thermodynamics.
The typical dependence of entropy on energy is shown in Fig. 13.1, that can be compared with
Fig. 5.3 of Chapter 5.

Example: Let us consider again the example 1 of the end of § 12.3. The system is made by N inde-
pendent harmonic oscillators. The energy of the i-th harmonic oscillator is εi = (1/2 +ni) h̄ω.
The energy levels are not degennerate. In the ground state, all oscillators are characterised
by the lowest energy, ε0 = (1/2) h̄ω. The total energy is E0 = Nε0. The macroscopic state
correspond to only one possible microstate, so that Ω = 1 and S = 0.
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Figure 13.1: Dependence of the entropy on the energy

13.4 Computation of the number of microstates

The computation of the number of microstates can be easily performed only for particularly simple
systems. Let us consider here some examples.

13.4.1 Example 1: Diluted gas

For a diluted gas, the unperturbed Hamiltonian H0 describes the behaviour of the ideal gas, the
perturbation H1 take into account the weak interactions that allow the gas to attain an equilibrium
state.
This example is suitable for comparing the classical and the quantum approaches and evidences
the difficulties encountered in the computation of the number Ω of microstates in the classical case.

Classical phase space

In classical Physics, the state of a particle is characterised by a point in the abstract phase space,
spanned by the coordinates q and by the components of linear momentum p (§ 12.2).
For N non-interacting particles contained in a volume V (§ 12.3), the total energy, purely kinetic,
is

E =
1

2m

3N∑
i=1

p2
i (13.17)

where the index i counts the 3N components of the generalised momenta. Let us consider also the
uncertainty ±δE due to the weak interaction of the system with its environment.
The phase space of the system has 6N dimensions. The number Ω of microstates is proportional
to the volume in the phase space Vphase corresponding to the energy values included in the layer
E ± δE:

Ω(E) ∝ Vphase =

∫ E+δE

E−δE
(dq1, dq2, ..., dq3N )︸ ︷︷ ︸

V N

(dp1, dp2, ..., dp3N ) (13.18)

In the integral of (13.18), the two sub-spaces of coordinates and momenta have been separated.
Since any particle can be found in any portion of the real space, the volume in the sub-space of
coordinates is V N .
In the sub-space of momenta, the system has f = 3N degrees of freedom, with the contraint of
constant energy. The states whose energy is included in the layer E ± δE rcorrespond to a hyper-
spherical shell of radius r =

√
2mE and width 2δE in the sub-space of momenta. The extent of

the surface is proportional to rf−1 = (2mE)(f−1)/2. The volume in the phase space is thus

Vfasi ∝ V N (2mE)(f−1)/2 δE ∝ Ef/2 δE . (13.19)

Classical ideal gas

Let us consider a monatomic ideal gas of N atoms in the real-space volume V and let (∆q∆p)δE
be the volume Vphase of the phase space corresponding to the states of energy E ± δE.
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The number of microstates Ω contained in Vphase can be enumerated only after a measurement unit
has been defined for the volume in the phase space. In the classical approach, such a measurement
unit is altogehter arbitrary. For concreteness, let us denote the arbitrary unit by C3N , where C3N

has the dimensions of ∆q∆p. The number of microstates and the entropy are, respectively, (13.9),

Ω =
(∆q∆p)δE
C3N

, S = kB ln
(∆q∆p)δE
C3N

, . (13.20)

In the classical approach, the number of microstates Ω is thus defined to within an arbitrary factor,
the measurement unit C3N . As a consequence, the entropy S is defined to within an arbitrary
additive constant, as in the macroscopic approach.

Quantum ideal gas

For a gas enclosed in a finite volume one can define the states of the unperturbed HamiltonianH0H0

(Chapter 12) and is is thus possible to attribute a well defined value to the number of microstates
Ω. In the quantum approach, the entropy is thus univocally defined without any arbitrary additive
constant.

It is interesting to see how the quantum and classical approaches can be connected, starting from
the classical phase space. In quantum Mechanics, the uncertainty principle δqδp ≥ h, where h is
the Planck constant, imposes a lower limit to the minimum volume which can be actually singled-
out in the phase space. The arbitrariness of the measurement unit of the volume in the classical
phase space can thus be removed by imposing:

C3N =


h3N for distinguishable particles

N !h3N for indistinguishable particles

(13.21)

The difference between distinguishable and indistinguishable particles has a purely quantum na-
ture. In classical Mechanics, all particles are distinguishable, since it is always possible, at least
in principle, to precisely determine their trajectories. This possibility is instead not guaranteed in
quantum Mechanics, because of the uncertainty principle which forbids the simultaneous knowl-
edge of the exact values of position and momentum. A He atom and an Ar atom are obviously
still distinguishable, two He atoms are instead indistinguishable.

The factor N ! in the expression of C3N for indistinguishable particles is of purely quantum origin;
we will consider it in more detail in Chapter 16. For the moment, let us stress that its presence is
necessary to explain the Gibbs paradox, that will be considered in § 11.2.

13.4.2 Example 2: Einstein crystal

In the model proposed by Einstain in 1905, the thermal motion of the N atoms of a crystal
is interpreted as the motion of 3N independent one-dimensional harmonic oscillators of equal
angular frequency ω. The oscillator energy is quantised, ε = (n + 1/2)h̄ω. Let U be the total
thermal energy, that is the vibrational energy minus the zero point terms (1/2)h̄ω.

The Einstein model is quite crude, since it neglects the strong interactions among the atoms of
the crystal. It has however an important historical relevance, since it allowed for the first time
a qualitative explanation of the low-temperature behaviour of the specific heat of crystals (§ 9.1,
Fig. 9.1) as due to the quantisation of the energy levels of the harmonic oscillator. In the present
case, the interest of the Einstein model is due to the relative easiness of the computation of the
number of microstates.

The number Ω of microstates corresponds to the number of modes by which the total thermal
energy U can be distributed among the 3N harmonic oscillators, that is to the number of modes
by which the U/h̄ω energy quanta of the entire system can be distributed among the 3N oscillators.
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The problem can be solved by ideally placing on a straight line the U/h̄ω energy quanta and 3N−1
“separating walls” between different oscillators, and calculating the different possible permutations
of quanta and separating walls. The number of microstates is Il numero di microstati è

Ω =
(3N − 1 + U/h̄ω) !

(3N − 1) ! (U/h̄ω) !
' (3N + U/h̄ω) !

3N ! (U/h̄ω) !
. (13.22)

By means of the Stirling formula, ln(m!) ' m (lnm) − m (valid for m → ∞), one can find the
expression of entropy:

S = kB lnΩ = 3NkB ln

[
1 +

U

3Nh̄ω

]
+

U

h̄ω
kB ln

[
3Nh̄ω

U
+ 1

]
. (13.23)

Equation (13.23) represents the fundamental relation S(U, V,N) for the model of independent
oscillators of equal frequency. The thermal equation of state is

1

T
=

(
∂S

∂U

)
V,N

=
kB
h̄ω

ln

[
3Nh̄ω

U
+ 1

]
, (13.24)

from which one can get the total energy as a function of temperature and the heat capacity:

U(T ) =
3Nh̄ω

eh̄ω/kBT − 1
Cv =

(
∂U

∂T

)
V

= 3N

(
h̄ω

kBT

)2

kB
eh̄ω/kBT

(eh̄ω/kBT − 1)2
. (13.25)

At high temperatures the classical behaviour is reproduced: U linearly increases with T, Cv is
constant, and the entropy S →∞ (Fig. 13.2, left).
At low temperatures the deviation from the classical behaviour is qualitatively reproduced: U is
not proportional to T , and Cv tends to zero.
The Einstein model makes possible a computation of the number of microstates and a semi-
quantitative reproduction of the experimental dependence of the heat capacity on temperature.
However, the model is too crude to accurately account for the experimental behaviour of the heat
capacity.
The crudeness of the Einstein model is evidenced by the fact that it cannot reproduce the mechan-
ical behaviour of the crystal: actually, by differentiating the entropy with respect to the volume
one obtains an inconsistent result:

p

T
=

(
∂S

∂V

)
U,N

= 0 .

Note: More refined models have been developed to describe the lattice dynamics of crystals by
taking into account the strong interactions among the atoms. Such models are based on the
normal modes of vibration, each one characterised by a different frequency. The computation of
the microstates in the microcanonical formalism is prohibitively difficult for these more realistic
models. In these cases, the thermodynamical quantities can be more effectively obtained by
the canonical formalism, to be considered in Chapters 14 and 15.

13.4.3 Example 3: Two-level system

Let us consider a system made by N atoms, with only two energy levels available to each atom,
whose energy is 0 (ground state) and ε (excited state), respectively.
The total energy U of the system is thus distributed on the number U/ε of the atoms which are in
the excited state. The number Ω of possible modes of this distribution corresponds to the number
of modes by which U/ε objects can be extracted from a set of N objects, that is to the number of
combinations of N taken U/ε at a time:

Ω =

(
N

U/ε

)
=

N !

(U/ε)! (N − U/ε)!
(13.26)
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Figure 13.2: Einstein crystal (left) and two-levels system (right). Dependence on temperature of
the energy (top row) and of the specific heats (bottom row).

(notice that U ≤ Nε, so that U/ε ≤ N). By using the Stirling formula, ln(m!) ' m (lnm)−m (m→
∞), one can find the expression of the entropy:

S =

(
U

ε
−N

)
kB ln

[
1− U

Nε

]
− U

ε
kB ln

U

Nε
. (13.27)

The thermal equation of state is

1

T
=

(
∂S

∂U

)
V,N

=
kB
ε

ln

[
Nε

U
− 1

]
, (13.28)

whence one can obtain the total energy as a function of temperature and the heat capacity:

U(T ) =
Nε

eε/kBT + 1
; Cv =

(
∂U

∂T

)
V

=
Nε(

eε/kBT + 1
)2 eε/kBT

kBε

(kBT )2
. (13.29)

When the temperature increases, the total energy asymptotically tends to the finite value Nε/2.
The heat capacity increases up to a maximum value, then it asymptotically returns to zero (Schot-
tky anomaly) (Fig. 13.2, right). For short:

T → 0


U → 0

Cv → 0

S → 0

T →∞


U → Nε/2

Cv → 0

S → NkB ln2 = kB ln2N
(13.30)

The presence of a limited number of levels implies that the total energy is superiorly limited. For
T = 0, the total energy is zero: only the lowest level is populated, there is only one possible
microstate and the entropy is zero. For T → ∞, the energy tends to the asymptotic value U =
Nε/2: both levels are equally populated and the entropy assumes its maximum value.

(?) Is it realistic to imagine a situation in which the upper level has a larger population than the
lower level, so that Nε/2 < U < Nε ? Which would be the values of entropy and temperature
in that case ? We will consider again this topic later on.
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Note: In practice, two-level sub-systems of a given system (or more generally sub-systems with a
finite number of energy levels) are thermodynamically relevant in quasi-equilibrium situations,
where the exchange of energy among the degrees of freedom of the two-level sub-system and
the other degrees of freedom of the system (e.g. the vibrational degrees of freedom of a crystal)
are relatively slow. The presence of two-level subsystem is experimentally evidenced by the
presence of Schottky anomalies in the low-temperature specific heats.

13.5 Evolution of the microstates

We conclude this Chapter 13 by an introductory account on the time evolution of microstates, in
bot equilibrium and non-equilibrium conditions.

The probability of the microstates obey the following rules.
In equilibrium

Pr = Ps = constant (∀ r, s)
∑

r
Pr = 1 Pr =

1

Ω
. (13.31)

Out of equilibrium

Pr(t) 6= constant
∑

r
Pr(t) = 1 (13.32)

Let us now study how the probability Pr of a single microstate evolves as time goes on.

Transition probability

Let the microstates |r〉, |s〉, ... be the eigenstates of an unperturbed Hamiltonian H0. The weak
interactions among the particles of the system and between the system and its environment, taken
into account by the perturbation Hamiltonian H1, give rise to transitions among the different
microstates of the system: r → s. Let Wrs be the probability per unit time of the transition r → s.
By means of the time-dependent perturbation theory limited to the first order of approximation,
one can see that the probability per unit time of the transition r → s is proportional to the squared
modulus of the matrix element of the perturbation Hamiltonian between the two eigenstates |r〉
and |s〉:

Wrs ∝ |〈s|H1|r〉|2 = 〈s|H1|r〉∗ 〈s|H1|r〉 . (13.33)

The hermitian property of the Hamiltonian operator (H̃∗1 = H1), connected to the reality of its
eigenvalues, requires that

〈s|H1|r〉∗ = 〈r|H1|s〉 , 〈s|H1|r〉 = 〈r|H1|s〉∗ , (13.34)

so that the probabilities per unit time of the transitions r → s and s→ r are equal

Wrs = Wsr , (13.35)

for any pair o microstates r and s.

Master equation

The probabiity Pr of the system being in the state r can vary due to two possible mechanisms:

1. transitions to the state r from other statess 6= r, with probability Wsr (Pr increases);

2. transizions from the state r to othes states s 6= r, with probability Wrs (Pr decreases).

This behaviour is summarised in the master equation:

dPr
dt

=
∑
s

PsWsr −
∑
s

PrWrs . (13.36)
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The Ω equations (13.36) referring to the Ω microstates of the system, globally describe the time
evolution of the system. Introducing the equality (13.35) Wrs = Wsr, the master equation becomes

dPr
dt

=
∑
s

Wrs (Ps − Pr) . (13.37)

Let us now analyse in detail the master equation (13.37).

a) For a system in equilibrium, the equiprobability of the microstates Pr = Ps(∀r, s) entails
that, due to (13.37), dPr/dt = 0: the probability of any microstate is independent of time.

b) Viceversa, if dPr/dt = 0, the system not necessarily is in equilibrium: the differences (Ps−Pr)
on the right of (13.37) can have different signs for different states s. It is the case, for
example, of systems in stationary states of non-equilibrium (see Chapter ??), that are however
inconsistent with the condition of isolation of the system considered in this chapter.

c) Is the isolated system is out of equilibrium, the master equation (13.37) describes the evolu-
tion of its microstates towards equilibrium.
The macroscopic irreversibility of spontaneous natural phenomena is connected to the fact
that the master equation is a first order differential equation with respect to time, and is thus
not invariant with respect to time inversion. Actually, if te sign of time is inverted t → −t,
equation (13.37) becomes

dPr
dt

= −
∑
s

Wrs (Ps − Pr) .

Note: The equation of motion of a single particle are invariant with respect to the time inversion
(if the potential energy doesn’t depend on velocity, as is the case when magnetic fields are
present). One Le equazioni del moto di particella singola sono invarianti rispetto all’inversione
temporale (se l’energia potenziale non dipende dalla velocità, ad esempio se sono assenti campi
magnetici). One speaks of microscopic reversibility.
The time inversion t→ −timplies that ~r(−t) = ~r(t), ~p(−t) = −~p(t).
In classical Mechanics, the invariance with respect to the time inversion t→ −t is connected
to the fact that the equation of motion contains a second derivative with respect to time:

d2~p

dt2
= ~F (~r) =

d2~p

d(−t)2
. (13.38)

By inverting the sign of time, the direction of motion is inverted, ~p(−t) = −~p(t), but the
equation of motion remains unchanged.
In quantum Mechanics, the Schrödinger equation contains the first derivative with respect to
time,

ih̄
∂

∂t
Ψ(~r, t) = HΨ(~r, t) . (13.39)

Let us consider aa time-independent Hamiltonian;the kinetic term depends on p2, that is
it is invariant with respect to the inversion ~p → −~p; the potential term depends on ~r and
is invariant with respect to time inversion too. The time inversion is accompanied by the
complex conjugation of the eigenfunctions of the Schrödinger equation. By inversting t→ −t
one thus obtains

ih̄
∂

∂t
Ψ∗(~r,−t) = HΨ∗(~r,−t) . (13.40)

Therefore, the microscopic reversibility is connected, in quantum Mechanics, to the complex
character of the wavefunction.

The Boltzmann H theorem

To study the mcroscopic time evolution of an isolated system, L. Boltzmann introduced a quantity
H, defined as

H = 〈lnPr〉 =
∑

r
Pr lnPr . (13.41)
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The quantity H is negative and can depend on time.

If the isolated system is in thermodynamical equilibrium, the probabilities of all microstates are
independent of time and equal: Pr = 1/Ω, so that lnPr = −lnΩ. Therefore, for an isolated system
in equilibrium −H corresponds to the value of the entropy S of (13.9), to within the a-dimensional
constant kB .

If the isolated system is out of equilibrium, the entropy S is not defined. It is anyway possible
to follow the evolution of the quantity H. By differentiation of (13.41) with respect to time, one
obtains

dH

dt
=
∑
r

(
dPr
dt

lnPr +
dPr
dt

)
=
∑
r

(
dPr
dt

)
(lnPr + 1) . (13.42)

Let us substitute in (13.42) the expression of dPr/dt of the master equation (13.37); by exchanging
r with s one obtains two equivalent expressions:

dH

dt
=


∑
r

∑
sWrs(Ps − Pr)(lnPr + 1) = −

∑
r

∑
sWrs(Pr − Ps)(lnPr + 1)

∑
s

∑
rWsr(Pr − Ps)(lnPs + 1) = −

∑
r

∑
sWrs(Pr − Ps)(−lnPs − 1)

(13.43)

where use has been made of the relation Wrs = Wsr. Let us now sum up the two right members
of (13.43) and divide the result by two

dH

dt
=

1

2

∑
r

∑
s

Wrs (Pr − Ps) (lnPr − lnPs) . (13.44)

Since the logarithm is a monotonously increasing function of its argument, all the terms of the
sums are products of factor of equal sign, that is positive (or zero if Pr = Ps). Therefore

dH

dt
≤ 0 . (13.45)

The quantity H is always negative and cannot increase as time goes on. If all the probabilities Pr
are equal, as in the equilibrium states, where H minimo is minimum, then H remains constant as
time goes on. If instead Pr 6= Ps for some pairs r, s, then H decreases until Pr = Ps.

Example: Let us consider an irreversible process leading an isolated system from an initial state
of constrained equilibrium to a final state of non-constrained equilibrium. The removal of the
constraint makes accessible to the system a number of new microstates, whose probability,
initially very small, increases as time goes on, at the expenses of the probabilities of the
microstates of the initial constrained state. The trend towards equilibrium reduces the average
value of the probabilities Pr.



Chapter 14

Canonical ensemble. Canonical
distribution

In the previous chapter 13 the connection S = kN ln Ω has been established between the entropy S
and the number of microstates Ω for an isolates system. In § 13.4 we succeeded in computing the
number of microstates for some particularly simple systems, as well as to determine the fundamental
equation S(U, V,N) for the Einstein model (13.23) and for a two-levels system (13.27).

However, for the great majority of real systems, the computation of the number of microstates
Ω is nearly impossible, so that the determination of the fundamental equation in the entropy
representation based on the microcanonical formalism is not the best way to connect the laws of
macroscopic Thermodynamics to the microscopic structure.

The by far most effective approach is based on the so called canonical formalism, in which the
considered system is still closed with constant volume, but is not isolated : the system can exchange
energy with its environment, which is considered as a second system with infinite heat capacity
(that is a reservoir at constant temperature).

The statistical treatment of the non-isolated system is through a canonical statistical ensemble,
made by N (→∞) copies of the system, each one in contact with its reservoir (Fig. 14.1).

1 2 31
N

Figure 14.1: Canonical statistical ensemble: N copies of a system immersed in its own reservoir
at constant temperature.

The canonical formalism developed in this chapter is the instrument which allows the simplest
connection between the macroscopic thermodynamical quantities and the microscopic structure,
as we will see in next Chapter 15.

The cnonical statistical ensemble is thus made by N copies of a thermodynamical system, that
is of a system composed by a very large number N of particles. Thermodynamical systems are
macroscopic systems, and so obviously distinguishable.

The canonical formalism which will be developed in this chapter can be applied, with the due
cautions, also to canonical ensembles made by N microscopic systems. In those cases, each system
is represented by a single particle (e.g an atom, a molecule, a normal vibrational mode): they are
thus not thermodynamical systems. This type of systems will be treated in Chapter 16, where
the distinction between distinguishable and indistinguishable particles will be considered and the
suitable different statistics will be introduced.
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Figure 14.2: Alternative picture of the canonical statistical ensemble: the reservoir of a system is
represented by its very N copies.

14.1 Boltzmann-Plank method

An elegant approach to the canonical formalism is represented by the Boltzmann-Plank method.

Instead of considering N copies of the given thermodynamical system, each copy being immersed
in its own reservoir as in Fig. 14.1, in the Boltzmann-Plank method one considers an ensemble
made by N thermodynamical systems immersed in the same reservoir, weakly interacting and
thus able to exchange energy. Otherwise stated, for each system the other N −1 systems represent
the reservoir (Fig. 14.2).

The entire statistical ensemble has to be considered as an isolated system, with constant total
energy E ± δE . The energy of the single systems is instead not constant.

One can define an average energy of the systems composing the statistical ensemble:

〈E〉 =
E
N
. (14.1)

Actually, each system instantaneously its own energy E, generally different from the average value
〈E〉, and corresponding to one of allowed levels Ei (eigenvalues of the unperturbed Hamiltonian).
The levels Ei are equal for all systems.

In thermodynamical systems, composed by a very large number N of particles, the levels are very
close together, and can generally be treated as a continuous distribution with density of states
ω(E).

Distributions of energy

The total energy E of the canonical ensemble can be distributed in many different ways among its
N systems.

A particular distribution of the energy among the different systems can be characterised by spec-
ifying, for each energy level Ei, the number Ni of systems which share that vauel fo energy (Fig.
14.3, left). Let gi be the degeneracy of the i-th level. The normalisation conditions on the total
number N of systems and on the total energy E must hold:∑

i
Ni = N (14.2)∑

i
EiNi = E (14.3)

where the sums are extended to all the energy levels of the systems.

Each distribution of the total energy of the ensemble among the different systems can be charac-
terised by the values N1, N2, N3, ... Ni... Each one of these energy distributions can correspond
to a number of different microstates, characterised by the different possible choices of the systems
which share a given energy level(Fig. 14.3, right). We will synthetically indicate one of these
distributions by {Nj}:

{Nj} ≡ = (N1, N2, N3, ...Ni...) . (14.4)
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E

A B

C

D

A

D

C

B

Figure 14.3: Left: two different distributions of the energy of the canonical ensemble on the
energy levels Ei of the systems; each point represents a system. Right: the same distribution can
correspond to different microstates: the letters A, B, C .. correspond to different systems.

Computation of the microstates

Let us now solve the following problem: to how many different microstates corresponds a given
distribution (N1, N2, N3, ...Ni...) ≡ {Nj} ?

The solution is given by the combinatorial calculus. Let us first calculate in how many different
ways one can accomodate N1 systems on the level 1: the answer is the number of combination of
N objects taken N1 at a time, taking into account the degeneracy g1 of the level:

N (N − 1) (N − 2)...(N −N1 + 1)

N1!
gN1

1 (14.5)

Let us now calculate in how many different ways one can accomodateN2 systems on the level 2,
extracting them from the N −N1 remaining systems:

(N −N1) (N −N1 − 1) (N −N1 − 2)...(N −N1 −N2 + 1)

N2!
gN2

2 . (14.6)

Considering all the levels and multiplying the results for each single level, one obtains the final
expression for the number of modes Ω({Nj}) in which a given distribution {Nj} can be built up:

Ω({Nj}) =
gN1

1 gN2
2 ... gNi

i ...

N1!N2! ... Ni! ...
N ! =

∏
i

gNi
i

Ni!
N ! . (14.7)

Note: The factor N ! is connected to the distinguishability of the thermodynamical systems. As
we will see in Chapter 16, when the systems are single particles, the factor N ! has to be
substituted by 1.

14.2 Search of the most probable distribution

The canonical statistical ensemble is an isolated system. Each one of the Ω({Nj}) ways in which
a given distribution {Nj} of the energy can be built up represents a microstate of the canonical
ensemble. The total number of microstates is thus Ωtot =

∑
j Ω({Nj}).

Because the canonical ensemble is an isolated system, the fundamental postulate that all mi-
crostates of an isolated system in equilibrium are equi-probable (§ 13.1) holds. All the possible
Ω({Nj}) microstates corresponding to any distribution are thus equi-probable.

Different distributions {Nj} are generally characterised by a different number Ω({Nj}) of mi-
crostates. The different distributions {Nj} can thus be characterised by different values of prob-
ability: a distribution is more probable than another distribution if it corresponds to a larger
number of microstates.

Let us now search for the most probable distribution {Nj} of the energy among the different
systems of the canonical ensemble.
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Statement of the problem

The most probable distribution is the distribution which corresponds to the largest number Ω({Nj})
of microstates, that is the distribution (N1, N2, N3, ...Ni...) which contemporarily fulfils the follow-
ing conditions:

Ω({Nj}) = maximum ⇒ lnΩ = maximum∑
iNi = N = constant∑
iEiNi = E = constant

(14.8)

One has to search for the conditions which maximise Ω({Nj}), with the constraints that the total
number of systems and the total energy remain constant; it is thus the search for a constrained
maximum.
Maximising ln Ω instead of Ω({Nj}) leads to the same results with the advantage of simpler cal-
culations.

Solution of the problem

Let us calculate the logarithm of Ω({Nj}) from (14.7) and simplifyit through the Stirling formula
lnm! = m ln(m)−m:

lnΩ = lnN !−
∑

i
lnNi! +

∑
i
Nilngi

= N lnN −N −
∑

i
(NilnNi −Ni) +

∑
i
Nilngi

= N lnN −
∑

i
NilnNi +

∑
i
Nilngi , (14.9)

where the sum is extended to all the energy levels of the systems. The differential is

d(lnΩ) = −
∑

i
ln(Ni/gi) dNi −

∑
i
dNi = −

∑
i
ln(Ni/gi) dNi . (14.10)

The differential condition of constrained maximum is∑
i ln(Ni/gi) dNi = 0∑
i dNi = 0∑
iEidNi = 0

(14.11)

The terms dNi can be made independent through the method of the Lagrange multipliers, that
is adding to the first equation the remaining two, multiplied by the two coefficients (Lagrange
multipliers) α and β, respectively:∑

i
[ln(Ni/gi) + βEi + α] dNi = 0 . (14.12)

Now all the terms in square parentheses has to be identically null for each i, so that

Ni = gi e
−α−βEi (∀i) . (14.13)

By further considering the normalisation condition
∑
Ni = N , one obtains

e−α =
N∑

i gie
−βEi

. (14.14)

14.3 Canonical distribution

The most probable distribution of the total energy E of the canonical ensemble among its different
systems is thus, in equilibrium conditions, the distribution to which it corresponds, for the i-th
level of energy Ei, the fraction of systems (that is the probability)

Pi =
Ni
N

=
gi e
−βEi∑

i gi e
−βEi

(sum over the energy levels) (14.15)
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At each level of energy Ei it generally correspond gi states. If gi 6= 1 the level is said to be
degenerate. One can express the canonical distribution in terms of the sum over the states instead
as the sum over the levels. To the j-th level it corresponds the probability

Pj =
Nj
N

=
e−βEj∑
j e
−βEj

(sum over the states) (14.16)

The canonical partition function Z

The quantity at the denominator of the canonical distribution (14.15) or (14.16)

Z =
∑

i
gi e
−βEi =

∑
j
e−βEj (14.17)

is called partition function or sum over the states (in German Zustandssumme, whence the symbol
Z).
The canonical distribution can thus synthetically be written as

Pi =
1

Z
gi e
−βEi (14.18)

The partition function Z on both the energy levels of the system and on the Lagrange parameter
β. The meaning of the partition function will be considered in more detail later on. We anticipate
here that the partition function plays a fundamental role in statistical Thermodynamics; actu-
ally, as we will see in Chapter 15, the knowledge of Z corresponds to the exhaustive knowledge
of the thermodynamical properties of a system and allows one to calculate the values of all its
thermodynamical quantities.

The β parameter and the thermal equilibrium

The β parameter is connected to the normalisation condition on total energy and thus depends
on the total energy of the canonical ensemble. Let us now demonstrate that β is connected to the
thermal equilibrium and thus plays the same role that the temperature T plays in macroscopic
Thermodynamics.

Let us consider two canonical ensemble in thermal contact. The first ensemble is made by N
systems, the second one by N̂ systems. In an equilibrium condition, let be

Ω the number of states corresponding to the distribution {N1, N2, ...Ni, ...}
of the first ensemble

Ω̂ the number of states corresponding to the distribution {N̂1, N̂2, ...N̂i, ...}
of the second ensemble

Ω̄ = ΩΩ̂ the number of states corresponding to the distribution
of the sum of the two ensembles

Let us search for the most probable distribution for the sum of the two statistical ensembles, by
maximising Ω̄ by the same procedure previously used. To simplify the notation, we consider the
sums over the states rather than over the levels. The condition of constrained maximum is∑

i lnNi dNi +
∑
j ln N̂j dN̂j = 0∑

i dNi = 0∑
j dN̂j = 0∑
iEidNi +

∑
j ÊjdN̂j = 0

(14.19)

Let us again resort to the method of Lagrange multipliers, by adding to the first equation the
other three, multiplied by α, α̂ and β, respectively. There are two constraints on the number of
particles, one for each ensemble, but there is only a constraint on energy, since the two ensembles
are in thermal equilibrium and can exchange energy. The distributions for the two ensembles are:

Ni = e−α−βEi ; N̂j = e−α̂−βÊj . (14.20)
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Substitutin α nd α̂, one obtains at last

Pi =
Ni
N

=
1

Z
e−βEi ; P̂i =

N̂i

N̂
=

1

Ẑ
e−βÊj . (14.21)

The two canonical ensembles are characterised by different distributions: the energies Ei and Êj
of their levels as well as their degeneracies are generally different, so that the partition functions
Z and Ẑ are generally different. The two distribution share nevertheless the same parameter β.
This equality reflects the fact that the two systems are in thermal equilibrium, so that only the
total energy E + Ê of the sum of the two ensembles is constant as time goes on.

β parameter and temperature

The previous discussion shows that the β parameter plays the same in statistical Thermodynamics
role as the parameter T in the macroscopic Thermodynamics.
Later on, in Chapter 15, we will show that β and T are connected by the relation β = 1/kBT ,
where kB is the Boltzmann constant. β and T have an inverse behaviour: when T → 0, β diverges
to infinity; viceversa, β = 0 corresponds to an infinite temperature.
By substituting β = 1/kBT and considering gain the sum over the levels instead of the sum over
the states, the canonical distribution can be expressed in a more familiar way:

Pi =
1

Z
gi e
−Ei/kBT , Z =

∑
i
gi e
−Ei/kBT (14.22)

Probability of the canonical distribution

We have demonstrated above that the canonical distribution is the most probable among the
various possible distributions of the energy among the systems of the canonical ensemble. Other
less probable distributions of the energy anyway exist among the systems of the canonical ensemble.
In order to better grasp the relevance of the canonical distribution, we should answer the following
question: how much is the canonical distribution more probable with respect to the other possible
distributions ?
When the number N of systems composing the canonical ensemble increases, the number Ωcan of
states corresponding to the canonical distribution progressively dramatically predominates with
respect to the number of states corresponding to the alternative distributions; this trend can be
easily verified already with a number N of systems of the order of a few tens.
For N → ∞ (perfect reservoir) Ωcan ' Ωtot, where Ωtot is the total number of possible modes by
which the energy can be distributed among the systems of the canonical ensemble. The canonical
distribution can thus be considered as practically unique in equilibrium conditions.

For a system in thermal equilibrium the plot of lnPj (probability of the j-th state) against Ej is
a straight line:

lnPj = ln(NJ/N ) = ln(1/Z)− βEj . (14.23)

A system for which the points (lnPj , Ej) are inconsistent with a straight line is out of equilibrium.
In such a case it is impossible to attribute a value to the β parameter.

Dependence of the canonical distribution on energy

To better grasp the physical meaning of the canonical distribution for a thermodynamical system,
let us refer to its expression (14.22), where instead of the β parameter the more familiar temperature
T appears.
For a given value of the system temperature T (equal to the temperature of the reservoir) the
partition function Z of (14.17) is univocally determined by the energy structure of the system.
Fora given value of T , the factor exp(−Ei/kBT ) monotonously decreases when the value of the
energy Ei increases. If all the energy levels are non degenerate, so that gi = 1 for any i, then also
the probability Pi monotonously decreases when the value of the energy Ei increases. If the energy
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levels are degenerate, it can be that the values gi increase when E increases; in such cases, it can
be that the distribution Pi increases for small values of E and decreases for large values of E; it
can then exist a value of energy Em for which the distribution exhibits a maximum.

Density of states

Equation (14.18) expresses the probability as a function of the values of the discrete energy levels
Ei. If the levels are densely packed, as it generally happens for thermodynamical systems, one can
resort to a continuous representation. The discrete probabilities Pi are substituted by a probability
density P (E). The canonical distribution now expresses the probability that the system be in an
energy interval dE around the value E:

P (E) dE =
1

Z
ω(E) e−βE dE , (14.24)

where

a) ω(E) is the density of states, determined both by the degeneracy of the single levels included
in the interval dE and by the density of the levels. In general, the density of states ω(E)
increases when E increases.

b) the partition function is now expressed by an integral

Z =

∫
ω(E) e−βE dE , (14.25)

wil consider again this topic in the next Chapter 15.
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Chapter 15

Statistical interpretation of
thermodynamical quantities

In this chapter 15 we will see how the canonical approach, introduced in the previous Chapter 14,
allows one to establish an effective statistical connection between the microscopic properties of a
system and its thermodynamical quantities (internal energy, entropy, and so on).
We will consider relatively simple systems: pure substances in the absence of external fields (such
as electric or magnetic fields), for which the energy of the canonical ensemble is the sum of the
kinetic energies of the particles and of the potential energies of the interactions within the ensemble.

15.1 Thermodynamical internal energy

Let us consider a system of N (' 1023) particles, in thermal contact with a reservoir. The system
is not isolated and its energy is thus not a constant. In the Boltzmann-Plank approach (§ 14.1),
the reservoir is composed by N − 1 copies of the system. The canonical statistical ensemble made
by the system and its reservoir is an isolated global system.

Average energy of the system

Being an isolated system, the canonical statistical ensemble has a constant total energy E . Let
us suppose that each single system can assume only discrete energy values Ei (the hypothesis
is reasonable for a finite quantum system). energy of the statistical ensemble is the sum of the
energies of the single systems,E =

∑
iNiEi, where Ni is the number of systems sharing the energy

value Ei.
The energy Ei of a single system is not constant, since the systems interacts with the reservoir
(say with the other systems); we can nevertheless define an average value as the ratio between the
total energy of the statistical ensemble and the number of its systems:

〈E〉 =
E
N

=
1

N
∑
i

NiEi =
∑
i

Ni
N
Ei =

∑
i

PiEi . (15.1)

In the last equality, the probabiity Pi = Ni/N that the system energy be Ei has been introduced.
In equilibrium conditions, the probabilities Pi are given by the canonical distribution (14.18), so
that the average energy can be expressed as

〈E〉 =
∑
i

PiEi =
1

Z

∑
i

giEie
−βEi . (15.2)

Note 1: Once the energy levels Ei of the system and their degeneracies gi (microscopic information)
as well as the value of the parameter β (that is of the temperature) are known, one can calculate
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the partition function Z, the average energy 〈E〉 and, as we will see, the other thermodynamical
quantities. The energy plays thus a primitive role in the statistical approach.

Note 2: The values Ei refer to the energy levels of the entire system. In practice, their accurate
knowledge is in most cases nearly impossible (typically when the particles of the system are
strongly interacting).

To better grasp the characteristics of the average energy of a system made by a large number N
of particles, let us begin with a simple, even if not realistic, example.

Example: Let us consider a thermodynamical system composed by N harmonic oscillators of equal
angular frequency ω, corresponding to the Einstein crystal already introduced in § 13.4. Each
harmonic oscillator can be on a non degenerate energy level εn = h̄ω (1/2 + n). The total
energy E of the thermodynamical system is the sum of the energies of the single oscillators.
Each level Ei of the total energy of the system corresponds to a very large number of possible
distributions of the total energy on the single oscillators; the levels Ei are thus degenerate,
and one easily understand that the degeneracy gi rapidly increases when the number N of
oscillators increases.

The conclusions of the previous example can be generalised to more complex systems. The energy
levels Ei of a system composed by a number N ' 1023 of particles are di particelle are very close
to each other (the distances between the levels are negligible with respect to the absolute values
Ei) and strongly degenerate.

In many cases, it is convenient to consider a continuous distribution of energy, as in (14.22) and
(14.24):

P (E) dE =
1

Z
ω(E) e−βE dE , Z =

∫
ω(E) e−βE dE , (15.3)

where ω(E) is the density of states, a function steeply increasing of energy.

Energy fluctuations

Let us now improve our understanding of the meaning of average energy and verify the possible
connection with the thermodynamical internal energy U .

Since the system is not isolated, one expects that its energy E fluctuates with respect to the
average value 〈E〉. However, if the system is very large, the number of particles interacting with
the reservoir is negligible with respect to the total number of particles, and one thus expects that
the fluctuations are not particularly large.

To draw quantitative conclusions, let us measure the fluctuations of the energy E with respect
to the average value 〈E〉 by means of the standard deviation σ =

√
σ2, where σ2 is the variance,

defined as:

σ2 =
〈

(E − 〈E〉)2
〉

= 〈E2〉 − 〈E〉2 . (15.4)

In equilibrium, the average 〈E〉 is calculated through the canonical distribution (15.2)

〈E〉 =
∑
i

EiPi =

∑
i giEie

−βEi∑
i gie

−βEi
. (15.5)

One can easily verify, making use of (15.5), that

∂〈E〉
∂β

= 〈E〉2 − 〈E2〉 , so that σ2 = −∂〈E〉
∂β

. (15.6)

Since by definition σ2 > 0, one gets ∂〈E〉/∂β < 0: the average energy decreases when β increases
(that is when the temperature T = 1/kBβ increases).

Viceversa, when the temperature T increases, the average energy 〈E〉 increases and the canonical
distribution tends to spreadout, that is σ increases.
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These first conclusions are independent of the system size. Let us now consider the behaviour of
systems with very large N (thermodynamical systems). The average energy depends on the size
of the system, 〈E〉 ∝ N . The β parameter is instead independent of the system size, so that

− ∂〈E〉
∂β

∝ N . that is σ2 ∝ N . (15.7)

The amount of absolute fluctuations, measured by the standard deviation σ, is thus proportional
to
√
N .

More important is, for our purposes, the amount of the relative fluctuations√
〈E2〉 − 〈E〉2
〈E〉

=
σ

〈E〉
∝
√
N

N
=

1√
N
, (15.8)

that decrease proportionally to the inverse of the square root of the system size. For N ' 1023,
the energy distribution of the system is strongly peaked around its average value: the average
value is nearly coincident with the maximum of the distribution an the relative fluctuations are
proportionally small.

Average energy and internal energy

A macrosopic system in thermal equilibrium with a reservoir has a well defined internal energy
U . From the microscopic point of view, the relative fluctuations of the energy E with respect to
the average value 〈E〉 are very small, ∝ 1/

√
N . For N → ∞ (thermodynamic limit) the relative

fluctuations tend to zero. If the energy E is the sum of only contributions internal to the system,
that is there are no contributions of external fields, it is reasonable to establish the equivalence

U = 〈E〉 (15.9)

for a thermodynamical system in thermal equilibrium with a reservoir.

Note: If the energy E contains contributions due to external fields, e.g potential energy of magnetic
fields, the simple equation U = 〈E〉 doesn’t hold. We will consider this topic in more detail
in Chapter 18, devoted to the statistical Thermodynamics of magnetic systems.

Energy fluctuations and heat capacity

By substituting β = 1/kBT in the canonical distribution, one can easily verify that

σ2 = 〈E2〉 − 〈E〉2 = kBT
2 ∂〈E〉
∂T

. (15.10)

Therefore, if one identifies 〈E〉 = U , one gets

σ2 = kBT
2 ∂U

∂T
= kBT

2 Cv (15.11)

where Cv is the constant-volume heat capacity of the system. The energy fluctuations are propor-
tional to the heat capacity. Actually, the largest is the heat capacity of a system, the largest is its
possibility of exchanging energy for a given temperature variation.
The extent of the relative energy fluctuations is

√
σ2

〈E〉
=

T
√
kBCv
U

. (15.12)

Example: For a monatomic ideal gas of N atoms, U = (3/2)NkBT and Cv = (3/2)NkB . The
extent of the relative energy fluctuations is thus

√
2/3N .

Note: Large values of the heat capacity Cv correspond to large local fluctuations of the energy of
a system which take place in correspondence of some phase transitions, e.g. near the critical
point in continuous phase transitions (see Chapter 23).
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15.2 Entropy

For an isolated system in thermodynamical equilibrium, the entropy S is connected to the total
number of equiprobable microstates by the relation (13.9):

S = kB ln Ω (15.13)

In the macroscopic Thermodynamic (Parts I and II), the entropy S is defined also for non-isolated
systems, provided they are in thermal and mechanical equilibrium. However, the number of mi-
crostates Ω is not univocally determined for a non-isolated system; in what follows, we show how
a statistical definition of entropy is possible even for non-isolated systems.

Entropy of the canonical ensemble

Let us first consider the entire canonical ensemble, composed by N copies of the given system.
The canonical ensemble is an isolated global system, with energy E ± δE , so that one can define
the total entropy of the canonical ensemble as

Sens = kB ln Ωtot , (15.14)

where Ωtot is the total number of microstates of the canonical ensemble (it was shown in § 13.3
that the uncertainty δE doesn’t significantly influence the value of Ωtot).
When the number N of systems composing the canonical ensemble is sufficiently large, the canon-
ical distribution (14.15) becomes dominant (see §14.3), so that Ωtot ' Ωcan: the total number of
microstates of the canonical ensemble is well approximated by the number of microstates of the
canonical distribution. Because N is arbitrarily large, one can substitute Ωtot with Ωcan in (15.14):

Sens = kB ln Ωcan . (15.15)

Average entropy of the system

Let us now consider the single system (composed by N particles), which is in thermal equilibrium
with the other N − 1 systems of the canonical ensemble. The average entropy of the system is
defined as

〈S〉 =
S
N

=
kB
N

ln Ωcan . (15.16)

The value of Ωcan can be obtained from (14.7)

Ωcan = N !
∏
i

gNi
i

Ni!
; ln Ωcan = lnN !−

∑
i

lnNi! +
∑
i

Ni ln gi (15.17)

where Ni are the numbers of systems on the different energy levels according to the canonical
distribution (14.15). Making use of the Stirling fluc, one obtains

〈S〉 =
kB
N

[
N lnN −N −

∑
i

Ni lnNi +
∑
i

Ni +
∑
i

Ni ln gi

]

=
kB
N

[(∑
i

Ni

)
lnN −

∑
i

Ni ln
Ni
gi

]
= kB

∑
i

[
Ni
N

lnN − Ni
N

ln
Ni
gi

]
= kB

∑
i

[
−Ni
N

ln
Ni
giN

]
(15.18)

so that the average entropy of the system becomes

〈S〉 = −kB
∑
i

Pi ln
Pi
gi

= −kB
〈
P

g

〉
, (15.19)
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where Pi are the probabilities of occupation of the different energy levels according to the canonical
distribution (14.15).

Note: When the degeneracy of the levels increases, ln(P/g) decreases and 〈S〉 increases.

Example: Let us consider a system in its ground state, with energy E0. The probabilities are
P1 = 1 and Pi = 0 for i 6= 1. If the level is not degenerate, then 〈S〉 = 0. When g increases,
〈S〉 increases too.

It is convenient to substitute the sum over the levels (i) with the sum over the states (j) in the
expression of the average entropy. The level i-th, with probability Pi, is made by gi states with
probabilities Pj , so that Pi = giPj . Therefore

〈S〉 = −kB
∑
i

Pi ln
Pi
gi

= −kB
∑
j

Pj lnPj = −kB 〈lnPj〉 . (15.20)

Note: The expression (15.20) of the entropy corresponds, to within the sign and the and the kB
dimensional constant, with the expression (13.41) of the quantity H of the Boltzmann H
theorem (§ 13.5). The same expression for entropy is used in the Information Theory.

Thermodynamical limit

We are considering systems composed by a very large number N of particles. For N → ∞ (in
the real cases for N ' 1023) the relative fluctuations of the energy E with respect to the average
value 〈E〉 are negligible, so that the system, although not isolated, can be considered with good
approximation as an energy with constant energy E ± δE. The thermodynamical internal energy
U has thus been identified with the average energy, U = 〈E〉.
The levels Ei for whicch the canonical probability Pi 6= 0 are confined within a relatively narrow
range of values, within which the differences between the values Pi (as well s gi) can be neglected
and the microstates can be considered as equiprobables, as for isolated systems.
If the Ωsys microstates corresponding to the canonical distribution for a system with very lrge num-
ber N of particles can be considered as equiprobable, Pj ' 1/Ωsys and 〈lnPj〉 = lnPj . Therefore

〈S〉 = kB ln Ωsys (15.21)

and the average value 〈S〉 of (15.20) can be identified with the macroscopic entropy S.

15.3 Heat, work and temperature

In this chapter we are considering non isolated systems, that can exchange energy with their
environment. From the macroscopic point of view, the exchange of energy corresponds to work or
to heat. We can now give a statistical interpretation of the difference between work and heat.
The internal energy U coincides, for a system in equilibrium with its environment when no external
fields are present, with the average energy 〈E〉. The average energy can be expressed as a sum
over the energy levels weighted by their canonical probabilities:

U = 〈E〉 =
∑

i
EiPi , (Pi = Ni/N ) . (15.22)

Heat and work

When a system reversibly interacts with its environment, the differential variation of the average
energy can be expressed as the sum of two different sets of terms:

d〈E〉 =
∑
i

Pi dEi +
∑
i

Ei dPi . (15.23)
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The first term of (15.23) depends on the variation of the energy values Ei of the levels, without
modifications of the probabilities Pi (probabilities of the canonical distribution). The energy of
the levels is modified (Fig. 15.1, levels) if the external macroscopic parameters, such as the volume,
are modified. The first term of (15.23) thus corresponds to the thermodynamical work,

d̄W =
∑
i

Pi dEi . (15.24)

The second term of (15.23) corresponds to a variation of the average energy 〈E〉 with no variation
of the energy levels, that is in the absence of thermodynamical work (Fig. 15.1, right) . The second
term of (15.23) thus corresponds to heat,

d̄Q =
∑
i

Ei dPi . (15.25)

E

W Q

Figure 15.1: Schematic representation of the different effect of work (left) and heat (right) on the
energy levels and on their population. Each dot schematically represents a system of the canonical
ensemble.

Heat, entropy and temperature

The reversible transfer of heat is connected to the entropy variation by the macroscopic relation
d̄Q = T dS (§ 4.4 and 6.3). Let us now analyse the statistical interpretation of this relation.
According to (15.20), the entropy S can be expressed as a function of the degeneracies gi and of
the canonical probabilities Pi of the energy levels of the system:

S = −kB
∑
i

Pi ln

(
Pi
gi

)
= −kB

∑
i

Pi [ln Pi − ln gi] . (15.26)

Taking into account that
∑
i dPi = 0, the differential dS is easily calculated:

dS = −kB
∑
i

ln

(
Pi
gi

)
dPi . (15.27)

The canonical distribution (14.18) connects the probability values Pi with the energy values Ei of
the levels:

Pi
gi

=
1

Z
e−βEi , ln

(
Pi
gi

)
= −βEi − lnZ , (15.28)

where Z =
∑
i e
−βEi is the canonical partition function.

Therefore, by substituting the values Pi/gi, the differential dS can be rewritten as a function of
the energy values Ei:

dS = −kB
∑

i
[−βEi − lnZ] dPi = kBβ

∑
i
Ei dPi + kB lnZ

∑
i
dPi (15.29)
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Taking into account that
∑
i dPi = 0 and considering the statistical expression (15.25) of heat d̄Q,

one finds the statistical relation between dS and d̄Q:

dS = kBβ
∑

i
Ei dPi = kBβ d̄Q . (15.30)

The comparison between the macroscopic and the statistical expressions of the relation between
dS and d̄Q

dS =
d̄Q

dT
= kBβ d̄Q (15.31)

leads to the connection between the statistical parameter β and the thermodynamical temperature
T already anticipated in § 14.3: β = 1/kBT .

Note 1: The parameter β has dimensions inverse to those of energy, while the product kBT has
the dimensions of energy. The ratio Ei/kBT appearing in the canonical distribution plays a
fundamental role in the evaluation of the population of energy levels. Since kB ' 8.6× 10−5

eV/K, one can easily see that, for T = 300 K, kBT ' 25 meV.

Note 2: As already observed in § 13.3, since 2019 the units of the seven base quantities of the
International System are referred to the values of seven fundamental constants, assumed as
exact. The Boltzmann constant is one of these. The kelvin, unit of temperature, is now
connected to the value of the Boltzmann constant as follows: The increase of temperature of
1 K gives rise to an increase of microscopic energy of kBT = 1.380649× 10−23 J.

Temperature and canonical distribution

By substituting β = 1/kBT , the canonical distribution (14.18) becomes

Pi =
1

Z
gi e
−Ei/kBT , Z =

∑
i

gi e
−Ei/kBT . (15.32)

Let us now advance our understanding of the statistical meaning of the temperature and of the
partition function Z. Once a temperature value T has been fixed,

if Ei � kBT, then e−Ei/kBT ' 0

if Ei � kBT, then e−Ei/kBT ' 1
(15.33)

The partition function Z =
∑
gi exp(−Ei/kBT ) counts the states accessible to the system at the

temperature T (the states whose Ei � kBT are weighted by gi, the states whose Ei � kBT are
weighted zero).

Note: The transitions between energy levels differing by ∆E ≤ kBT can take place spontaneously
and are said to be “thermally activated”

When the temperature T increases, the number of levels such that Ei < kBT increases; therefore
Z increases. In more detail, when T increases:

if Ei � kBT, Pi ' 0

if Ei ' kBT, Pi increases

if Ei � kBT, Pi ' gi/Z decreases because Z increases

(15.34)

When the temperature increases, the barycentre of the canonical distribution moves towards higher
energies, its absolute width σ increases but its relative width σ/〈E〉 increases.

This chapter is dedicated to macroscopic system containing a very large number N of particles.
This allowed us to find the connection between the statistical parameter β and the thermodynamic
temperature T . A deeper understanding of the meaning of the factor kBT in the canonical distri-
bution will be possible after the comparison of the macroscopic systems with the systems composed
by one particle which will be made in Chapter 16, il suo ruolo per sistemi piccoli, tipicamente con
N = 1 con il suo ruolo per i sistemi macroscopici.
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15.4 Partition function and thermodynamical quantities

The knowledge of the canonical partition function corresponds to the knowledge of the thermody-
namical properties of system. In the following, we will see how the thermodynamical quantities
(internal energy, entropy, enthalpy, and so on) can be obtained from the partition function.

If the external constraints are known (e.g. the volume V for a hydrostatic system or the magnetic
field H for a magnetic system), the energy levels Ei and their degeneracies gi can, at least in
principle, be calculated. It is the possible to obtain the partition function

Z =
∑

i
gie
−βEi =

∑
i
gie
−Ei/kBT (15.35)

as a function of the temperature.

Note: The computation of the levels Ei is far from trivial: it can be relatively easy for a system of
non-interacting particles, such as an ideal gas, it can however be prohibitively difficult for a
system of strongly interacting particles.

Once the partition function Z iis known as a function of the temperature T and of the external
parameters (e.g. V,H), one can calculate all the thermodynamical functions of a system. For
concreteness, let us consider an hydrostatic system, for which Z = Z(V, T ).

Internal energy

By differentiating (15.35) with respect to T , the average energy of the system 〈E〉 can be expressed
as

〈E〉 = kB T
2

(
∂

∂T
lnZ

)
V

. (15.36)

As already stressed in § 15.1, if the energy E contains only contributions internal to the system,
that is if there are no contributions due to external fields (e.g. magnetic or electric), one can
establish theequivalence of the thermodynamical internal energy with the average energy, U = 〈E〉.
Therefore, through (15.36), one can connect the internal energy to the partition function:

U = kB T
2

(
∂

∂T
lnZ

)
V

. (15.37)

The energy levels Ei are defined to within an arbitrary ε. If the energy levels are modified,

Ei → E∗i = Ei + ε , (15.38)

the partition function is modified too:

Z → Z∗ = Z e−ε/kBT (15.39)

As a consequence, Z is defined to within a multiplicative factor. Using (15.37), one can see that
also the internal energy U is defined to within the arbitrary constant ε:

U → U∗ = U + ε . (15.40)

The canonical distribution is instead insensitive to the additive constant of the energy; È rilevante
notare che la distribuzione canonica è invece insensibile alla costante additiva dell’energia; as a
matter of fact

P ∗i =
1

Z∗
e−E

∗
i /kBT =

1

Ze−ε/kBT
e−Ei/kBT e−ε/kBT =

1

Z
e−Ei/kBT = Pi (15.41)
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Entropy

Starting from (15.20),

S = −kB
∑
i

Pi ln

(
Pi
gi

)
, (15.42)

and substituting the values Pi given by the canonical distribution, Pi/gi = exp(−Ei/kBT )/Z, one
can easily verify that

S =
〈E〉
T

+ kB lnZ =
U

T
+ kB lnZ , (15.43)

where the internal energy U is connected to the partition function Z through (15.36). Therefore,
also the entropy S can be obtained from the knowledge of the partition function Z.

Let us verify the effect on entropy of the arbitrary additive constant of the energy ε dell’energia.
Since

U → U∗ = U + ε , Z → Z∗ = Z e−ε/kBT , (15.44)

by means of (15.43) one finds

S → S∗ = S , (15.45)

that is the entropy S is independent of the constant of energy. As a matter of fact, the entropy
depends on the number of microstates, that is independent of their energy values.

Let us now compare the expression (15.43) of the entropy with the expression (15.21) obtained
at the end of § 15.2. For a system with a very large number of particles, the levels Ei for which
the canonical probability is substantially relevant, that is Pi 6= 0, made a relatively narrow band
〈E〉 ± δE, with 〈E〉 = U . Within that band, the Ωsis microstates are substantially equiprobable.
The relevant contribution to the partition function is given by the states included in that energy
band, so that

Z =
∑
i

gi e
−Ei/kBT = Ωsis e

−〈E〉/kBT (15.46)

and

kB ln Z = kB ln Ωsis − 〈E〉/T = S − U/T , (15.47)

in agreeement with (15.43).

Helmholtz free energy

Starting rom the definition (7.16) of the Helmholtz function, F = U − TS, and making use of
(15.43), one finds

F = −kB T lnZ . (15.48)

The particularly simple connection between F and Z can be explained by considering that, for a
system whose independent variables are T and V , the knowledge of F (T, V ) corresponds to the
knowledge of all thermodynamical properties of the system, as is the case for the knowledge of
Z(T, V ). Otherwise stated, for a system whose independent variables are T and V , the canonical
statistical approach corresponds to the macroscopic Helmholtz representation (se Chapters 7 and
8).

Note 1: Let us consider a spontaneous process connecting two equilibrium states at constant T
and V . As already seen in § 8.3, the process gives rise to a reduction of F , corresponding to
an increase of the entropy of the Universe. Equation (15.48) shows that the process gives rise
to an increase of Z. The partition function Z plays the same role for a system at constant
(T, V ) that the entropy S plays for an isolated system.

Note 2: By inverting (15.48), one finds Z = exp(−F/kBT ). The canonical distribution can thus
be expressed in the alternative form

Pi = gi e
−(Ei−F )/kBT . (15.49)
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For T = 0 the Helmholtz function corresponds to the internal energy, F = U − TS = U ; from
(15.49) one can see that for T = 0 the probability is Pi = 0 for any i unless Ei = F ; otherwise
stated, for T = 0 only one level can be populated, the ground state with energy E0 = F ; lthe
internal energy is then U = E0.

Pressure

Since p = −(∂F/∂V )T , from (15.48) one finds

p = kB T

(
∂

∂V
lnZ

)
T

. (15.50)

Enthalpy

Starting from H = U + pV , making use of (15.36) and (15.50), one finds

H = kB T
2

(
∂

∂T
lnZ

)
V

+ kB TV

(
∂

∂V
lnZ

)
T

. (15.51)

Gibbs free energy

Starting from G = H − TS one finds

G = kB TV

(
∂

∂V
lnZ

)
T

− kB T lnZ . (15.52)

15.5 Entropy and temperature of the ideal gas

Equations (15.24) and (15.25) of § 15.3 show that work and heat can be statistically interpreted in
terms of the energy levels of a system and of their occupation.

Let us now try to better understand those concepts, as well as the statistical meaning of entropy
and temperature.

To that aim, let us refer to a particularly simple case, say to the monatomic ideal gas and let εi
be the energies of the levels of single atoms and ni the corresponding occupation numbers.

If external fields are absent, the internal energy of the system corresponds to the average total
energy and can be expressed as a function of the energies εi of single atoms as

U = 〈E〉 =
∑

i
εi 〈ni〉 (15.53)

The differential dU can be decomposed as

dU = d̄Q+d̄W = T dS − p dV
= d〈E〉 =

∑
i
εi d〈ni〉+

∑
i
〈ni〉 dεi (15.54)

A variation dV of the system volume gives rise to a variation of the energy levels εi induced by the
quantisation of the linear momentum: if the volume decreases, the levels increase their distance,
and viceversa. Equation (15.54) shows that heat and work correspond to the variations of the
populations ni and of the values εi, respectively.

Let us now verify how (15.54) accounts for different possible transformations of the monatomic
ideal gas. For each transformation, the corresponding plot in the T − S plane is considered.
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Reversible adiabatic compression

In an adiabatic compression no heat is exchanged, so that

dU = d̄W =
∑

i
〈ni〉 dεi . (15.55)

Both internal energy U and temperature T increase, while the entropy S remains constant.

The work done on the system gives rise to an increase of the separation of energy levels. The
distribution of the atoms on the levels is instead not modified, because there is no heat exchange.
However, the distribution with respect to the energy axis is modified (Fig. 15.2, left).

Reversible isothermal compression

In an isothermal compression of te ideal gas both temperature and internal energy remain constant:
dU = 0 and dT = 0. Heat and work have equal values and opposed sign. The gas gives up heat to
its environment and reduces its entropy.

d̄W = −d̄Q , ⇒
∑

i
εi d〈ni〉 = −

∑
i
〈ni〉 dεi (15.56)

The work made on the systems gives rise to an increase of the separation of the levels. The
distribution of the atoms on the levels is modified too, since there is heat exchange. However, the
distribution with respect to the energy axis is not modified (Fig. 15.2, center).

T

S p1
p2

T

S p1
p2

T

S p1
p2

e e e

Figure 15.2: Schematic representation of the effects of three different transformations of the ideal
gas on the energy levels and on their populations. From left to right: adiabatic compression,
isothermal compression, heating at constant volume. The two isobaric curves in the T − S plane
refer to two pressure values p2 > p1.

Heating at constant volume

The system only exchanges heat, the work is zero.

dU = (d̄Q)V =
∑

i
εi d〈ni〉 (15.57)

The interna energy U , the temperature T and the entropy S increase.

The energy levels are not modified, since the work is zero. The distribution of the atoms is modified
with respect to both the single levels and the energy axis (Fig. 15.2, right).
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Temperature and entropy

In the simple transformations of the ideal gas considered above, a simple interpretation of the
variations of temperature and entropy and of their difference is possible in relation to the occupation
of the atomic energy levels:

a) a variation of temperature T corresponds to a variation of the distribution of the atoms with
respect to the energy axis;

b) a variation of entropy S corresponds to a variation of the distribution of the atoms with
respect to their energy levels.

We will find a similar analysis later on, when treating the statistica of paramagnetic systems in
Chapter 18.

Heating at constant pressure

If the heating is performed a constant pressure, the gas does work on its environment. All terms
of the energy balance

dU = d̄Q+d̄W =
∑

i
εi d〈ni〉+

∑
i
〈ni〉 dεi (15.58)

are different from zero.
The internal energy U , the temperature T and the entropy S increase, and the energy levels are
modified.
The heat exchanged at constant pressure corresponds to the variation of enthalpy:

dH = (d̄Q)p = dU −d̄W = dU + p dV =
∑

i
εi d〈ni〉 . (15.59)
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Chapter 16

Statistics of particles

In Chapter 14 we introduced the canonical ensemble, made by N copies of a macroscopic system,
composed in turn by a very large number N of particles, and representing thus a thermodynamic
system. We then derived the canonical distribution, that was connected to the thermodynamical
quantities in Chapter 15.

As anticipated at the beginning of Chapter 14, the canonical formalism can be applied, with the due
cautions, also to canonical ensembles made by N microscopic systems composed by a single particle
(e.g. an atom, a molecule, a normal mode of vibration) and as such being not thermodynamical
systems.

In this chapter, we introduce the application of statistical ensembles to systems composed by one
particle.

To this aim, it is preliminarily necessary to clarify the fundamental aspect of the distinguishability
of identical particles (§ 16.1). The problem, of genuine quantum nature, has remarkable theoretical
implications as well as important practical applications. The problem was not considered when
treating macroscopic (thermodynamical) systems in the previous chapters 14 and 15, because
macroscopic systems are clearly distinguishable.

The fundamental characteristics of the statistics of identical particles are studied in § 16.2. The
distributions of Maxwell-Boltzmann for distinguishable identical particles, of Bose-Einstein in-
distinguishable particles of integer spin and of Fermi-Dirac for the indistinguishable particle of
half-integer spin are introduced in 16.3.

The Maxwell-Boltzmann distribution for distinguishable identical particles formally corresponds
to the canonical distribution of Chapter 14 applied to systems composed by only one particle
(N = 1) and is considered in detail in § 16.4. The different treatment for distinguishable and
indistinguishable identical particles will allow, at the end of § 16.4, a satisfactory explanation of
the Gibbs paradox concerning the mixing of gases(§ 11.2).

Some properties of the Bose-Einstein and Fermi-Dirac statistics are further analysed in § 16.5 and
16.6, respectively.

16.1 Distinguishability and indistinguishability

Let us consider a system composed by N identical particles (N electrons, N hydrogen atoms, N
normal modes of a crystal, etc).

For a system composed by a very large number of particles (N ' 1023), one cannot consider
the system in a stationary state described by a single wavefunction (as is instead possible for a
many-electrons atom). Because of the interactions, though weak, with the environment, the total
energy of the system is not perfectly constant, E±δE, and the system continuously moves through
different microscopic states. It is thus necessary to resort to a statistical approach, in which one
refers to the stationary states of the single particles, that can vary slowly as time goes on, due to
the weak interactions among the particles and with the environment.

205



206 P. Fornasini: Lectures on Thermodynamics

In classical Mechanics, identical particles are always distinguishable, because position and velocity
can be evaluated, at least in principle, with sufficiently small uncertainty to allow an univocal
determination of their trajectory.
In quantum Mechanics, the uncertainty principle forbids the simultaneous precise evaluation of
position and velocity of a particle. Therefore, the trajectory of particles cannot be precisely
defined. Let us consider, for example, two particles, 1 and 2, approaching each other, interacting
and finally moving away; after the interaction, one cannot distinguish particle 1 from particle 2,
because it was impossible to distinguish their trajectories.

The analysis of the quantum behaviour of matter led to separately considering not only distin-
guishable and indistinguishable identical particles, but also, among the indistinguishable particles,
the particles with integer spin and the particles with half-integer spin.
There exist thus three different types of particles, characterised by different properties of symmetry
of their wavefunctions and by different statistical distributions.

a) Identical distinguishable particles

In quantum Mechanics, like in classical Mechanic, the atoms of a crystal, that oscillate around
fixed lattice positions, as well as the normal vibrational mode, are distinguishable.
Identical distinguishable particles obey the so called Maxwell-Boltzmann statistics, as we will see
later on.

The wavefunction of a stationary state of two distinguishable identical particles 1 and 2 is the
product of single-particle wavefunctions:

Ψ = C ψa(1)ψb(2) , (16.1)

where a and b label two possible states (which can also coincide) and C is a normalisation constant.
Two distinguishable identical particles 1 and 2 can be distributed in two states a nd b in 4=2×2
different modes, corresponding to the 4 different wavefunctions

ψa(1)ψb(2) , ψa(2)ψb(1) , ψa(1)ψa(2) , ψb(1)ψb(2) . (16.2)

By generalising to N particles, the wavefunctions of each possible stationary state of the N particles
are products of the N single-particle wavefunctions, each one corresponding to a well determined
state:

Ψ = C ψa1(1)ψa2(2) · · · ψaN (N) , (16.3)

where the ai indices label the possible single-states (which can also coincide).
N distinguishable identical particles can be distributed among N states in N ×N different modes
(each particle can be in each one of the N states).

Example: The atoms of an Einstein crystal, already considered in § 13.4, are a good example of dis-
tinguishable particles, sono un esempio di particelle distinguibili, because they are constrained
to the positions of the crystal lattice.

b) Indistinguishable particles with integer spin

Atoms of 4He, photons (quanta of the electromagnetic field) and phonons (quanta of the normal
vibrational modes) are examples of particles with integer spin, that obey the Bose-Einstein statistic
and are thus called Bosons.

The properties of systems composed by bosons are interpreted by assuming that their wavefunction
is symmetrical with respect to the exchange of any two particles. To guarantee the symmetry, the
wavefunction of two bosons 1 and 2 has to be expressed as

Ψ = A [ψa(1)ψb(2) + ψb(1)ψa(2)] , (16.4)

where a and b are two possible states (which can also coincide) and A is a normalisation constant.
The exchange of the two bosons 1 and 2 doesn’t modify the wavefunction.
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The two bosons 1 and 2 can be distributed between the states a and b in 3 different ways, corre-
sponding to the 3 wavefunctions, respectively

[ψa(1)ψb(2) + ψb(1)ψa(2)] , ψa(1)ψa(2) , ψb(1)ψb(2) . (16.5)

In comparison with tdistinguishable particles, the bosons have a higher probability of gouping in
the same state.

The wavefunction of each stationary state of N bosons is obtained by summing over all the possible
permutations of the N particles:

Ψ = A [ ψa1(1)ψa2(2) · · · ψaN (N)

+ ψa1(2)ψa2(1) · · · ψaN (N)]

+ . . .

+ the other permutations ] , (16.6)

where the indices ai label the possible single-particle states (which can also coincide).

Example 1: The elementary particles with integer spin, such as mesons (e.g. pions) , are bosons.

Example 2: The atoms or which the sum of protons, neutrons and electros is an even number, so
that the total spin is integer (e.g. the isotope 4He of helium) are bosons.

Example 3: The photons, that is the quanta of energy of the electromagnetic field, to which the
spin 1 is attributed, are bosons. Photons can be easily created and annihilated: the photon
statistics is thus not constrained to a constant number N .

Example 4: The phonons, that is the quanta of energy of the vibrational modes of crystals, obey
the Bose-Einstein statistics and are therefore bosons. Also phonons, like photons, can be easily
created and annihilated: their statistics is thus not constrained to a constant number N .

c) Indistinguishable particles with half-integer spin

Electrons, protons, neutrons, atoms of 3He are examples of particles with half-integer spin, that
obey the Fermi-Dirac statistic and are thus called Fermions.

The properties of systems composed by fermions are interpreted by assuming that their wave-
function is anti-symmetrical (that is it changes its sign) with respect to the exchange of any two
particles. To guarantee the anti-symmetry, the wavefunction of twofermions 1 and 2 has to be
expressed as

Ψ = A [ψa(1)ψb(2)− ψb(1)ψa(2)] = A

∣∣∣∣ ψa(1) ψa(2)
ψb(1) ψb(2)

∣∣∣∣ , (16.7)

where a and b label two possible states and A is a normalisation constant.

Two fermions 1 and 2 can be distributed in two states a and b in only one way, one fermion per
state; as a matter of fact, if two fermions are in the same state, the wavefunction is zero (Pauli
exclusion principle).

The expression of the wavefunction as a determinant allows its easy extension to the case of N
fermions (N ×N determinant).

Example 1: The elementary particles with half-integer spin such as leptons (e.g. electrons, muons,
neutrinos) and baryons (e,g, oritons and neutrons) are fermions.

Example 2: The atoms or which the sum of protons, neutrons and electros is an odd number, so
that the total spin is half-integer (e.g. the isotope 3He of helium) are fermions.

Two possible statistical approaches

The statistical treatment of a system of N particles can be performed by two different approaches,
both based on the canonical formalism (see the beginning of Chapter 14).
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First approach

The first approach consists in considering

- a macroscopic system composed by all the N particles,

- a canonical ensemble composed by N copies of the macroscopic system; . these copies are
obviously distinguishable and weakly interacting.

The validity of this approach (depicted in Chapter 14) doesn’t depend on the type of particles (dis-
tinguishable or not) nor on the extent of their interactions. In any case, the canonical distribution
holds. Once the energy levels Ei of the entire system are known, one can calculate the partition
function (14.17)

Z =
∑

j
e−Ej/kBT ; (16.8)

(the sum is here on the states j, not on the levels i, of the entire system). Once the the partition
function is known, one can calculate the thermodynamical functions (§ 15.4). Particularly direct
is the relation (15.48) between the partition function and the Helmoltz function:

F = −kB T lnZ . (16.9)

The probability that the entire system is in the j-th state is

Pj = =
Nj
N

=
1

Z
e−Ej/kBT = e−(Ej−F )/kBT . (16.10)

If (and only if) the particles are weakly interacting, the energies Ej of the states of the entire
system can be expressed as sums of the energies of the states of single particle εs, so that

Z =
∑

j
e−(n1ε1+n2ε2...)/kBT (16.11)

The average number of particles in the single-particle state s with energy εs is then

〈ns〉 =
∑

j
ns Pj =

1

Z

∑
j
ns e

−(n1ε1+n2ε2...)/kBT (16.12)

(We are here considering the states, not the levels, of single particle; different states can correspond
to the same degenerate energy level).
For distinguishable particles and for bosons, the numbers ns can assume any value, for fermions
the numbers ns can only be 0 or 1 (Pauli exclusion principle).
The distribution of the energy on the single levels εi (given by the ni values) depends on the
distinguishability properties of the particles. Therefore, also the computation of Z depends on the
particles distinguishability. To take into account these properties, one has to resort to the second
approach.

Second approach

The second approach consists in considering the single-particle statistics, to which this chapter is
specifically dedicated. In this second approach, the distinguishability properties of the particles
has to be taken into due account.

a) For distinguishable and weakly interacting particles

– each system is composed by a sigle particle,

– the canonical ensemble is composed by N copies, distinguishable and weakly interacting,
of the single particle; the canonical ensemble has constant energy E ± δE.

This approach leads to the canonical distribution for single particles, called Maxwell-Boltzmann
(M.B.) distribution.

b) For indistinguishable particles, two procedures, different from the canonical one, have to be
used wit, leading to two types of distributions:

– the distribution of Bose-Einstein (B.E.) for particles with integer spin;

– the distribution of Fermi-Dirac (F.D.) for particles with half-integer spin.
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16.2 Computation of microstates

The different properties of identical particles lead to different distribution laws. To determine the
different distribution laws, is is convenient to follow the same procedure which in Chapter 14 led
to the canonical distribution. One computes the number of microstates which correspond to a
generic distribution {ni} and one determines then the distribution which maximises the number
of microstates.
Let N be te number of particles, εi the energy of the single particle levels and gi the levels
degeneracy, and let ni be the number of particles sharing the energy εi. The umber of microstates
for the different types of particles is computed below. In the following § 16.3 the most probable
distribution will be determined for each type of particles.

a) Distinguishable identical particles

To compute the number ΩMB of microstates corresponding to a distribution {n1, n2, n3...ni...} for
distinguishable identical particles per particelle identiche distinguibili one follows the same proce-
dure as that of § 14.1 leading to the canonical distribution (that actually refers to distinguishable
identical systems). Let us thus re-consider equation (14.7), taking into account the differences of
the two cases and substituting N ! by N ! and the values Ni with the values ni:

ΩMB = N !
∏
i

gni
i

ni!
(16.13)

b) Indistinguishable particles with integer spin (bosons)

The computation of the microstates of bosons differs from that for distinguishable particles and
requires a different procedure. In the i-th level gi microstates are possible. The ni particles can
distribute over the gi states of the i-the level in any way.
To facilitate the computation, let us schematically consider the ni particles on the i-th level mixed
with gi − 1 walls (Fig. 16.1): particles and walls can be globally permuted in (ni + gi − 1)! ways.
However, the separate permutations of the ni particles and of the gi − 1 walls correspond to the
same microstate, so that a division by ni! and by (gi − 1)! is necessary.

Figure 16.1: Scheme useful for the computation of the boson microstates corresponding to ni
particles on an energy level with degeneracy gi. Black dots represent the ni particles, vertical lines
represent the gi − 1 walls.

The total number of microstates is obtained by multiplying the number of microstates correspond-
ing to each separate level:

ΩBE =
∏
i

(ni + gi − 1)!

ni!(gi − 1)!
(16.14)

c) Indistinguishable particles with half-integer spin (fermions)

In the case of fermions, at most one particle can be occupy each one of the available states. The
number of particles on a given level cannot exceed the degeneracy of the level: ni ≤ gi.
Let us first consider a single given energy level: the first particle to be inserted in the i-th level has
gi different possibilities, the second one has gi − 1 possibilities, and so on up to the last particle,
which has gi−ni+1 possibilities. It is however necessary to take into account that the permutations
of the ni particles correspond to the same microstate.
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The total number of microstates is obtained by multiplying the number of microstates correspond-
ing to each separate level:

ΩFD =
∏
i

gi(gi − 1)(gi − 2)...(gi − ni + 1)

ni!
=
∏
i

gi!

ni!(gi − ni)!
(16.15)

d) Indistinguishable particles, classical limit

We have seen above that the number of microstates is different for the three cases: distinguishable
particles, bosons, fermions.
It is however relevant that the numbers of microstates of bosons and fermions approach the same
value when the populations of the single levels become more and more diluted, so that the average
number of particles per level is much smaller than the level degeneracy. This situation becomes
typically more probable when the temperature increases,
When ni � gi, that is when the levels are little populated, the following appeoximations can be
made in the computation of microstates for bosons and fermions, respectively:

forr ΩBE : (ni+gi−1)!
(gi−1)! = (gi + ni − 1)(gi + ni − 2)....gi ' gni

i

for ΩFD : gi(gi − 1)(gi − 2)...(gi − ni + 1) ' gni
i

Therefore the number of microstates tends to the same limit for both bosons and fermions:[
ΩBE

ΩFD

]
−→

∏
i

gni
i

ni!
= Ωcl (16.16)

The value Ωcl is the classical limit for indistinguishable particles.
The value Ωcl of (16.16) differs by a factor N ! from the value ΩMB of (16.13) for identical dis-
tinguishable particles. The indistinguishability reduces by a factor N ! the number of microstates
corresponding to a given distribution. This difference between distinguishable and indistinguish-
able particles is the base for explaining, at the end of 16.4, the Gibbs paradox concerning the
mixture of ideal gases (see § 11.2).

16.3 Most probable distributions

Once the number Ω of microstates, corresponding to a given distribution {n1, n2, n3...ni...} of the
particles on their energy levels, has been calculated for each type of particle, one can determine
the corresponding most probable distributions.
To this aim, we resort to the same procedure used in § 14.1 to obtain the canonical distribution
for thermodynamical systems.
Let us assume that all microstates are equiprobable in equilibrium conditions and maximise ln Ω
for the different types of particles, with the constraints

∑
ni = N and

∑
εini = E, makin use of

the Lagrange multipliers method.
Without going into the mathematical details, let us list below the results, expressed both in terms
of the ni values and of the occupation indices ni/gi.

a) Distinguishable identicl particles: Maxwell-Boltzmann

For identical distinguishable particles, the most probable distribution is the Maxwell-Boltzmann
distribution (MB)

ni =
gi

eα+βεi
,

ni
gi

=
1

eα+βεi
= e−α−βεi (16.17)

The MB distribution corresponds to the canonical distribution of § 14.1, the only difference being
that here it refers to weakly-interacting single particles instead of thermodynamical systems. We
will study the MD distribution in more detail in § 16.4.
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b) Indistinguishable particles with integer spin: Bose-Einstein

For identical indistinguishable particles with integer spin, the most probable distribution is the
Bose-Einstein distribution (BE):

ni =
gi

eα+βεi − 1
,

ni
gi

=
1

eα+βεi − 1
(16.18)

We will study the BE distribution in more detail in § 16.5.

c) Indistinguishable particles with half-integer spin: Fermi-Dirac

For identical indistinguishable particles with half-integer spin, the most probable distribution is
the Fermi-Dirac distribution (FD):

ni =
gi

eα+βεi + 1
,

ni
gi

=
1

eα+βεi + 1
(16.19)

The denominator in (16.19) cannot be less than one, so that ni/gi ≤ 1, or ni ≤ gi. The occupation
index cannot be larger than one, as expected from the anti-symmetry of the fermions wavefunction,
and according to the Pauli exclusion principle.

In this respect, the FD is very different from the MB and BE distributions, for which the occupation
index ni/gi can be only limited by the total number of particles N .

We will study the FD distribution in more detail in § 16.6.

d) Indistinguishable particles, classical limit

A synthetic way for representing and comparing the three distributions MB, BE and FD consists
in expressing them by means of the inverse of the occupation index ni/gi. The three distributions
can be summarised in a single formula, in which the differences are expressed by a parameter δ:

gi
ni

+ δ = eα+βεi , where δ =

 0 (MB)
+1 (BE)
−1 (FD)

(16.20)

The differences among the three distributions are negligible when gi/ni � 1, that is when ni � gi
say when the levels are loosely populated.

As we have seen above, in these situations the number of mcrostates ΩBE (16.14) and ΩFD (16.15)
tend to the classical limit Ωcl (16.16).

The resulting distribution for ni � gi is thus

ni '
gi

eα+βεi
,

ni
gi
' 1

eα+βεi
, (16.21)

Equation (16.21) is identical to (16.17): the distribution doesn’t depend on the particles distin-
guishability. The computation of microstates is however different, according to (16.13) and (16.16);
the difference is due to the factor N !, that doesn’t influence the maximisation procedure, since
d lnN ! = 0, but influences the calculation of the entropy S.

Important remark

According to what already said in relation to the canonical distribution in Chapter 14, the four
single-particle distributions considered above are the most probable, not the uniques. However,
for very large values of N (typically N ' 1023) the most probable distribution becomes largely
dominant.
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The β parameter

The β parameter is present in all the distributions, as the Lagrange multiplier connected to the
energy conservation,

∑
εini = E.

For all the distributions, the β parameter characterises the thermal equilibrium. The demonstration
can be performed by the same procedure of § 14.3, that is by considering two ensembles of particles
in thermal contact and verifying that the two ensembles share the same value of β.

The identification β = 1/kBT is made by supposing that at least one of the ensembles obeys the
MB distribution.

The α parameter

Also the α parameter is present in all the distributions, as the Lagrange multiplier connected o
the conservation of the number of particles,

∑
ni = N .

The computation of the α parameter is different for the three distribution. It is relatively simple
for the Maxwell-Boltzmann distribution (§16.4), where, similarly to the case of the canonical
distribution, it gives rise to the molecular partition function z; it is more more complex for the
Bose-Einstein (§16.5) and Fermi -Dirac (§16.6) distributions.

A particular case of the Bose-Einstein distribution is represented by systems for which the number
N is not a constant, for example systems composed by photons or phonons, which can be created
or annihilated. In such cases, the Lagrange multiplier for the conservation of particles doesn’t exist
and α = 0

16.4 Maxwell-Boltzmann statistics

Let us now consider in more detail the Maxwell-Boltzmann distribution for distinguishable particles
and the classical approximate distribution for indistinguishable particles.

In particular, we will establish a connection between the Maxwell-Boltzmann distribution for sin-
gle particles composing a thermodynamical system and the canonical distribution for the entire
thermodynamical system.

16.4.1 Molecular and canonical partition functions

The normalisation condition
∑
ni = N of the Maxwell-Boltzmann distribution (16.17) and of the

classical limit of the quantum distributions (16.21) imposes that

N =
∑

i
ni =

1

eα

∑
i

gi
eβεi

(16.22)

so that

e−α =
N∑

i gie
−βεi

=
N

z
, with z =

∑
i
gie
−βεi . (16.23)

The quantity z is the molecular partition function, which formally corresponds to the canonical
partition function Z of thermodynamical systems introduced in § 14.3.

The occupation index of the energy level i can be re-written as

ni
gi

=
N

z
e−εi/kBT (16.24)

The distributions (16.17) and (16.21) can be rewritten, in terms of probabilities of levels, as

pi =
ni
N

=
1

z
gi e
−βεi . (16.25)
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Connection between the partition functions Z and z

The two partition functions, canonical Z and molecular z, although formally similar, refer to very
different situations:

Z is the sum over the states of the entire system of N particles and is connected to the canonical
distribution of macroscopic systems; the knowledge of Z is equivalent to the knowledge of
te thermodynamical properties of the system (see § 15.4), so that, once Z is known, all
thermodynamical functions of a system can be calculated;

z is the sum over the states of single particle.

A useful connection can nevertheless be established between the two partition functions z and Z.

For weakly interacting identical particles, the energy Ej of the j-th state of the thermodynamical
system composed by N particles is connected to the single-particle energy values εi by the relation

Ej =
∑

i
niεi , (16.26)

where ni is the number of particles on the i-th energy level, of energy εi. Therefore

Z =
∑

j
e−βEj =

∑
j
e−β(n1ε1+n2ε2...) , (16.27)

where j labels the states of the system (not the levels), so that the degeneracy factors g are absent.

Let us now substitute the sum over the states j of the system with the sum over all the possible
distributions {n1, n2, ...} of the system energy on the single-particle energy levels εi, taking into
account their degeneracies gi.

For distinguishable particles, each distribution corresponds to the number ΩMB microstates given
by (16.13), so that:

Z =
∑

{n1,n2,...}

(
N !
∏
i

gni
i

ni!

)
e−β(n1ε1+n2ε2...)

=
∑

{n1,n2,...}

N !∏
ni!

(
g1e
−βε1

)n1
(
g2e
−βε2

)n2
...

=
(
g1e
−βε1 + g2e

−βε2 + ...
)N

=
(∑

i
gi e
−βεi

)N
= zN , (16.28)

where in the last line the expression of the N -th power of a binomial has been exploited.

According to (16.23), z = eα/N , so that the logarithm of Z is

lnZ = N ln z = Nα−N lnN . (16.29)

For indistinguishable particles in the classical limit (Bose-Einstein or Fermi-Dirac with gi � ni),
the number of microstates corresponding to a distribution {n1, n2, ...} is given by (16.16), say

Ωcl =
1

N !
ΩMB (16.30)

so that Z = zN/N !.

To schematically summarise the two cases (distinguishable identical particles and indistinguishable
particles in the classical limit), the relations between canonical and molecular partition functions
are:  Distinguishable particles

ZMB = zN

  Indistinguishable particles
(classical approx.)
Zcl = zN/N !

 (16.31)
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16.4.2 Examples

Example 1: System of harmonic oscillators

Let us consider a system composed by N harmonic oscillators of equal angular frequency angolare
ω = 2πν. The energy levels are εn = h̄ω (1/2 + n), where h̄ is the reduced Planck constant and
n ≥ 0 is an integer number.

This example is similar to the example of the Einstein model already introduced in § 13.4, within
the microcanonical approach. However, while in § 13.4 we considered an isolated system composed
by N harmonic oscillators and computed the microstates of the entire system, here we focus our
attention on each single oscillator in thermal contact with a reservoir made by other N − 1 similar
oscillators. The N oscillators can be the normal modes of a crystal, instead of the single atoms, and
can in any case be considered as identical distinguishable particles obeying the Maxwell-Boltzmann
distribution.

The energy levels of harmonic oscillator are not degenerate, gi = 1: to each level only one state
corresponds. The molecular partition function (14.17) is

z =

∞∑
n=0

e−βh̄ω(1/2+n) = e−βh̄ω/2
∞∑
n=0

(
e−βh̄ω

)n
=

e−βh̄ω/2

1− e−βh̄ω
(16.32)

where the last equality is based on on the equation
∑∞
n=0 x

n = 1/(1 − x) if |x| < 1. Examples of
partition functions for the harmonic oscillator are shown in Fig. 16.2, left.

The Maxwell-Boltzmann distribution

pn =
1

z
e−βεn =

1

z
e−εn/kBT (16.33)

shows that, for a given temperature T , the probability pn that an oscillator have the energy εn
exponentially decreases when the energy increases (Fig. 16.2, right).

The canonical partition function of the entire system is

Z = zN =

[
e−βh̄ω/2

1− e−βh̄ω

]N
(16.34)

In more realistic cases, oscillators (normal modes) of different frequencies ωs have to be considered.
In such cases, the particles (the oscillators) are not identical. The canonical partition function of
the entire system can anyway be expressed as the product of the molecular partition functions of
the different oscillators:

Z =
∏
s

e−βh̄ωs/2

1− e−βh̄ωs
(16.35)

Example 2: Diluted gas

Let us consider a system composed by N atoms of a diluted monatomic gas contained in a cubic
vessel of side L. Also this example was already considered in § 13.4, in connection with the
microcanonical approach.
The particles are indistinguishable, we can nevertheless resort to the classical limit because of the
gas dilution.
The energy levels εi, are degenerate. Each level corresponds to gi different states characterised by
different components of the linear momentum. One can consider again equation (12.5),

εi =
2π2h̄2

Lm
(n2
ix + n2

iy + n2
iz) , (16.36)

wherei nij are positive integer numbers. When the energy εi increases, also the groups of three
values nij fulfilling (16.36) increases. The degeneracy gi increases with energy.
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Figure 16.2: Left: molecular partition functions for harmonic oscillators of frequency ν = 0.5 and 2
THz, plotted as a function of temperature. Right: Maxwell-Boltzmann distributions for harmonic
oscillators of frequency ν = 0.5 THz for two different temperatures, 100 and 300 K.

Since the energy levels are very closely spaced, one can substitute the degeneration index gi with
the density of states g(ε), that can be demonstrated to be

g(ε) dε =
2π

h3
(2m)3/2 V

√
ε dε. (16.37)

The molecular partition function is

z =

∫ ∞
0

g(ε) e−ε/kT dε =
V (2πmkT )3/2

h3
. (16.38)

According to (16.37), the density is proportional to the square root of ε; this behaviour is contrasted
by the decreasing exponential factor exp(−βε) of the distribution (Fig. 16.3, left).
The Maxwell-Boltzmann distribution is expressed as a probability density

fε(ε) =
2π

(πkT )3/2

√
ε e−ε/kT . (16.39)

and doesn’t depend on the type of gas (Fig. 16.3, centre).
The Maxwell-Boltzmann distribution for single particles is not sharply peaked around the average
value of energy, as was the case for the canonical distribution for macroscopic systems, in spite of
the formal similarity of the two distributions. For the canonical distribution the standard deviation
is σ ∝ 1/

√
N , where N is typically a number of the order of 1023.

In addition to the energy distribution fε(ε), it is useful to consider also the velocity distribution
(31.20):

fv(v) = 4π
( m

2πkT

)3/2

v2 e−mv
2/2kT . (16.40)

The velocity distribution depends on the atomic mass, and is different for different types of gases
(Fig. 16.3, right).

16.4.3 Thermodynamical quantities

For weakly interacting particles, the relations of (16.31) allow the computation of the canonical
partition function Z and of the thermodynamical functions once the single-particles energy levels
εi and their degeneracies gi are known.

Internal energy of the system

The internal energy of the system can be obtained, through (15.36) and (16.31), as

U = kBT
2

(
∂

∂T
lnZ

)
= N kBT

2

(
∂

∂T
ln z

)
v

. (16.41)
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Figure 16.3: Diluted ideal gas. Left: comparison between the contributions of the density of
states ∝

√
ε and of the exponential factor exp(−βε) and their product. Al centro: MB energy

distributions for an ideal gas at two different temperatures. Right: MB velocity distributions for
different gases at different temperatures.

The expression of U as a function of the molecular partition function z doesn’t depend on the
particles distinguishability (N ! doesn’t depend on T ).

Alternatively,

U = 〈E〉 =
∑

i
niεi , (16.42)

where the values ni are determined by the distribution ni = gi exp(−βεi)/z.
Example: Let us consider again the system of N ' 1023 harmonic oscillators of equal frequency.

Through (16.41) and (16.32), one can calculate the total energy of the system

U = kB T
2

(
∂

∂T
lnZ

)
V

=
∑
s

1

2
h̄ωs +

∑
s

1

eh̄ωs/kBT − 1
. (16.43)

The first sum contains the zero point energies of the oscillators, the second one contains the
contributions to the energy dependent on temperature.
The values of the energy levels Ei of the system are about 1023 times larger than the energy
values of single oscillators, say much larger than the thermal factor kBT ' 25 meV, and are
characterised by very large degeneracies gi.

Entropy of the system

The connection of the entropy S to the partition function Z is different for distinguishable particles
and for indistinguishable particles in the classical limit:

S =
U

T
+ kB lnZ =


U/T +NkB ln z = Sdist

U/T +NkB ln z − kB lnN ! = Sindist

(16.44)

Even if the single-particle energy levels and the internal energy are the same, the entropy of the
system is different for the two cases:

Sdist = Sindist + kB lnN ! , Sdist > Sindist . (16.45)

To the same result one can come by considering the entropy definition for an isolated system,
S = kB ln Ω, and taking for Ω the values (16.13) and (16.16), respectively:

Sdist = kB ln ΩMB , Sindist = kB ln Ωcl . (16.46)
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Average energy of particles

Through (16.41), one finds

U = 〈E〉 = N 〈ε〉 = N kBT
2

(
∂

∂T
ln z

)
V

. (16.47)

The average energy of a single particle 〈ε〉 is expressed as a function of z in the same way as the
average energy of the macroscopic system 〈E〉 is expressed as a function of Z.

Note: The single-particle energy values ε can strongly fluctuate with respect to the average value
〈ε〉. As already observed (Fig. 16.3), the Maxwell-Boltzmann distribution is not sharply
peaked as the canonical distribution of macroscopic systems.

Heat and work

Heat and work exchanged by the thermodynamical system can be expressed in terms of the single-
particle energy levels:

U =
∑

i
niεi ⇒

∑
εidni︸ ︷︷ ︸

d̄Q

+
∑

nidεi︸ ︷︷ ︸
d̄W

(16.48)

Distinguishable and indistinguishable particles, a summary

As we have seen above,

for distinguishable particles lnZ = N ln z
for indistinguishable particles (classical limit) lnZ = N ln z − lnN !

The quantities that only depend on the derivatives of lnZ are equal for distinguishable particles
and indistinguishable particles at the classical limit:

U = N kBT
2

(
∂

∂T
ln z

)
V

p = N kBT

(
∂

∂V
ln z

)
T

H = N kBT
2

(
∂

∂T
ln z

)
V

+N kBTV

(
∂

∂V
ln z

)
T

The expression of the other quantities is different for distinguishable particles and indistinguishable
particles at the classical limit:

Distinguishable part. Indistinguishable part. (classical limit)

S = U/T +NkB ln z S = U/T +NkB ln z − kB lnN !

F = −NkB ln z F = −NkB ln z + kBT lnN !

16.4.4 Mixtures of indistinguishable gases. The Gibbs paradox

In § 11.2 we considered the spontaneous mixing of two ideal gases; we concluded that the process
is irreversible and entails an entropy increase equal to the entropy increases of the separate free
expansions of the two gases. The calculation of the entropy variation is independent of the nature
of the two gases.
The calculation is however meaningless if the two gases are indistinguishable; actually, it makes
no sense to speak of mixing of indistinguishable gases, since there is no variation of the thermo-
dynamical state and there is thus no entropy variation. The apparently anomalous behavior of
indistinguishable gases was named Gibbs paradox.
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The solution of the Gibbs paradox depends on the fact that the atoms or moleules of the ideal
gas are indistinguishable particles; therefore, the number of microstates of a system of N atoms or
molecules is smaller than the number of microstates for distinguishable objects.

As it was noticed above, the entropy for indistinguishable particles in the classical limit is

S =
U

T
+ NkB lnz − kB lnN ! (16.49)

One can demonstrate that the molecular partition function for a monatomic ideal gas is

z =
V (2πmkT )3/2

h3
. (16.50)

By substituting, in the expression of entropy, the values of z and U = 3NkBT/2, one obtains

S = NkB ln

(
V

N

)
+ terms indepennent of V . (16.51)

For the problem of gas mixing only the term dependent on the specific volume V/N is relevant.

Let us consider the simple case of two ideal gases, e.g.1 mol of gas A and 1 mol of gas B contained
in equal volumes V . Therefore, also NA = NB .

If the two gases are different (and thus distinguishable), the initial entropy is

Si = NAkB ln

(
V

NA

)
+NBkB ln

(
V

NB

)
(16.52)

and the final entropy is

Sf = NAkB ln

(
2V

NA

)
+NBkB ln

(
2V

NB

)
= Si + (NA +NB)kB ln 2 = Si + 2NAkB ln 2 . (16.53)

If the two gases are equal (and thus indistinguishable), NA = NB = N , the initial entropy is again

Si = NkB ln

(
V

N

)
+NkB ln

(
V

N

)
= 2NkB ln

(
V

N

)
(16.54)

but the final entropy is

Sf = (2N)kB ln

(
2V

2N

)
= Si . (16.55)

16.5 Bose-Einstein statistics.

For the Bose-Einsten distribution (16.18)

ni =
gi

eα+βεi − 1
,

ni
gi

=
1

eα+βεi − 1
(16.56)

the evaluation of the α parameter is by far more complicated than for the Maxwell-Boltzmann
distribution.

However, in the case of photons and phonons, energy quanta of the electromagnetic field and of
the crystal vibrations, respectively, the parameter α = 0, because the number N of particles is not
constant.
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Sistems of bosons with N variable: photons and phonons

Let us again consider the normal modes of the electromagnetic field and of the atomic vibrations in
crystals. They are distinguishable entities, characterised by different frequencies and wavevectors,
that have been treated in § 16.4 as examples of application of the Maxwell-Boltzmann statistics,
obtaining the expression (16.43) for the total energy of the system.
The energy can be stored in the normal modes only discontinuously, as a sum of discrete quanta h̄ωs
(indistinguishable entities). One can consider an electromagnetic cavity or a crystal as containing
a gas of quanta, and seek for a thermodynamic description in terms of the statistics of indistin-
guishable particles, instead of statistics of distinguishable normal modes. To this aim, let ns be
the number of energy stored in the n-th normal mode. The energy quanta of the electromagnetic
field (photons) and of the atomic vibrations in crystals (phonons) can be created or annihilated:
their number N is thus not a constant.
The total energy (16.43) can be expressed as

U =
∑
s

[
1

2
+ ns

]
h̄ωs (16.57)

where

ns =
1

eh̄ωs/kBT − 1
(16.58)

obeys the Bose-Einstein distribution with α = 0 and gs = 1. Photons and phonons are thus
considered as bosons; to the photon an integer spin = 1 is attributed. The normalisation condition∑
ni = N has no meaning here, because photons and phonons can be created and annihilated

through absorption or emission of electromagnetic radiation or of amounts of heat, respectively.

In conclusion, the thermodynamical properties of a system of electromagnetic waves or of a crystal
can be interpreted, at the level of particle statistics, in terms of both a set of normal modes (a
fixed number of distinguishable particles obeying the MB statistics)) or of a set of energy quanta
(a variable number of indistinguishable particles obeying the BE statistics).
This possibility of different interpretations is a peculiar example of the wave-particle duality of
Quantum Physics.

16.6 Fermi-Dirac statistics. Electron gas.

An most important application of the Fermi-Dirac statistics is the electron gas model that explains,
to a first g(ε), the electronic properties of metals. In this model, the conduction electrons of a
metal are considered as an ideal gas of free and independent particles, immersed in a homogeneous
distribution of positive charge (due to the ions). In spite of being rather crude, the model is able
to explain some properties of metals, in particluar the electron contribution to the specific heat.
The density of states g(ε) is calculated as for an ideal atomic gas enclosed in a volume V , taking
into account that for each value of the momentum ~p there are two possible spin orientations:

g(ε) = 2
2π

h3
(2m)3/2 V

√
ε (16.59)

For an electron gas one can demonstrate that the α parameter can be substituted by α = −µ/kBT ,
where µ is the chemical potential. The chemical potential µ weakly depends on temperature; its
value for T → 0 is called Fermi energy and is indicated by the symbol εF . The occupation index
for fermions is thus generally written as

ni
gi

=
1

e(εi−εF )/kBT + 1
(16.60)
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Part IV

Magnetic systems and low
temperatures
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Studying magnetic systems is interesting for a number of reasons.

The study of magnetic systems require the extension of the concepts of macroscopic Thermody-
namics introduced in Part II; peculiar thermodynamical functions and response functions have to
be introduced (Chapter 17).

The statistics of paramagnetic systems (Chapter 18) is a relatively simple application of the con-
cepts introduced in Part III. However, differently from the cases considered in Part III, the statisti-
cal treatment of paramagnetic systems refers to the levels of the potential energy of a field external
to the thermodynamical system; the potential energy doesn’t contribute to the internal energy
of the system. Therefore, the connection between the statistical approach and the macroscopic
approach is more complicated than in the cases considered in Part III.

The adiabatic demagnetisation represents a fundamental tool for achieving very low temperatures.
Chapter 19 is dedicated to cryogenic techniques..

The issue of low temperatures naturally leads to the introduction of the Thidr Law of Thermody-
namics and to its interpretations (Chapter 20).

Part IV ends with a short account on the meaning of negative kelvin temperatures (Chapter ??).



Chapter 17

Thermodynamics of magnetic
systems

In this chapter, a number of basic concepts are introduced concerning the thermodynamical treat-
ment of magnetic systems: magnetic thermodynamical variables, fundamental equations, Maxwell
relations (§ 17.1) as well as the response functions, among which the magnetic susceptibility is par-
ticularly relevant (§ 17.2). Some important processes are then considered, in particular the Carnot
magnetising cycle (§ 17.3). The chapter ends with a short introduction to magneto-mechanical
effects (§ 17.4).

17.1 Basic concepts

In order to introduce the magnetic thermodynamical variables, it is convenient to refer to the
magnetisation work introduced in Chapter 3.

17.1.1 Magnetisation work

In § 3.6 we considered a cylindrical and homogeneous matter bar inserted in a solenoid of length
` and section A, made by N coils through which an electric current I flows (Fig. 3.3, left). To
avoid mathematical complexities, the magnetising field was considered uniform, confined within
the solenoid and parallel to the axis of the solenoid. The electrical resistance of the circuit was
neglected as well.

The total magnetisation work made by the power supply for establishing the electric current is

d̄W tot
mag = µ0VH dH+ µ0VH dM = VH dB (17.1)

where H is the magnetising field, that is the external magnetic field produced by the electrical
current, M is the magnetisation per unit volume of the material sample and B is the magnetic
induction field, B = µ0(H+M).

In (17.1) two contributions to the total work are singled out:

µ0VH dH refers to the empty space

µ0VH dM refers to the material sample

Let us recall the S.I. units of the quantities in (17.1):

- the magnetising fieldH and the magnetisation densityM are both measured in ampere/meter
(A/m)

- the magnetic induction B is measured in tesla (T) or in gauss (G), 1 T = 104 G;

- µ0 = 4π × 10−7 T m/A is the vacuum magnetic permeability.

223
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Note 1: Magnetising field, magnetic induction and magnetisation are in principle vectorial quanti-
ties. We consider here a unidimensional case, so that only scalar quantities are necessary. In
diamagnetic materials the magnetisation M has opposite direction with respect to the mag-
netising field H, in paramagnetic materials the magnetisation M has the same direction as
the magnetising field H.

Note 2: To enlighten the basic thermodynamical properties, we consider the simple ideal system
of Fig. 3.3. Actually, to obtain a uniform magnetisation M in a uniform magnetising field
the sample should be elliptical instead of cylindrical.

The thermodynamical system is represented by the material sample, the energy contribution of
the empty space is not taken into account.
The variation of internal energy can be thus expressed as

dU =d̄Q + d̄Wmec + d̄Wchim + µ0VH dM . (17.2)

17.1.2 Magnetic thermodynamical coordinates

Two new thermodynamical variables have been introduced to describe the magnetic systems:

a) the magnetising field H (intensive variable);

b) the total magnetisation of the material sample M = µ0VM (extensive variable).

The magnetic work (only referred to the material sample)

d̄Wmag = µ0VH dM = H dM (17.3)

is thus expressed in the standard form Y dX, where Y and X are intensive and extensive quantities,
respectively.

Note: The axiomatic treatment of isolated systems of Chapter 5 is based on the existence of walls
impermeable to extensive quantities (U, V, ni) and on the search for the equilibrium condition
attained by the system when one of such constraints is removed. For magnetic systems no
“walls” exist impermeable to the magnetisation and it makes no sense to speak of the transfer
of magnetisation between two sub-systems. In this respect, the total magnetisation is an
anomalous extensive variable. It is anyway possible to develop a suitable thermodynamical
formalism for magnetic systems in equilibrium, as we will see below.

17.1.3 Fundamental equations

The thermodynamical state of a magnetic systems is characterised by the values of its extensive
coordinates , and its thermodynamical properties can be derived from a fundamental equations:
a) in the entropy representation, the fundamental equation is

S = S(U, V,M, {ni}) ; (17.4)

b) in the energy representation, the fundamental equation is

U = U(S, V,M, {ni}) . (17.5)

In what follows, we focus our attention of the energy representation.
The differential of the internal energy is

dU = T dS − p dV + H dM +
∑

i
µi dni , (17.6)

so that

H =

(
∂U

∂M

)
S,V,ni

. (17.7)
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The Euler equation (6.41), introduced in § 6.4, becomes for a magnetic system

U = T S − p V +HM +
∑
i

µi ni . (17.8)

The Gibbs-Duhem relation (6.44) becomes in turn

S dT − V dp+M dH+
∑
i

ni dµi = 0 . (17.9)

17.1.4 Thermodynamical functions

The formalism of Legendre transform allows one to obtain thermodynamical functions specifically
tailored to the different possible choices of independent thermodynamical coordinates (Chapters 7
and 8). Let us now dal with the case of magnetic systems. For simplicity, a closed system with a
single component is considered, so that (17.6) reduces to

dU = T dS − p dV + H dM . (17.10)

The Legendre transforms of the internal energy U with respect to the mechanical and thermal
variables give the known thermodynamical functions:

• H(S, p,M, n), enthalpy

• F (T, V,M, n), Helmholtz free energy

• G(T, p,M, n), Gibbs free energy

The Legendre transforms with respect to the magnetic coordinates allow the introduction of new
thermodynamical functions. We consider here only the two most important, the magnetic enthalpy
and the magnetic Gibbs function.

Magnetic enthalpy

The magnetic enthalpy H∗(S, p,H, n) is the Legendre transform of the internal energy with respect
to both the pressure p and the magnetising field H:

H∗ = U + pV −HM , dH∗ = T dS + V dp−M dH . (17.11)

For a system maintained at constant pressure p and magnetising field H, the variation of magnetic
enthalpy corresponds to the absorbed heat: dH∗ = T dS =d̄Q.

In the next Chapter 18, dedicated to the statistics of magnetic systems, further details on the
meaning of the magnetic enthalpy will be given (§ 18.4).

Magnetic Gibbs function

The magnetic Gibbs function G∗(T, p,H, n) is the Legendre transform of the magnetic enthalpy
with respect to the temperature:

G∗ = U + pV −HM − TS , dG∗ = −S dT + V dp−M dH . (17.12)

The magnetic Gibbs function is minimal for systems maintained in equilibrium at constant T, p,H.

17.1.5 Maxwell relations

From the differentials dU, dH∗, dF, dG∗

dU = T dS − p dV +H dM (17.13)

dH∗ = T dS + V dp−M dH (17.14)

dF = −S dT − p dV +H dM (17.15)

dG∗ = −S dT + V dp−M dH (17.16)
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one obtains new Maxwell relations in addition to those introduced in § 7.3; the new relations involve
the magnetic coordinates: (

∂T

∂M

)
SV

=

(
∂H
∂S

)
VM

(17.17)(
∂T

∂H

)
Sp

= −
(
∂M

∂S

)
pH

(17.18)(
∂S

∂M

)
TV

= −
(
∂H
∂T

)
VM

(17.19)(
∂S

∂H

)
Tp

=

(
∂M

∂T

)
pH

(17.20)

17.2 Response functions

For a magnetic system, new response functions have to be considered, in addition to those intro-
duced in Chapter 9: the isothermal and adiabatic susceptibilities, that play an important role in
characterising the magnetic properties of materials.
Also the heat capacities are different for heat exchanges performed at constant magnetisation M
or at constant magnetising field H.

17.2.1 Magnetic suscebtibilities

In Chapter 9 we introduced the isothermal and adiabatic compressibilities, χT and χS (9.14), both
defined as in terms of the ratio between volume and pressure variations.

If in (9.14) the pressure p is substituted by the magnetising field H and the volume V by the
magnetisation M , one obtains the magnetic susceptibilities, bot isothermal

χ∗T =
1

µ0V

(
∂M

∂H

)
Tp

=

(
∂M
∂H

)
Tp

(17.21)

ad adiabatic

χ∗S =
1

µ0V

(
∂M

∂H

)
Sp

=

(
∂M
∂H

)
Sp

(17.22)

In both cases, the derivatives of M with respect to H are considered at constant pressure p.
The magnetic susceptibilities are a-dimensional quantities, since M and H have the same dimen-
sions.
In (17.21) and (17.22) the magnetic susceptibilities χ∗ are labeled by an asterisk to be distinguished
from the mechanical compressibilities. In the following, the asterisk will be omitted when only
magnetic properties are considered and no confusion is possible.

N S

Figure 17.1: Schematic device suitable to measure the magnetic susceptibility. The N and S poles
of a magnet are shaped so that the the H field be more intense near the S pole than near the N
pole (the dashed lines are field lines). The black rectangle represents the sample.

The magnetic susceptibility can be measured by inserting the sample in a non uniform magnetising
field and measuring the force acting on it (Fig. 17.1).
Three main types of behaviour can be singled out:
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a) A purely diamagnetic material is weakly attracted towards the region of weaker field; the
magnetisation is created by the external field and disappears when the field is removed.

b) A purely paramagnetic material is weakly attracted towards the region of stronger field; the
magnetisation is created by the external field and disappears when the field is removed.

c) A ferromagnetic material is strongly attracted towards the region of stronger field; the mag-
netisation is present even if the external field is absent.

In this Part IV we deal only with diamagnetic and paramagnetic materials. Ferromagnetic materials
are shortly treated in the § 22.5, of Part V dedicated to phase transitions.

Diamagnetic materials

In diamagnetic materials the magnetisation M has opposite direction with respect to the mag-
netising field H. The diamagnetic susceptibility has the following properties (Fig. 17.2):

• is negative, χdia
T < 0, so that diamagnetic materials weaken the external applied field,

• is independent, in general, of temperature and of magnetising field,

• its absolute values are relatively small, |χdia
T | ' 10−9 ÷ 10−5.

From the microscopic point of view, the diamagnetism can be attributed, in semiclassical terms, to
the variation of the total angular momentum ~J of the atoms induced by the effect of the induction
field ~B on the electronic orbitals: ∆ ~J ∝ ~B. To the angular momentum ~J it corresponds a magnetic
moment ~µ = −g(e/2m) ~J ; therefore ∆~µ ∝ − ~B. For a spherical electronic distribution one can show

that ∆~µ ∝ −〈r2〉 ~B (Langevin diamagnetic susceptibility).
All substances are affected by diamagnetism; in some substances, however, diamagnetism can be
hidden by other more strong effects, such as paramagnetism.

Examples of purely diamagnetic substances are: C, Hg, Sg, Cu, Zn, ammonia NH3, molecular
hydrogen H2, noble gases, water.

Note: A relevant case of diamagnetism is present in superconductor metals. When a superconductor
is immersed in a not too strong magnetising field H , the magnetic induction B within the
sample is null (Meissner-Ochsenfeld effect): the effect of the external field is counterbalanced
by electrical currents induced on the surface of the sample. The superconductor is said to be
a perfect diamagnet. A sufficiently strong field can instead destroy the superconductivity.

M

H HT

B

m0H

cT cT

para

dia

para

dia

para para

dia dia

A B C D

Figure 17.2: Schematic comparison (not to scale) between the properties of diamagnetic and para-
magnetic substances. A) Magnetisation as a function of the external field. B) Magnetic induction
as a function of the external field; the dashed line corresponds to a hypothetical non magnetic
substance. C) Dependence of the isothermal susceptibility on temperature. D) Dependence of the
isothermal susceptibility on the external field.

Paramagnetic materials

In paramagnetic materials, the magnetisation M has the same direction as the magnetising field
H. The paramagnetic susceptibility has the following properties (Fig. 17.2):
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• is positive, χpara
T > 0, so that paramagnetic materials strengthen the external applied field,

• is independent of the magnetising field,

• strongly depends on temperature:

– at not too low temperatures, for some paramagnetic materials, called ideal paramagnets,
the Curie law holds:

χpara
T =

A

T
, (A = constant) ; (17.23)

– for the other paramagnetic materials, the more general Curie-Weiss law holds:

χpara
T =

C

T + τ
, (C, τ constants) ; (17.24)

• its absolute values are generally much larger than the values of diamagnetic susceptibility,
χpara
T ' 10−5 ÷ 10−3

Examples of paramagnetic substances are: molecular oxygen O2, Pt, rare earths, alcali metals.

For very strong magnetising fields H (and low temperatures) the phenomenon of saturation can
take place, so that the magnetisation ceases to increase when the magnetising field increases.

From the microscopic point of view, paramagnetism depends on the presence of permanent mag-
netic moments at the atomic or molecular level, that can be partially oriented by the external field
H.

Note 1: If the paramagnetism is due to the conduction electrons of metals (Pauli paramagnetism),
the susceptibility χpara

T only weakly depends on temperature.

Note 2: The parallelism between the response functions compressibility and magnetic suscepti-
bility is incomplete. The isothermal and adiabatic compressibilities χ are always positive, as
a consequence of the stability of thermodynamical equilibrium (Chapter 9). The magnetic
susceptibilities χ∗ can instead be positive or negative and is not connected to the stability of
thermodynamical equilibrium; actually, as already observed, one cannot conceive of sponta-
neous magnetisation processes triggered by the removal of some constraint in isolated systems.

17.2.2 Dependence of magnetisation on temperature

In § 9.3 the coefficient of thermal expansion β as the ratio between the volume and temperature
variations (eq. 9.19).

By substituting the volume V with the magnetisation M in (9.19), one obtains a new response
function β∗ which accounts for the dependence of magnetisation on temperature:

β∗ =

(
∂M
∂T

)
pH

=
1

µ0V

(
∂M

∂T

)
pH

. (17.25)

According to what has been previously said,

• β∗ = 0 in diamagnetic substances,

• β∗ < 0 in paramagnetic substances.

17.2.3 Heat capacites

In § 9.1 the thermal het capacities at constant volume and constant pressure, Cv and Cp, have
been introduced. When considering magnetic systems, only the processes at constant pressure are
generally relevant. It is however necessary to distinguish the cases of heat exchanged at constant
magnetising field H and at constant magnetisation M .
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Heat capacity at constant H field

The heat capacity at constant H field is defined as

CpH =
(d̄Q)pH
dT

= T

(
∂S

∂T

)
pH

. (17.26)

To understand the influence of the magnetising field on the heat capacity, it is convenient to find
the difference between the heat capacity CpH (17.26) for non-zero field and the heat capacity Cp
for zero field. To this aim, let us calculate the derivative of CpH with respect to the field H at
constant temperature T and pressure p and exploit the properties of the mixed second derivative:(

∂CpH
∂H

)
Tp

= T

[
∂

∂H

(
∂S

∂T

)
pH

]
Tp

= T

[
∂

∂T

(
∂S

∂H

)
Tp

]
pH

(17.27)

The last member of (17.27) can be transformed through the Maxwell relation (17.20), so that(
∂CpH
∂H

)
Tp

= T

[
∂

∂T

(
∂M

∂T

)
pH

]
pH

= T

(
∂2M

∂T 2

)
pH

. (17.28)

It has been observed above that the magnetic susceptibility χ∗T is independent of the H field; one
can substitute M = µ0V χ

∗
TH, where only χ∗T can depend on temperature, so that(

∂CpH
∂H

)
Tp

= µ0V TH
(
∂2χ∗T
∂T 2

)
pH

. (17.29)

Equation (17.29) allows the expression of the relation between CpH for non-zero H field and Cp
for zero H field:

CpH = Cp(H = 0) + µ0V T

∫ H
0

(
∂2χ∗T
∂T 2

)
pH
H′ dH′ . (17.30)

Example 1: In diamagnetic substances the susceptibility is independent of temperature. From
(17.30) one thus finds that CpH = Cp, the heat capacity is independent of the magnetising
field.

Example 2: In ideal paramagnetic substances the susceptibility is inversely proportional to tem-
perature, χ∗T = A/T (Curie law), so that(

∂2χ∗T
∂T 2

)
=

2A

T 3
(17.31)

and (17.30) becomes

CpH = Cp + µ0V χT
H2

T
= Cp +

MH
T

. (17.32)

The heat amount absorbed by a paramagnetic substance for a given temperature increase is
larger within a magnetising field H than at zero field. As we will see in Chapter 18, when the
temperature of a paramagnetic substance increases at constant external field, the magnetisa-
tion M decreases. The extra heat amount which, according to (17.32), has to be supplied to
the system when the field H is present is necessary to counterbalance the forces which tend
to orient the elementary magnets.

Heat capacity at constant magnetisation M

The heat capacity at constant magnetisation M is defined as

CpM =
(d̄Q)pM
dT

= T

(
∂S

∂T

)
pM

. (17.33)

It is worth noting that, in order to maintain constant the magnetisation M of a paramagnetic
substance when the temperature is changed, also the magnetising field H has to be changed.
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17.2.4 Relation between the heat capacities

The difference between the heat capacities at constant pressure and at constant volume can be
expressed as a function of the coefficient of thermal expansion and of the isothermal compressibility
(see § 9.4):

Cp − Cv =
TV β2

χT
. (17.34)

A similar relation exists for the difference between the heat capacities at constant magnetising field
(17.26) and at constant magnetisation (17.33):

CpH − CpM = µ0
TV (β∗)2

χ∗T
, (17.35)

where β∗ is defined in (17.25) and χ∗T is defined in (17.21).

Demonstration

The demonstration of (17.35) is similar to the one of (9.26). Here one starts from the functions

S(T, p,H) , S(T, p,M) . (17.36)

By differentiating the (17.36) one obtains

T dS = CpH dT + T

(
∂S

∂H

)
Tp

dH , (17.37)

T dS = CpM dT + T

(
∂S

∂M

)
Tp

dM . (17.38)

By subtracting (17.38) from (17.37) and using the Maxwell relations (17.19) and (17.20) one obtains

(CpH − CpM ) dT = − T

(
∂M

∂T

)
pH

dH − T

(
∂H
∂T

)
pM

dM . (17.39)

Let us now compare the differential dT calculated from (17.39) with the differential of the function
T (H,M). Since H and M are independent variables, the coefficients of both dH and dM must be
equal in the two expressions.
Let us focus our attention on the coefficient of dM ; from their equality, exploiting the identities
(7.49) and (7.51) one obtains

CpH − CpM = −T
(
∂Hp
∂T

)
pM

(
∂M

∂T

)
pH

= T

(
∂M

∂T

)2

pH

(
∂H
∂M

)
T

(17.40)

whence (17.34).

Esemples

Example 1: In diamagnetic substances β∗ = 0 because the susceptibility is independent of
temperature. Therefore CpH = CpM . We have also shown above that CpH = Cp, independent
of the magnetising field.

Example 2: For a paramagnetic substance χ∗T > 0 and (β∗)2 > 0. Therefore CpH > CpM .

Example 3: For an ideal paramagnetic substance the Curie law χ∗T = A/T holds, and χ∗T is
independent of the H field, so that M = µ0V AH/T . Therefore

β∗ =
1

µ0V

(
∂M

∂T

)
pH

=

[
∂

∂T
(χ∗TH)

]
pH

= H
(
∂χ∗T
∂T

)
pH

= −H A

T 2
. (17.41)
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As a consequence

CpH − CpM = µ0V χ
∗
T

H
T

=
MH
T

. (17.42)

By comparing (17.42) with (17.32) on can see that, fo an ideal paramagnetic substance, CpM =
Cp, independent of H e da M .
At last, one can notice the formal similarity of (17.42) with the relation for ideal gases

Cp − Cv =
pV

T
. (17.43)

17.3 Thermodynamical processes in magnetic systems

Let us consider here three of the possible thermodynamical processes in magnetic systems:

1. reversible isothermal magnetisation at constant volume,

2. reversible isothermal magnetisation (or demagnetisation) at constant pressure,

3. reversible adiabatic magnetisation (or demagnetisation) at constant pressure.

The first process, at constant volume, has mainly theoretical interest. The other two processes
are more important from the practical point of view and are the elements of the magnetic Carnot
cycle.
In this § 17.3 the magnetic susceptibility is denoted by χ, without asterisk.

17.3.1 Reversible isothermal magnetisation at constant volume

Our aim is to evaluate the change of internal energy U . Starting from the differential (17.10)

dU = T dS − p dV +H dM , (17.44)

imposing dV = 0 and using the Maxwell relation (17.19) one obtains(
∂U

∂M

)
TV

= T

(
∂S

∂M

)
TV

+ H = −T
(
∂H
∂T

)
VM

+ H . (17.45)

Since M = µ0V χH, one can substitute H = M/µ0V χ and obtain:(
∂U

∂M

)
TV

= − T

µ0V

[
∂

∂T

(
M

χ

)]
VM

+
1

µ0V

(
M

χ

)
=

1

µ0V

M

χ

[
T

χ

(
∂χ

∂T

)
VM

+ 1

]
. (17.46)

In the last equality one considered that (∂M/∂T )MV = 0.

Diamagnetic substances

For diamagnetic substances, the susceptibility χ is independent of temperature. The first term
of (17.46) (entropic term) is null: there is no heat exchange in an isothermal magnetisation.
Diamagnetic substances have little thermodynamical interest.
Starting from (

∂U

∂M

)
TV

=
1

µ0V

M

χ
= H (17.47)

one can anyway evaluate the variation of internal energy for a finite magnetisation:

U(M,T, V )− U(M = 0, T, V ) =

∫ M

0

H dM =
M2

2χ
=
MH

2
=
χH2

2
= W < 0 . (17.48)

The variation of internal energy is negative, the system performs work on its ambient.

Note: Recall that the M and H have opposite signs for a diamagnetic substance.
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Paramagnetic substances

For paramagnetic substances the susceptibility χ is positive and decreases when the temperature
increases. The entropic term of (17.46) is always negative; during the isothermal magnetisation,
the paramagnetic system absorbs work and emits heat. The sign of dU is a priori undetermined.

Ideal paramagnetic substances

For ideal paramagnetic substances, the susceptibility has the simple dependence on temperature
χ = A/T , so that (

∂χ

∂T

)
VM

= − A

T 2
= −χ

T
; (17.49)

by inserting (17.49) in (17.46) one obtains(
∂U

∂M

)
TV

= 0 . (17.50)

The entropic and magnetic terms cancel out, so that dU = 0. The system absorbs work and emits
heat without variation of the internal energy (notice the analogy with the behaviour of ideal gases
undergoing isothermal compression).

17.3.2 Reversible isothermal magnetisation at constant pressure

Let us now consider a system maintained at constant temperature and pressure and increase its
magnetisation through an increase of the external magnetising field H. The magnetisation requires
that work H dM is performed on the system. We want to know whether the magnetisation is
accompanied by absorption or emission of heat by the system.
For a reversible transformation, d̄Q = T dS; we can thus consider the dependence of the entropy
on the magnetising field: (

∂S

∂H

)
Tp

=

(
∂M

∂T

)
pH

= µ0VH
(
∂χ

∂T

)
pH

. (17.51)

In (17.51) we took advantage of the Maxwell relation (17.20) and of the relation between magneti-
sation and magnetising field M = µ0V χH. According to (17.51), the dependence of the entropy
on the magnetising field is connected to the dependence of the susceptibility on the temperature.

Diamagnetic substances

In diamagnetic substances, the susceptibility is independent of the temperature. The reversible
isothermal magnetisation at constant pressure takes place without entropy variations and thus
without heat exchange.

Paramagnetic substances

In paramagnetic substances, the susceptibility is positive and decreases when the temperature
increases (Fig. 17.2): (

∂χ

∂T

)
pH

< 0 ⇒
(
∂S

∂H

)
Tp

< 0 . (17.52)

The reversible isothermal magnetisation at constant pressure gives rise to a decrease of the entropy
which corresponds to a transfer of heat from the system to the ambient.
Viceversa, the reversible isothermal demagnetisation gives rise to an increase of the entropy which
corresponds to a transfer of heat from the ambient to the system.

For an ideal paramagnetic substance χ = A/T , so that (17.51) becomes(
∂S

∂H

)
Tp

= −µ0AV
H
T 2

, (17.53)
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and the finite entropy variation for a variation of the magnetising field from H1 to H2 is

∆S = −µ0AV
1

T 2

∫ H2

H1

H′H. ′ = −µ0AV
1

2T 2

(
H2

2 −H2
1

)
. (17.54)

The entropy variation is inversely proportional to the square of the temperature, so that the
exchanged heat Q = T ∆S is inversely proportional to the temperature.

17.3.3 Reversible adiabatic magnetisation at constant pressure

In a reversible adiabatic transformation there is no exchange of heat and ∆S = 0. We want to
know how the temperature changes when the magnetisation is changed at constant pressure. To his
aim, let us start from the differential of the entropy as a function of temperature and magnetising
field

dS =

(
∂S

∂H

)
Tp

dH +

(
∂S

∂T

)
pH

dT . (17.55)

By imposing the condition dS = 0, from (17.55) one obtains(
∂T

∂H

)
Sp

=
(∂S/∂H)Tp
(∂S/∂T )pH

= − T

CpH

(
∂M

∂T

)
pH

, (17.56)

where the Maxwell relation (17.20) and the definition of heat capacity at constant field (17.26)
have been used.
By considering the relation between magnetisation and magnetising field M = µ0V χH, equation
(17.56) becomes (

∂T

∂H

)
Sp

= −µ0VH
T

CpH

(
∂χ

∂T

)
pH

. (17.57)

Diamagnetic substances

For diamagnetic substances, the susceptibility is independent of temperature. The reversible adi-
abatic magnetisation doesn’t give rise to temperature variations.

Paramagnetic substances

For paramagnetic substances, the susceptibility decreases when the temperature increases; its
derivative is thus negative.
The reversible adiabatic magnetisation gives rise to an increase of temperature.
Viceversa, the reversible adiabatic demagnetisation gives rise to a reduction of temperature.
The variation of temperature induced by the magnetising field without heat exchange is called
magneto-caloric effect.

For an ideal paramagnetic substance χ = A/T , and (17.57) becomes(
∂T

∂H

)
Sp

= µ0V
AH
T CpH

. (17.58)

The temperature variation is inversely proportional to the temperature. The magneto-caloric effect
is more effective at low temperatures.

17.3.4 Magnetic Carnot cycle

A Carnot cycle (§ 4.3) is made by two reversible isothermal transformations and two reversible
adiabatic transformations. For paramagnetic substances, the Carnot cycle is achieved a constant
pressure by suitably varying the magnetising field H and, as a consequence, the system magneti-
sation M .
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Figure 17.3: Refrigerating Carnot cycle for a paramagnetic substance. Left: schematic represen-
tation; during a cycle, the paramagnetic substance (represented by the circle) transfers heat from
the reservoir at the lower temperature Tc to the reservoir at the higher temperature Th. Right:
ST plot; the refrigerating cycle is run anti-clockwise.

A Carnot cycle can be run as an engine or a refrigerator. For paramagnetic systems, the refriger-
ating Carnot cycle is more relevant, due to its cryogenic applications (see Chapter 19).
Let us onsider a refrigerating Carnot cycle operating between two reservoirs at the two temperatures
Th (higher) and Tc (lower) (Fig. 17.3 , left).The refrigerating Carnot cycle is composed by the four
transformations (Fig. 17.3, right):

a) The paramagnetic substance is in contact with the hot reservoir at Th: the substance is
isothermally magnetised (∆H > 0) and gives up heat to the reservoir.

b) The paramagnetic substance is thermally insulated and adiabatically demagnetised (∆H <
0), so that its temperature decreases to the value Tc.

c) The paramagnetic substance is in contact with the cold reservoir at Tc and further isother-
mally demagnetised (∆H < 0), so that it absorbs heat from the reservoir.

d) The paramagnetic substance is thermally insulated and adiabatically re-magnetised (∆H >
0), so that its temperature increases to the value Th.

The refrigerating cycle transfers heat from the cold to the hot reservoir, absorbing work from the
power supply of the magnetising field.

In the practical applications of the magnetic Carnot cycle to cryogenic techniques (see Chapter
19) the cold reservoir of Fig. 17.3 is substituted by a finite system, that progressively reduces its
temperature during each cycle.

17.4 Magneto-mechanical effects

In addition to the thermal effects of magnetic fields (magnetotermal effects, of which some examples
have been considered in § 17.3), interesting correlations can take place between magnetic and
mechanical properties.

Magnetostrictive effect

In isothermal (or adiabatic) conditions at constant pressure p, an increase of the magnetising field
H can give rise to a variation, positive or negative, of the volume V .
The effect is described by the derivatives(

∂V

∂H

)
T,p

,

(
∂V

∂H

)
S,p

, (17.59)

connected by the relation(
∂V

∂H

)
S,p

=

(
∂V

∂H

)
T,p

+

(
∂V

∂T

)
H,p

(
∂T

∂H

)
S,p

(17.60)
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Magnetoelastic effect

In isothermal (or adiabatic) conditions at constant H field, n increase of the pressure p can give
rise to a variation, positive or negative, of the magnetisation M .
The effect is described by the derivatives(

∂M

∂p

)
T,H

,

(
∂M

∂p

)
S,H

, (17.61)

connected by the relation(
∂M

∂p

)
S,H

=

(
∂M

∂p

)
T,H

+

(
∂M

∂T

)
p,H

(
∂T

∂p

)
S,H

(17.62)

Relation between the two effects

The two effects, magnetostrictive and magnetoelastic, are not independent. The relation between
the two effects is based on the Maxwell relations that one obtains by coupling mechanical and
magnetic terms.
Let us consider the differentials of the magnetic enthalpy H∗ and of the magnetic Gibbs function
G∗:

dH∗ = T dS + V dp−M dH , (17.63)

dG∗ = −S dT + V dp−M dH . (17.64)

The two Maxwell relations(
∂V

∂H

)
S,p

= −
(
∂M

∂p

)
S,H

,

(
∂V

∂H

)
T,p

= −
(
∂M

∂p

)
T,H

(17.65)

connect the two effects, in adiabatic and isothermal conditions, respectively.
If the volume V increases when the H field increases, the magnetisation M decreases when the
pressure p increses.
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Chapter 18

Statistics of paramagnetic systems

As we have seen in the previous chapter, systems characterised by magnetic dipole moments at the
atomic level have thermodynamical interest. The simplest of such systems are the paramagnetic
substances, in which the magnetisation appears only when an external magnetising field is present
and disappears when the magnetising field is removed.
In this chapter, the statistics of paramagnetic systems is studied. We first review the basics of
atomic magnetism and its quantisation (§ 18.1). An atom immersed in a magnetising field acquires
magnetic potential energy (§ 18.2). The magnetic potential energy is quantised: its levels are the
starting point for the statistical treatment.
The statistical treatment is here first applied to a particularly simple system, where only two levels
of magnetic potential energy are present (§ 18.3). By reducing the mathematical complexity, one
can thus better focus the attention on the fundamental aspects, mainly concerning the connection
with the macroscopic Thermodynamics, that is in some respects different from the connection for
the simple systems considered in Chapter 15.
In § 18.4 the results obtained for a two-level system are extended to magnetic systems with an
higher number (in any case finite) of energy levels. The § 18.4 ends with the description of some
processes relevant for applications to cryogeny, that will be further considered in Chapter 19.

18.1 Basics of atomic magnetism

To the angular momentum of elementary particles it corresponds a momentum of magnetic dipole.
The ratio between the magnetic dipole momentum and the angular momentum is different for the
orbital and the spin angular momenta, and in both cases is different fo the different constituents
of the atom (electrons, protons and neutrons).
In the following we first consider the magnetic moment of electrons, then the magnetic moment of
nucleons (protons and neutrons).

18.1.1 Magnetic moment of electrons

Orbital magnetic moment of electrons

For a system of electrons whose total spin is null, ~S = 0, the magnetic dipole moment ~µ is connected
to the orbital angular momentum ~L by the relations

~µ` = − eh̄

2me

~L

h̄
= −µB

~L

h̄
, µz = −µBm` , (18.1)

where e is the value (positive) of the elementary charge, me is the electron mass and h̄ = h/2π is
the reduced Planck constant.
The left part of (18.1) refers to the vectors ~µ` e ~L, the right part refers to their components
along a given z direction. The magnetic dipole moment and the angular momentum have opposite
directions.

237
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The quantity µB in (18.1) is the Bohr magneton

µB =
eh̄

2me
= 5.788× 10−5 eV/T = 9.274× 10−24 J/T (18.2)

and has the same dimensions as the magnetic dipole moment; the ratio L/h̄ is adimensional.

Note 1: Equation (18.1) can be explained also by a classical approach, if one assumes that the
electron moves on a circular orbit of radius r with angular velocity ω: the corresponding
angular momentum is L = meωr

2, the electric current is I = e(ω/2π) and the magnetic
moment is eωr2/2.

Note 2: The unit of the magnetic dipole and the Bohr magneton is generally expressed as the
ratio between an energy and a magnetic induction, eV/T. This choice is consistent with the
expression (18.10) of the magnetic potential energy, to be introduced in § 18.2.

Spin magnetic moment of electrons

For an electron or a set of electrons whose orbital angular momentum is null, ~L = 0, the magnetic
dipole moment ~µ depends on the total spin ~S according to

~µs = −gs µB
~S

h̄
, µz = −gs µBms . (18.3)

Also in (18.3) the left part refers to vectors, the right part refers to their components along a given
direction z. The quantity gs is the gyromagnetic ratio of the electron or spin g factor. It exact
value is gs = 2.002319, generally approximated by gs = 2.

Equation (18.3) (spin) differs from equation (18.1) (orbital angular momentum) by a factor 2.
Sometimes one inserts also in (18.1) a factor g` = 1, called orbital g factor.
For a single electron, ms = ±1/2, so that µB = |µz|: the Bohr magneton is the value of the spin
magnetic moment of a single electron.

Total magnetic moment of electrons

For a generic system of electrons, for which both ~L 6= 0 and ~S 6= 0, it is necessary to consider
the total angular momentum ~J . The total magnetic moment ~µ depends on the total angular
momentum ~J according to the relations

~µJ = −gJ µB
~J

h̄
, µz = −gJ µBmJ . (18.4)

The quantity gJ is the Landé factor, whose value is given by

gJ =
3J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (18.5)

One can easily verify that if L = 0, then gJ = 2, while if S = 0, then gJ = 1. Equation (18.4)
summarises thus all possible cases.

18.1.2 Magnetic moment of nucleons

The nuclear magneton

For a proton, the relation between magnetic moment and orbital angular momentum is similar to
the one of the electron (18.1), the differences are due to the different mass and do the different
sign of the electric charge:

~µ` =
eh̄

2mp

~L

h̄
= µN

~L

h̄
, (18.6)

where mp is the proton mass, which is 1836 times larger than the electron mass.
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The quantity µN is the nuclear magneton

µN =
eh̄

2mp
= 3.152× 10−8 eV/T = 5.050× 10−27 J/T (18.7)

which is 1836 times smaller than the Bohr magneton, µN = µB/1836.

Spin of protons and neutrons

Protons and neutrons, like electrons, are characterised by a spin angular momentum ~s; to the spin
it corresponds a magnetic moment for the electron too, in spite of the absence of an electric charge.
The relation between magnetic moment ~µ and spin ~s of single nucleon is

~µs = g µN
~s

h̄
, (18.8)

where the quantity g has different values for protons and neutrons:

• for protons gp = 5.58 (positive), so that the magnetic moment is µsp = 2.7927µN
• for neutrons gn = −3.826 (negative), so that the magnetic moment is µsn = −1.9131µN

Nuclear spin

The total angular momentum ~I of a nucleus (called nuclear spin) is the sum of the orbital and
spin contributions of the nucleons. The corresponding magnetic moment is

~µI = gI µN
~I

h̄
, µz = gI µN mI , (18.9)

where gI is the gyromagnetic ratio of the nucleus.

18.2 Magnetic potential energy

For a magnetic dipole of moment ~µ inserted in a field of magnetic induction ~B directed along the
z axis, the potential energy is

εm = −~µ · ~B = −µzB . (18.10)

The potential energy (18.10) is minimum when ~µ and ~B are parallel, it is maximum when they are
anti-parallel.

For an electron or a system of electrons, (18.10) becomes

εm = gJ mJ µB B ; (18.11)

the potential energy is minimum when the quantum number mJ has the minimum (negative) value.
The gJ factor and the quantum number mJ have different values for different atoms.

For a nucleus, (18.10) becomes
εm = −gI mI µN B . (18.12)

The gJ factor and the quantum number mI have different values for different systems. For a single
proton, g > 0 and the potential energy has the minimum value when the quantum number m has
the maximum value. For a single neutron, g < 0 and the potential energy has the minimum value
when the quantum number m is minimum.

Note: The magnetic induction field B is connected to the magnetising field H by the relation
B = µ0(1 + χm)H, where χm is the magnetic susceptibility. Since χm � 1 for paramagnetic
systems, sometimes the magnetic properties, such as the potential energy, are expressed and
plotted as a function of H instead of B. Such an approximation is anyway good when the
magnetic atoms are dispersed in a non magnetic matrix, as is the case of paramagnetic salts
(see below, §18.4).
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Figure 18.1: Magnetic potential energy as a function of the induction field B (represented by the
up-directed thick arrows) for a system with L = 0, S = 1/2 (left) and with L = 0, S = 1 (right).

Examples

Example 1: he simplest case is represented by an atom with total orbital angular momentum
null, ~L = 0, and only one unpaired electron, so that ms = ±1/2. Since gs = 2, the potential
energy can take only two values

εm = −gsmsµBB = ∓µBB : (18.13)

positive value εm = +µBB when ~µ and ~B have opposite direction,

negative value εm = −µBB when ~µ and ~B have the same direction.

When the B field increases, the difference between the two energy levels increases linearly
(Fig. 18.1, left). For example:

a) if B=0.1 T, then εm± 5.788×10−6 eV,

b) if B=2 T, then εm± 1.157×10−4 eV.

Example 2: The hydrogen molecule H2 in its ground state is not paramagnetic. The two electrons
occupy the lowest bonding level 1σg, with anti-parallel spins to fulfil the Pauli exclusion
principle. Therefore L = 0 and S = 0, so that the magnetic dipole moment is zero.
The energy of the molecule is insensitive to the magnetic field.

Example 3: The oxygen molecule O2 in its ground state is paramagnetic. The electron configuration
of an oxygen atom is 1s2 2s2 2p4. The magnetic properties of the O2 molecule are determined
by the electrons of the atomic 2p orbitals, which contribute to form the bonding molecular
orbitals πu and σg and the anti-bonding molecular orbitals π∗g e σ∗u (listed in order of increasing
energy). Of the eight 2p electrons present in the molecule, four fill up the πu orbital and two
fill up the σg orbital. The remaining two electron sit in the π∗g orbital, without filling it up:
the two electrons have parallel spins, according to the first Hund rule (the ground-state spin
of an atom has the highest possible value consistent with the Pauli exclusion principle). The
O2 molecule has orbital momentum L = 0 and spin momentum S = 1, corresponding to three
values ms = +1, 0,−1. In presence of an induction field B, the ground state level splits into
three levels, with magnetic energy −2µBB, 0,+2µBB, respectively (Fig. 18.1, right).

Example 4: Paramagnetic salts are substances in which a paramagnetic ion is diluted in a matrix of
non-paramagnetic different atomic species. Paramagnetic salts are interesting for the easiness
of the statistical treatment as well as for their cryogenic applications (Chapter 19).
Let us consider two examples:

(a) Cr2 (SO4)3· K2SO4· 24 H2O

(b) Fe2 (SO4)3· (NH4)2SO4· 24 H2O

In the first case (a) the magnetic ion is Cr3+. The electron configurations of the Cr atom
and of the Cr3+ ion are [Ar] 4s1 3d5 and [Ar] 4s0 3d3, espectively. The three 3d electrons of
the Cr3+ ion have parallel spins, according to the first Hund rule, while the orbital angular
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momentum is null, owing to the interaction with the matrix. As a result, L = 0 and S = 3/2.
There are four values ms = +3/2,+1/2,−1/2,−3/2.
In the second case (b) the magnetic ion is Fe3+. The electron configurations of the Fe atom
and of the Fe3+ ion are [Ar] 4s2 3d6 and [Ar] 4s0 3d5, respectively. The five 5d electrons of
the Fe3+ ion have parallel spins, according to the first Hund rule, while the orbital angular
momentum is null, owing to the interaction with the matrix. As a re sult,L = 0 and S = 5/2.
There are six values ms = +5/2,+3/2,+1/2,−1/2,−3/2,−5/2.

Example 5: At last, let us consider nuclear magnetism. The simplest case is the hydrogen nucleus,
with a single proton and no neutrons. The spin is 1/2, so that there are only two levels of
magnetic energy (Fig. 18.1, left). Making use of (18.12), with gI = gp=5.58 and mj = 1/2, let
us evaluate the energy levels corresponding to the same values of induction B of the Example
1 above, concerning the electron of the hydrogen atom:

a) if B=0.1 T, then εm± 8.79×10−9 eV,

b) if B=2 T, then εm± 1.758×10−8 eV.

For the same induction field B, the separation of the magnetic energy levels is much smaller
for the proton spin than for the electron spin.

18.3 Two-level systems

We want now to study the statistical properties ofa paramagnetic system.

To this aim, let us consider a system of paramagnetic atoms dispersed in a non-magnetic crystalline
matrix, so as to be very weakly interacting; it is the case of paramagnetic salts of the Example 5
above.

Let us consider only on the magnetic contribution to the energy, neglecting the other degrees of
freedom, typically the vibrational ones. This amounts to consider a purely magnetic sub-system,
that exchanges energy with the vibrational sub-system so slowly to be considered isolated. Such
an approximation, that is actually acceptable only at very low temperatures, where only the low-
energy levels can be excited and exchange energy, allows one to focus the attention only on the
statistical properties of the magnetic sub-system.

To maintain the treatment as simpler as possible, we consider in this § 18.3 a system with only two
levels of magnetic energy.

18.3.1 Statistics of particles

Le us consider the statistics of a system of distinguishable atoms with spin S = 1/2 and orbital
angular momentum L = 0. The atoms are distinguishable because they are bound to the positions
of a crystal lattice.

In presence of a field of magnetic induction B, the magnetic energy of each atom can have one of
the two values (18.13), according to whether its magnetic moment is parallel or anti-parallel to the
field B:

ε1 = −µBB , ε2 = +µBB (18.14)

Atomic partition function

Since the atoms are distinguishable, one can resort to the Maxwell-Boltzmann statistics of § 16.4.
The atomic partition function is

z =

2∑
i=1

e−εi/kT = eµBB/kT + e−µBB/kT = 2 cosh
µBB
kT

, (18.15)

where k = kB ' 8.6× 10−5 eV K−1 is the Boltzmann constant.
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Figure 18.2: Two-levels magnetic system. Average magnetisation 〈µ〉 as a function of the ratio
y = µBB/kT (left) and of the inverse ratio kT/µBB (right).

Average population of the two levels

The probability that an atom be in one of the two energy levels is

Pi =
ni
N

=
1

z
e−εi/kT =


P2 =

1

e2µBB/kT + 1

P1 =
1

e−2µBB/kT + 1

(18.16)

Let us study the dependence of the probabilities (18.16) on the temperature T and on the induction
field B.

For a constant non-zero field, B, one can easily verify the dependence on temperature:

T → 0 T →∞
P2 → 0 P2 → 1/2
P1 → 1 P1 → 1/2

(18.17)

At low temperatures, the population gathers on the lowest level; at high temperatures, the popu-
lation tend to be uniform on the two levels. Such a behaviour is consistent with the conclusions of
§ 15.5 for the ideal gas.

For a constant temperature T , one can easily verify the dependence on the field B:

B = 0 B → ∞
P2 = 1/2 P2 → 0
P1 = 1/2 P1 → 1

(18.18)

When the field is zero, the populations of the two levels are equal. Actually, for zero field there is
only one degenerate level; the effect of the field is to remove the degeneracy, splitting in two the
level, and to progressively increase the population of the lower level and decrease the population
of the higher level.

Average magnetisation

The average magnetisation of a single atom is

〈µ〉 =

2∑
i=1

Pi µi =
1

z

2∑
i=1

µi e
−εi/kT (18.19)

where µi is the magnetisation corresponding to the energy level εi = ∓µBB and the probability Pi
is given by (18.16). By substituting the partition function (18.15) in (18.19) one obtains (Fig. 18.2):

〈µ〉 = µB
eµBB/kT − e−µBB/kT

eµBB/kT + e−µBB/kT
= µB tanh

µBB
kT

. (18.20)
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The argument of the hyperbolic tangent contains the ratio y between the magnetic energy µBB
and the thermal energy kT :

y =
µBB
kT

' 0.67
B
T
, (18.21)

where B is measured in tesla and T in kelvin.

One can easily verify the two limiting conditions:

a) For small values of the ratio y between magnetic and thermal energy, that is for weak fields
and/or high temperatures,

y � 1⇒ tanh y ' y ⇒ 〈µ〉 =
µ2
BB
kT

. (18.22)

Equation (18.22) corresponds to the macroscopic Curie law (17.23):

χT =
1

µ0V

(
∂M

∂H

)
Tp

∝ 1

T
(18.23)

Actually, the total magnetisation M (Chapters 3 and 17) is connected to the average atomic
magnetisation 〈µ〉 by M = Nµ0〈µ〉, where N is the total number of paramagnetic atoms
and µ0 is the magnetic permeability; besides, B = µ0(1 + χT )H ' µ0H, because χT � 1 for
paramagnetic substances.

b) For large values of the ratio y between magnetic and thermal energy, that is for strong fields
and/or low temperatures

y � 1⇒ tanh y ' 1 ⇒ 〈µ〉 = µB (18.24)

and saturation takes place.

18.3.2 Thermodynamical quantities

Let us now calculate the thermodynamical quantities for a magnetic two-levels system in terms of
the Maxwell-Boltzmann single-particle statistics introduced above.

It is convenient first to clarify two points.

A.

In this Chapter 18 dedicated to statistics we referred B, that is the local field acting on single
atoms as an effect of both the free current of the power supply and of the matter magnetisation.

In § 3.6 and in Chapter 17 the magnetisation work ahas been instead expressed in terms of the
magnetising field H, considered as a thermodynamical coordinate.

The relation between the two field is B = µ0H (1 + χm). In paramagnetic materials, the sus-
ceptibility is typically included between 10−5 and 10−3, much smaller than one, so that one can
approximate B ' µ0H and consider the two fields as equivalent, to within the µ0 constant.

B.

The connection between Statistics and macroscopic Thermodynamics can be made according to
the guidelines of Chapter 15, with an important difference.

In Chapter 15 the thermodynamical internal energy was identified with the average energy 〈E〉
calculated by statistical methods (eq. 15.9). Such an identification is however possible if the energy
E only contains kinetic and potential contributions internal to the system, as is the case for system
composed by gas molecules or vibrational modes of a crystal.

For a magnetic system, the energy levels (18.14) of the statistical treatment refer to the potential
energy of an external field; as a consequence, equation U = 〈E〉 doesn’t hold. It will be shown
below that, in the connection between Statistics and Thermodynamics for magnetic systems, a key
role is plaid by the magnetic enthalpy H∗.
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System partition function

Let us first express the partition function Z of the system as a function of the single-particle
partition function z of (18.15). Since the paramagnetic atoms are bound to the points of a crystal
lattice, one can rely on the prescription of § 16.4for distinguishable particles:

Z = zN , lnZ = N ln z = N ln

[
2 cosh

µBB
kT

]
. (18.25)

Once known the partition function Z, one can obtain the thermodynamical functions through the
canonical distribution formalism.

Magnetic potential energy

The average potential energy due to the magnetic field is, according to (15.36),

〈Em〉 = kT 2 ∂ lnZ

∂T
= NkT 2 ∂ ln z

∂T
. (18.26)

Substituting Z from (18.25) and differentiating one obtains

〈Em〉 = −NµB B tanh
µBB
kT

= −N 〈µ〉 B (18.27)

= −N 〈µ〉µ0H = −M H . (18.28)

To be consistent with the treatment of Chapters 3 and 17, in (18.28) the magnetic energy 〈Em〉
is expressed in terms of the total magnetisation M (that includes the constant µ0) and of the
magnetising field H
The dependence ofi 〈Em〉 on the field B (or on the field H) and on the temperature T is shown
in Fig. 18.3: the graphs of energy correspond to the graphs of the magnetisation of single atoms
(Fig. (18.2)), to within the change of sign on the vertical axis. The value of the magnetic potential
energy 〈Em〉 is always negative.

If the temperature T is maintained constant (Fig. 18.3, left),

• if B = 0, then 〈Em〉 = 0: for zero field there is only one degenerate level, the degeneracy is
removed by the field B,

• if B → ∞, then 〈Em〉 → −NµBB, minimum value, corresponding to the complete alignment
of the magnetic dipoles (saturation condition).

If the field is maintained constant to a value B 6= 0 (Fig. 18.3, right),

• if T → 0, then 〈Em〉 → −NµBB, minimum value, corresponding to the complete alignment
of the magnetic dipoles (saturation condition),

• if T →∞, then 〈Em〉 → 0, the two single-particle levels are equally populated.

The magnetic energy 〈Em〉 is the potential energy of an external field and doesn’t contribute to
the internal energy U . The internal energy cannot thus be connected to the partition function
through the simple equation (15.37). To find the correct expression for the internal energy, it is
conventient to first consider the entropy.

Magnetic entropy

The general relation between entropy, magnetic potential energy and partition function is given
by the first equality of (15.43), so that:

Sm =
〈Em〉
T

+ k lnZ = −Nk
(
µBB
kT

)
tanh

(
µBB
kT

)
+ Nk ln

[
2 cosh

(
µBB
kT

)]
. (18.29)

The magnetic entropy Sm is a function of the ratio B/T .
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Figure 18.3: Two-levels magnetic system. Magnetic potential energy 〈Em〉 as a function of the
ratio µBB/kT (left) and of the inverse ratio kT/µBB (right).
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Figure 18.4: Two-levels magnetic system. Magnetic entropy as a function of the ratio µBB/kT
(left) and of the inverse ratio kT/µBB (right).

In Fig. 18.4 the magnetic entropy Sm is shown as a function of the ratio µBB/kT (left) and of the
inverse ratio kT/µBB (right).

When T/B → 0 (low temperatures an/or strong magnetic field), the magnetic entropy tends to
the value Sm = 0: the magnetic dipoles of single atoms tend to be perfectly aligned, giving rise to
a single microstate.

When T/B → ∞ (high temperatures and/or weak, but not zero, magnetic field) the entropy tends
to the limiting value Sm = Nk ln 2 = k ln 2N : the populations of the two levels tend to be equal,
each one of the N atoms has the same probability of being in one or the other of the two levels.

Magnetic energy and internal energy

The magnetic energy 〈Em〉 = −N〈µ〉 B = −M H doesn’t contribute to the internal energy. The
total energy of the system is the sum of the internal energy and the magnetic potential energy:

Etot = U −HM . (18.30)

By differentiating (18.30) and taking into account that dU = T dS − p dV +H dM , one obtains

dEtot = T dS − p dV +H dM −H dM −M dH
= T dS − p dV −M dH . (18.31)

The magnetisation work H dM made on the system corresponds to a reduction −H dM of the
magnetico potential energy; the two contributions cancel out in (18.31).

Magnetic enthalpy

The magnetic enthalpy

H∗ = U + pV −HM = Etot + pV . (18.32)
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Figure 18.5: Two-levels magnetic system. Magnetic contribution to the specific heat (here divided
by Nk).

corresponds to the total energy, to within the term pV . Its differential can be expressed in terms
of the thermodynamical variables

dH∗ = T dS + V dp−M dH , (18.33)

as well as in terms of the total energy

dH∗ = dEtot + d(pV ) ' dEtot (18.34)

(the term d(pV ) is generally negligible).

Magnetic contribution to the heat capacity

The heat capacity at constant pressure p and magnetising field H is defined in (17.26). Taking
into account the differential (18.33) of the magnetic enthalpy, one finds

CpH =
(d̄Q)pH
dT

= T

(
∂S

∂T

)
pH

=

(
∂H∗

∂T

)
pH

, (18.35)

that is

CpH =

(
∂H∗

∂T

)
pH

=

(
∂U

∂T

)
pH

+

(
∂(pV )

∂T

)
pH

+

(
∂(−HM)

∂T

)
pH

. (18.36)

Let us focus our attention on the last term, that is on the magnetic contribution to the heat
capacity, that becomes particularly important at low temperatures, when the vibrational contri-
bution becomes negligible. The magnetic contribution to the heat capacity can be calculated by
differentiating (18.27):

Cm =

(
∂Em
∂T

)
H

= Nk

(
µBµ0H
kT

)2

sech2

(
µBµ0H
kT

)
. (18.37)

The dependence of the magnetic heat capacity on temperature, shown in Fig. 18.5, is typical of
systems with a finite number of levels: at low temperatures Cm increases when T increases; it
reaches a maximum value and then decreases towards zero.

18.4 Thermodynamics and statistics of magnetic substances

In § 18.3, by dealing with the two-levels system, we succeeded in enlightening without complex
mathematics the most relevant properties of the statistics of magnetic systems.
In most cases, however, the levels of magnetic potential energy are more than two, as in the
examples considered at the end of § 18.2. In any case, the number of levels is finite, giving rise
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to a lower limit to the magnetic potential energy (saturation condition) and to a behaviour of the
magnetic specific heat similar to that of Fig. 18.5, characterised by a maximum value followed by
a decrease towards zero when the temperature increases.
Actually, a purely magnetic system, with a finite number of energy levels doesn’t exist. Any real
system can store energy in other ways. For example, a crystal with magnetic properties is affected
also by vibrational degrees of freedom, that can absorb energy over an unlimited number of levels
and give rise to a contribution to the specific heat like the one shown in Fig. 9.1 of § 9.1.
However, at low temperatures the contribution to the specific heat of the magnetic sub-system
(Fig. Fig. 18.5) can prevail over the vibrational contribution. The magnetic contribution appears
then as an anomalous hump on the graph of the total specific heat (Schottky anomaly).

18.4.1 Paramagnetic salt

A particularly interesting example of realistic magnetic system is a paramagnetic salt, like the ones
considered in the last example of § 18.1,

(a) Cr2 (SO4)3· K2SO4· 24 H2O

(b) Fe2 (SO4)3· (NH4)2SO4· 24 H2O

where paramagnetic ions are dispersed in a matrix composed by different non-paramagnetic atomic
species. In case (a) the magnetic ion is Cr3+, in case (b) the magnetic ion is Fe3+.

The magnetic ions of a paramagnetic salt can be considered as a subsystem of a larger system. The
total energy of the salt, when in presence of a magnetising fieldH, is the sum of three contributions:

a) magnetic potential energy due to the presence of the external field H, with a finite number
of levels,

b) potential energy due to the internal crystal fields (Stark effect), that reduce the degeneracy
of the ground level even if the external field is absent,

c) vibrational energy, with an unlimited number of levels.

The second and third contributions represent the internal energy U of the subsystem.

T

S H=0
H 1

H 2

T

S
H=0

H 1
H 2

Figure 18.6: Typical behaviour of the magnetic entropy as a function of temperature for different
values of the magnetising field, H = 0, H1 e H2 > H1. The graph on the left refers to the ideal
situation, when internal fields are absent. The graph on the right takes into account also the
contribution of internal electrical and magnetic field.

18.4.2 Entropy

In § 18.3, thanks to the relative simplicity of the two-levels system, we succeeded in calculating
the expression (18.29) of the entropy as a function of the temperature T and of the fields B or H
(Fig. 18.4).

The calculation is more complicated for a many-levels system. The behaviour of the entropy is
anyway similar to that of Fig. 18.4.
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In the left graph of Fig. 18.6 the typical behaviour of the magnetic entropy as a function of
temperature is shown for different values of the field H. When H = 0, the entropy is maximum
and doesn’t depend on temperature: the atomic magnetic dipoles are randomly oriented at any
temperature. The effect of the field H is the partial orientation of the atomic dipoles, counteracting
the disordering effect of temperature. For a given temperature, the entropy decreases when the H
field increases.
To addition to the effects of the external field H, one has to consider the effects of internal fields,
both electrical and magnetic, that contribute o the orientation of the atomic dipoles even when
H = 0. The behaviour of the entropy in presence of internal fields is shown on the right graph of
Fig. 18.6.

In 18.6 the thermal contribution to the entropy, typically due to the vibrational motion of atoms
and always present, has been omitted. As already observed above, the thermal contribution is
generally negligible at sufficiently low temperatures.
The situation can be qualitatively clarified by Fig. 18.7, where the contributions to the entropy
and to the specific heat of the internal fields, of the external field H and of thermal vibrations are
evidenced. At sufficiently low temperatures the vibrational contributions can actually be neglected.

T

S a b c C

T
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a

c

Figure 18.7: Left: typical behaviour of the entropy as a function of the temperature when an
external fieldH is present; the letters a, b, c label the zones where the different contributions prevail:
internal fields, external field H and thermal vibrations, respectively. Right: typical behaviour of
the different contributions to the specific heat at low temperatures: of internal fields (a), of the
external field H (b) and of thermal vibrations (c).

18.4.3 Energy

The expression (18.30) for the total energy is valid for any magnetic system, including paramagnetic
salts. It becomes more interesting if the information on the levels occupation is added:

〈Etot〉 =
∑
〈ni〉εi = U −HM = H∗ − pV . (18.38)

As already observed, the energy levels εi depend on three contributions:

a) interaction of the atomic dipoles with the external field H, giving rise to the term c−HM ,

b) interaction of the atomic dipoles with the internal crystalline fields, independent of the ex-
ternal field H, ontributing to the internal energy U ,

c) vibrational energy, contributing to the internal energy U .

At sufficiently low temperatures, the vibrational contribution can be neglected.

The magnetic enthalpy H∗ corresponds, to within the term pV , to the total energy 〈Etot〉. Starting
from (18.38), let us calculate the differential dH∗, taking into account that for a solid system
maintained at constant ambient pressure the differential d(pV ) = pdV can be neglected:

dH∗ ' d〈Etot〉 = dU −H dM −M dH
= T dS −M dH . (18.39)
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In obtaining the second line of (18.39) one has considered that the magnetisation work is d̄W =
H dM , so that dU −H dM =d̄Q = T dS.

Let us now express the differential d〈Etot〉 with reference to the energy levels εiand their occupations
numbers ni, similarly to the case of the ideal gas in § 15.5:

dH∗ ' d〈Etot〉 =
∑

εi d〈ni〉 +
∑
〈ni〉 dεi . (18.40)

By comparing (18.40) with (18.39) one can identify, as for the ideal gas,

T dS = d̄Q =
∑

εi d〈ni〉 . (18.41)

The exchange of heat corresponds to the variation of the populations ni.
The equation

−M dH =
∑
〈ni〉 dεi , (18.42)

involving the variation of the levels εi, induced by the variation of the external field H, can be
considered as a “statistical work”.

Let us stress the difference between paramagnetic systems and ideal gas. For the ideal gas, when
no external fields are present, the internal energy U corresponds to the total average energy and
the work is due to the mechanical compression, d̄W = −p dV . In a solid paramagnetic system, the
work −p dV is negligible; the external field H, necessary to create the magnetic behaviour, gives
rise to the potential energy −HM , and the total energy, according to (18.38), doesn’t correspond
to the total energy U .

Note: In (18.38) the total energy has been expressed as the sum of the internal energy and of the
potential energy of the external field. Let us compare the case of the magnetic system with
the case of an ideal gas subject to the external field of gravity, already considered in § 3.5.
The total energy is 〈E〉 = U + mgh for the ideal gas, it is 〈E〉 = U − BM for the magnetic
system.
The differential of the total energy for the ideal gas is

d〈E〉 = dU + d(mgh)

= dU +mg dh

= T dS − p′ dV −mg dh+mg dh = T dS − p′ dV

where p′ is the pressure of the external ambient (corresponding to the internal pressure p if
the gravity field is negligible).
The differential of the total energy for the magnetic system is

d〈E〉 = dU − d(HM)

= dU −H dM −M dH
= T dS − p′ dVH dM −H dM −M dH = T dS −M dH ,

where one has taken into account that for a solid system dV ' 0.
The differences between the two cases are the different effect of pressure on a gas and on a
solid as well as the fact that the gravity field mg is constant, while the magnetising field H is
variable.

18.4.4 Thermodynamical processes

Some examples of simple reversible transformations should clarify the role of the magnetic enthalpy
and of the relation between the differential dH∗ and the variations of the levels εi and of their
populations ni.
As in §17.3, we will consider the processes of adiabatic and isothermal magnetisation (and demag-
netisation), which form the magnetic Carnot cycle (Fig. 17.3); we will also consider the process of
heating at constant magnetic field.
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Reversible adiabatic magnetisation

Let us consider a thermally insulated paramagnetic system and let us increase the external magnetic
field from a value H1 to a value H2 > H1, maintaining the pressure p unchanged.
From (18.39), taking into account that dS = 0 and dH > 0, one finds a negative enthalpy variation

dH∗ = −M dH < 0 (18.43)

In § 17.3, from purely macroscopic considerations, we have found that in a reversible adiabatic
magnetisation at constant pressure the temperature increases; from (17.57), since the susceptibility
of paramagnetic substances decreases when the temperature increases, one finds (see Fig. 18.8,
left): (

∂T

∂H

)
Sp

= −µ0VH
T

CpB

(
∂χ

∂T

)
pH

> 0 . (18.44)

Let us now consider the expression (18.40) of dH∗ and impose the constraint that the first sum,
corresponding to TdS, is zero:

dH∗ '
∑
〈ni〉 dεi . (18.45)

In an adiabatic magnetisation, when H increases the energy levels drift apart, but the populations
of single levels remain unchanged, because dS = 0 (Fig. 18.8, right); the increase of the distance
between the levels gives rise to a widening of the distribution of the populations with respet to the
energy axis. This last effect is the statistical meaning of the temperature for a purely magnetic
system.

H

e

H2H1

Figure 18.8: Reversible adiabatic magnetisation. Left: entropy-temperature graph (the arrow
shows the direction of the process). Right: schematic representation of the population of the
energy levels.

Reversible isothermal magnetisation

Let us now consider a paramagnetic system maintained at constant temperature T and pressure p
and suppose again that the external magnetic field increases from a value H1 to a value H2 > H1.
in § 17.3, again from purely macroscopic considerations, we have found that in a reversible isother-
mal magnetisation at constant pressure the entropy decreases, and the system gives up an amount
of heat d̄Q to its ambient; from (17.51), since the susceptibility of paramagnetic substances de-
creases when the temperature increases, one finds (Fig. 18.9, left):(

∂S

∂H

)
Tp

= µ0VH
(
∂χ

∂T

)
pH

< 0 . (18.46)

From (18.39), since dS < 0 and dH > 0, one finds that the variation of magnetic enthalpy is
negative:

dH∗ = T dS −M dH < 0. (18.47)

Since dS 6= 0, both terms in the right member of (18.40) are different from zero,

dH∗ '
∑

εi d〈ni〉 +
∑
〈ni〉 dεi . (18.48)
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Figure 18.9: Reversible isothermal magnetisation. Left: entropy-temperature graph (the arrow
shows the direction of the process). Right: schematic representation of the population of the
energy levels.
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Figure 18.10: Schematic representation of the populations of the energy levels for a process of
heating a paramagnetic system maintaining the external field H constant.

The increase of the magnetic field H splits apart the energy levels εi, the entropy variation mod-
ifies the populations ni of the levels. The invariability of the temperature T corresponds to the
invariability of the distribution of the populations ni iwith respect to the energy axis.

Heating at constant magnetic field

Let us at last consider a paramagnetic system maintained at constant pressure p and constant
external field H which absorbs an amount of heat.
Since dH = 0, equation (18.39) becomes

dH∗ ' T dS = dU −H dM = d̄Q > 0 . (18.49)

Actually, we have already observed in § 17.1 that the magnetic enthalpy H∗ corresponds to the
amount of heat absorbed by the system in a process where the pressure and the magnetic field
remain constant.
Heating a system with constant H gives rise to an increase of the entropy S and of the temperature
T . The magnetisation M decreases (see Fig. 18.2). The increase of the temperature at constant
magnetic field gives rise to a reduction of the alignment of the atomic magnetic dipoles with respect
to the magnetic field direction.

Since dH = 0, the energy levels εi are not modified, and (18.40) reduces to

dH∗ '
∑

εi d〈ni〉 . (18.50)

Only the populations of the levels are modified (Fig. 18.10), giving rise to an increased disper-
sion with respect to both the levels (increase of entropy S) and to the energy axis (increase of
temperature T ).
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Chapter 19

Thermodynamics of low
temperatures

Obtaining temperatures lower than the ambient temperature is important for both the science and
technology.

For what concerns scientific interests, the first attempts at liquefying some gases date back to te
end of the XVIII century; the main aim was to better understand the relation between the different
states of aggregation of matter. New properties of matter at low temperatures have been progres-
sively discovered, among which particularly important are superconductivity and superfluidity,
that appear only at extremely low temperatures.

For what concerns technology, the first applications concern probably food preservation: in the
second half of the XIX century the first refrigerating devices allowed the construction of refrigerated
ships and railway cars. Today, liquid nitrogen and even liquid helium are used in food industry, in
medical devices and in a number of industrial applications.

In this chapter, some basic concepts of cryogeny, that is of the set of techniques suitable for
achieving very low temperatures, are summarised (§ 19.1). Particular attention is given to the
techniques based on paramagnetic salts, that allowed one to attain temperatures of the order of
10−6 K (§ 19.2).

19.1 Cryogenic fluids and related techniques

To maintain low the temperature of a system, one places it in contact with a refrigerating substance.

For temperatures as low as about 1 K, the refrigerating substances are consist generally in liquefied
gases. When a gas is maintained at its boiling point, the heat transferred from the system to be
refrigerated to the liquefied gas fives rise to the evaporation of the gas without increasing its
temperature.

In order to liquefy cryogenic gases two techniques are possible, the reversible adiabatic expansion
(§ 10.2) and the Joule-Thomson effect (§ 10.5), some times implemented in series.

One can obtain temperatures lower than the boiling point of the liquefied gas by rapidly pumping
its vapours, until to the solidification temperature is attained.

In Tabella 19.1 some properties of the most important cryogenic liquids are summarised. Liquid
nitrogen, whose temperature is 77.3 K, is widespread in scientific, medical and industrial applica-
tions. Liquid helium, whose temperature is 4.2 K, is by far more expensive and is mainly used in
scientific applications.

The main cryogenic techniques are listed in the right column of Table 19.1, and are analysed in
some detail below.
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Table 19.1: Relevant temperature values (in kelvin) of some cryogenic liquids.

Property Gas Technique

N2 H2 He4 He3

adiabatic expansion
Maximum inversion temperature 621 202 40 ←−

Joule-Thomson effect
Boiling point (at 1 bar) 77.3 20.4 4.2 ←−

rapid vapour pumping
Freezing point 63.1 14 — —

Minimum temperature ' 1 ' 0.3 ←−
Magnetic methods
⇓

19.1.1 Cooling by reversible adiabatic expansion

A gas undergoing a reversible (or quasi-reversible) adiabatic expansion cools down.
Let us refer to § 10.2, and modify the T dS equation (10.8) through the fourth Maxwell relation
(7.45):

T dS = T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp

= T

(
∂S

∂T

)
p

dT − T

(
∂V

∂T

)
p

dp

= CpdT − TV β dp . (19.1)

In the last equality, the heat capacity at constant pressure Cp and the coefficient of thermal
expansion β have been introduced.

For an adiabatic expansion, dS = 0 and dp < 0, so that

dT =
TV β

Cp
dp < 0 (19.2)

because Cp > 0 alwys, and for a gas β > 0.

A gas cools down if it undergoes a reversible adiabatic expansion from a higher pressure p2 to a
lower pressure p1 (a → b in Fig. 19.1, left). The pressure of the gas can be brought back to the
value p2 by an isothermal compression, by which the entropy is reduced (b→ c in Fig. 19.1, left)

dS = −V β dp < 0 (19.3)

The sequence of adiabatic expansion and isothermal compression can be repeated many times so
as to progressively reduce the temperature of the gas.

The process becomes less and less effective as the temperature decreases. As a matter of fact, from
(19.2) one obtains

dT

dp
=

TV β

Cp
' V

Cp
, (19.4)

where the last equality refers to the ideal gas, for which β = 1/V . The volume V decreases when
the temperature T decreases at constant pressure (in the present case, at the two work pressures
p1 and p2). Therefore, according to (19.4), the temperature variation ∆T for a given adiabatic
expansion becomes progressively smaller as the temperature T and the volume V decrease.

In addition, when the temperature decreases, the technical difficulties connected to the lubrication
of the mechanical system increase, and the irreversibility of the process increases.
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Figure 19.1: Left: entropy-temperature graph for a sequence of adiabatic expansions and isothermal
compressions of a gas, with p2 > p1. Right: the slope of the liquid-vapour coexistence curve in the
T − p phase diagram is positive; for the solid phase, the graph can be very different with respect
to the figure; for helium, in particular, the solid phase can be obtained only for pressures larger
than 25 bar (Fig. 22.5).

Once the inversion temperature Tinv has been attained, the procedures based on the Joule-Thomson
effect become generally more convenient.

19.1.2 Cooling by Joule-Thomson effect

The Joule-Thomson effect (§ 10.5) takes place when a gas enclosed in an adiabatic vessel is forced
through a thin hole (or a porous plug) maintaining two constant pressures pi and pf on the two
sides of the ole, with pi > pf (Fig. 10.3).
Below the maximum inversion temperature Tmax,inv, that is different for different gases (Table 19.1),
the Joule-Thomson coefficient is positive (§ 10.5)

µj =

(
∂T

∂p

)
H

> 0 , (19.5)

so that below Tmax,inv the Joule-Thomson expansion always gives rise to a temperature decrease,
independent of the values of pressure.
By a sequence of Joule-Thomson expansions one obtains the gas liquefaction.

19.1.3 Cooling by rapid pumping of vapours

The cryogenic liquid can be further cooled below its boiling point by the rapid pumping of its
vapour.
By this procedure, the vapour pressure pvap is reduced, and, if the liquid-vapour equilibrium is
maintained, the temperature is reduced too (transition from a to b in Fig. 19.1, right).
The lowest temperature limit is the freezing point, except for helium, that can be frozen only when
submitted to a pressure of at least 25 bar (see the phase diagram of He4 in Fig. 22.5). The rapid
pumping of helium vapours allows one to attain temperatures of the order of some tenth of kelvin.

Note: In Table 19.1 the properties of two stable isotopes of helium are listed, He4 (nucleus with
twoprotons and two neutrons) and He3 (nucleus with two protons and one neutron). The He4

isotope is predominant in nature. The fraction of the He3 isotope in nature is 1.37 ppm (parts
per million).

19.2 Cooling by adiabatic demagnetisation

Temperatures much lower than one kelvin can be attained by exploiting the thermodynamical
properties of paramagnetic salts (§ 18.4).
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19.2.1 Atomic magnetic demagnetisation

Let us consder a system composed by a paramagnetic salt, for example Fe2 (SO4)3· (NH4)2SO4·
24 H2O. The magnetic ion Fe3+ is embedded in a non-magnetic matrix made by the other elements.
costituita dagli altri elementi. The Fe3+ ions are thus a magnetic sub-system of the total system.
Their dilution guarantees that the reciprocal magnetic interaction is very weak.

The freezing process can be described by the following sequence of processes.

1. The paramagnetic salt is put in contact with a reservoir of liquid helium at the temperature
T =1 K. The thermal contact is guaranteed by a cavity filled with low-pressure helium gas.
After a convenient time, the paramagnetic salt attains the equilibrium temperature 1 K.

2. Once the equilibrium has been attained at the temperature T= 1 K, an external magnetising
fieldH is applied to the system. The spins of the Fe3+ ions align themselves with the magnetic
field and the system becomes magnetised. Since the system is still in thermal contact with
the reservoir at 1 K, the one deals with an isothermal magnetisation, in which the levels of
magnetic energy are spread out and the system entropy decreases (see equation 17.52 and
Fig. 18.9).

3. The system is thermally insulated from the reservoir by pumping the gas helium from the
connecting cavity. The magnetising field is now removed, H → 0. Since the system is now
thermally insulated, one deals with an adiabatic demagnetisation, in which the temperature
of the magnetic sub-system decreases (see equation 17.58 and Fig. 18.8, taking into account
that here one considers the inverse process).
The so cooled magnetic sub-system absorbs heat from the remaining part of the system, thus
producing its global cooling.

By adiabatic demagnetisation of atomic spins, temperatures of the order of the milli-kelvin (10−3 K)
have been attained in laboratory. The lowest limit of this technique is due to the fact that the
weak interaction between magnetic ions cannot be avoided , so that a residual weak magnetisation
remains also when the external field is completely removed.

19.2.2 Nuclear adiabatic demagnetisation

Temperatures lower than some milli-kelvin have been attained by the adiabatic demagnetisation
of nuclear spins.
The nuclear magneton µN is much smaller than the Bohr magneton µB (§ 18.1): µN = µB/1836.
Therefore, for the same magnetising field H, the levels of nuclear magnetic energy are much more
close than the atomic magnetic levels.
Once the milli-kelvin temperature has been attained by the adiabatic demagnetisation of atomic
spins, the temperature can be further reduced by repeating the sequence of isothermal magneti-
sation and adiabatic demagnetisation of nuclear spins. By adiabatic demagnetisation of nuclear
spins, temperatures of the order of the micro-kelvin (10−6 K) have been attained in laboratory.



Chapter 20

The Third Law of
Thermodynamics

The classical macroscopic Thermodynamics is built on the three principles introduced in Part I:
Zeroth, First and Second Laws. Also the axiomatic approach of Part II refers, although in a
peculiarly different way, to the same principles.

There are however some experimental facts which cannot be interpreted in terms of these three
classical laws.

An example is the Gibbs paradox concerning the mixing of identical ideal gases (§ 11.2), that can
be solved only by quantum mechanics and its different statistical treatment of distinguishable and
indistinguishable identical particles (see the last part of § 16.4).

In this chapter we deal with another relevant case, concerning the behaviour of thermodynamical
systems at very low temperatures, close to the absolute zero. The increasing experimental diffi-
culties encountered when very low temperatures are sought as well as the possible incongruences
that would originated if the absolute zero could be attained led, in the classical macroscopic ap-
proach, to the proposal of a new principle, the Third Law, that in its first statement postulated
the unattainability of the absolute zero.

The statistical interpretation of the entropy and the quantum view of the energy levels allowed
a deeper understanding of the behaviour of systems at low temperatures. A new statement of
the Third Law has thus been proposed, referred to as Planck statement or as Nernst theorem,
that actually cannot be considered as a postulate, but instead as a consequence of statistical laws
applied to quantum systems.

In § 20.1 the possible incongruences connected with the attainment of the absolute zero are con-
sidered. The classical statements of the Third Law are presented in § 20.2 and 20.3. The quantum
approach and its consequences are at last introduced in § 20.4.

20.1 The problem of absolute zero

The empirical temperature scales (§ 2.2) don’t provide for an “absolute zero”. The values of the
empirical scales are purely conventional: the Celsius scale, for example, includes both positive and
negative values.

The temperature of the gas thermometer (§ 2.3) is instead positive by definition; the gas thermome-
ter cannot however measure all the possible temperatures, since at a sufficiently low temperature
every gas liquefies, so that it makes non sense to speak of zero temperature for a gas thermometer.

The concept of “absolute zero” arises with the introduction of the absolute thermodynamical tem-
perature T as a consequence of the Second Law and of the Carnot theorem (§ 4.3). The values of
the absolute temperature T are defined by the ratios between heat quantities Q exchanged in the
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two isothermal transformations of a Carnot cycle:

T1

T2
=

Q1

Q2
. (20.1)

The efficiency of a Carnot engine can be expressed, according to (4.17), as

η = 1− Tc
Th

, (20.2)

where Tc and Th are the temperatures of the cold and the hot reservoirs, respectively. When the
temperature Tc of the cold reservoir decreases, the efficiency η of the Carnot engine increases.
In principle, there is no lower limit to the thermodynamic temperature T , provided it is non
negative.
One can ask what would happen if the temperature of the cold reservoir became zero, that is if
Tc = 0, provided this result would be experimentally attainable. Actually, the value Tc = 0 would
give rise to relevant conceptual difficulties:

a) for Tc = 0, as a consequence of (20.1), the heat amount exchanged with the cold reservoir
would be null, Qc = 0, so that |W | = |Qh|; otherwise stated, an amount of heat Qh absorbed
by a unique source would be totally transformed into work, contrary to the Kelvin statement
of the Second Law (§4.2); the efficiency (20.2) of the Carnot engine would be η = 1;

b) for Tf = 0, since Qc = 0, the transformation of the thermodynamic system in contact with
the cold reservoir would be contemporarily isothermal (Tc = 0) and adiabatic (Qc = 0);
being reversible, it should be isentropic too.

These conceptual difficulties are connected to the possibility of attaining the absolute zero. Actu-
ally, is the absolute zero really attainable ? The problem was faced in different ways when time
went on.

20.2 Unattainability statement

Let us start from the expression (4.19) of the efficiency of a refrigerator operating between the two
temperatures Tc and Th:

ωfri =
|Qin|
|Wass|

≤ Tc
Th − Tc

, (20.3)

where the sign = holds for a Carnot cycle (reversible).
The efficiency ωfri of the ideal Carnot refrigerator progressively decreases when the temperature
Tc of the system to be cooled decreases, the efficiency of any real refrigerator is smaller.

Actually, the various cryogenic techniques introduced in Chapter 19 allow the decrease of the
temperature T by progressively smaller intervals:

- gas liquefying devices (by adiabatic expansion and Joule-Thomson effect): Tmin ' 4.2 K

- rapid pumping of liquid helium vapours: Tmin ' 0.8 K

- atomic adiabatic demagnetisation: Tmin ' 10−3 K

- nuclear adiabatic demagnetisatione: Tmin ' 10−6 K

The progressively increasing experimental difficulties encountered when seeking for extremely low
temperatures led the chemist W. Nernst, at the beginning of the XX century, to enunciate the
unattainability statement, that has been assumed as a Third Law of Thermodynamics:

The absolute zero is unattainable by a finite number of thermodynamical transforma-
tions.

Let us now recall that the temperature is not directly measurable, since one cannot define an
addition of temperatures. The absolute temperature is defined in terms of ratios Q1/Q2 between
directly measurable quantities (the heat amounts).
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One cannot thus conceive a linear temperature scale in a similar way as the linear scales of length
or mass or time: the same difference ∆T has different physical relevance for different values of T .
The situation can be better understood by referring to the statistical approach, where the thermal
equilibrium is accounted for by the quantity β = 1/kBT , that is by the inverse of the absolute
temperature (Chapter 14). When T → 0, that is when the absolute zero is approached, β → ∞.
The β parameter is better suited than T to account for the difficulties in attaining the absolute
zero.

20.3 Nernst-Simon statement

A deeper understanding of the behaviour of thermodynamical systems when the absolute zero is
approached (T → 0, β → ∞) is obtained by considering the entropy variations ∆S in isothermal
transformations induced, for example, by variations of pressure p or of magnetising field H.

The topic can be better introduced by some examples.

Example 1: Let us consider the two allotropic forms of sulfur, that differ in the crystal structure:
a) the α form has orthorhombic structure (a 6= b 6= c, α = β = γ = 90◦);
b) the β form has monoclinic structure (a 6= b 6= c, α = β = 90◦, γ 6= 90◦, γ 6= 120◦).
One can experimentally measure the entropy difference ∆Sαβ between the two forms at a
relatively high temperature T .
One can then calculate the entropy variations of each form in the transition from the temper-
ature T to zero temperature by extrapolating to zero kelvin the experimental values of specific
heats according to the low-temperature theoretical behaviour cp ∝ T 3:

∆Sα(0→ T ) =

∫ T

0

cαp
dT

T
; ∆Sβ(0→ T ) =

∫ T

0

cβp
dT

T
..

It is thus possible to extrapolate to zero kelvin the entropy difference of the two allotropic
forms of sulfur. One finds that the difference is zero:

∆Sαβ(T = 0) = ∆Sαβ(T 6= 0) +

∫ T

0

cαp
dT

T
−
∫ T

0

cβp
dT

T
= 0 .

Example 2: Let us consider the reversible isothermal compression of a solid body, induced by a
pressure variation pi → pf . The entropy variation can be calculated, taking into account the
Maxwell relation (7.45), as

(∆S)T =

∫ pf

pi

(
∂S

∂p

)
T

dp = −
∫ pf

pi

(
∂V

∂T

)
p

dp .

One observes experimentally that the coefficient of thermal expansion

β =
1

V

(
∂V

∂T

)
p

tends to zero when T → 0. As a consequence, also the entropy variation tends to zero,
(∆S)T=0 → 0, when the compression takes place for T → 0.

Example 3: Let us consider an isothermal and isobaric chemical reaction (§ 11.4). The Gibbs free
energy decreases (eq. 11.51):

∆G = ∆H − T ∆S < 0 .

The experiments show that at low temperatures esotermic reactions are favoured; otherwise
stated, the term T ∆S is generally small with respect to the term ∆H, so that ∆G ' ∆H.
This behaviour suggested to Walter Nernst (1864-1941) that the entropic contribution ∆S
becomes negligible at low temperatures.

Considerations such as those suggested by the above examples led to the Nernst-Simon statement
of the Third Law:
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For any reversible isothermal transformation of a condensed system, ∆S → 0 when
T → 0.

20.3.1 Equivalence of the two statements

One can demonstrate that the Nernst-Simon statement and the unattainability statement are
equivalent.
For the demonstration, one can refer to the case of a paramagnetic salt.
Let us first consider the isothermal variation of entropy (∆S)T connected to an isothermal variation
of the magnetising field (∆H)T and study the behaviour of such variation when T → 0. That is,
let us calculate

lim
T→0

[S(T,Hi)− S(T,H = 0)] .

To perform the calculation, let us consider two states i and f having the same entropy Si = Sf
and different tmperatures Ti and Tf , corresponding to the magnetising fields Hi and Hf = 0,
respectively. The entropy values Si(Ti) and Sf (Tf ) are connected to the entropy values at T = 0
by

Si(Ti,Hi) = S(T = 0,Hi) +

∫ Ti

0

cHi
T

dT (20.4)

Sf (Tf ,H = 0) = S(T = 0,H = 0) +

∫ Tf

0

c0
T
dT (20.5)

so that, by equating the first members of the two equations, one finds

lim
T→0

[S(T,Hi)− S(T,H = 0)] =

∫ Tf

0

c0
T
dT −

∫ Ti

0

cHi
T

dT .

One can now verify the equivalence of the two statements.

a) Were the unattainability statement false, one could start from any temperature Ti and attain
the temperature Tf = 0. The first integral on the right would be zero, so that

lim
T→0

[S(T,Hi)− S(T,H = 0)] < 0 ,

and the Nernts-Simon statement would be false too.

b) Were the Nernst-Simon statement false, so that the entropy variation were different from zero
when T → 0, a temperature value Ti would exist such that Tf = 0, and the unattainability
statement would be false.

20.4 Planck statement

The two statements of unattainability and of Nernst-Simon are based on the results of macroscopic
experiments.
A stronger statement of the Third Law was based on two theoretical advancements, that have been
reviewed in Part III:

1) the statistical interpretation of the entropy in terms of the number Ω of micro-states corre-
sponding to a given equilibrium macro-state of a system, that for an isolated system gives
rise to the Boltzmann equation (13.9): S = kB lnΩ ;

2) the development of quantum mechanics, according to which discrete energy levels exist.

On the ground of these developments, the Third Law has been expressed in a new statement,
referred to as the Planck statement or as the strong form of the Third Law:
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The entropy of a pure condensed substance, that at T = 0 is in a non-degenerate ground
state, is zero, S = 0.

The Planck statement is a consequence of the statistical definition of entropy. In greater detail:

1) for an isolated system, S = kB lnΩ: in the ground state, that is in the state of minimum
energy,

1a) if the ground state is non degenerate, Ω0 = 1 and S = 0;

1b) is the ground state is degenerate, with degeneration g0, then Ω0 = g0 and S = kB ln g0;

2) for a system maintained at constant temperature, S = −kB
∑
i Pi ln (Pi/gi), where gi is the

degeneracy of the i-th level; in the ground state, only the term of the sum containing P0 is
different from zero, so that

2a) if the ground state is non degenerate, P0 = 1, g0 = 1 and S = −kB P0 lnP0 = 0;

2b) sis the ground state is degenerate, with degeneration g0, then S = −kB P0 ln (P0/g0) =
kB ln g0.

The Plank statement of the “Third Law” is actually not a postulate but a theorem depending of
the statistical definition of entropy and on the principles of quantum mechanics.

Let us add two specifications:

1. The possible degeneracy of the ground state is generally so small to be neglected in compar-
ison with the entropy variations induced by any small temperature increase.

2. The ground state to which the Planck statement refers depends on the physical phenomena
that are considered when the energy levels are determined. The following example should
clarify this point.

Example 1: Let us consider a perfect crystal and suppose that its energy can be stored only in the
normal modes of atomic vibrations. In the ground state (state of minimum energy) to each
normal mode it corresponds only the zero-point energy, εi = h̄ωi/2. Such a condition can be
fulfilled in only one way, so that there is only one micro-state, Ω = 1 and S = 0.

Example 2: The case of the previous example is more complicate if atomic and nuclear spins are
taken into account. Even when external magnetic fields are absent, the weak interaction of
the spins with the internal crystal fields (§ 18.4) gives rise to the presence of different energy
levels which contribute to the entropy of the system. The contribution of the spins is relevant
for temperatures much lower with respect to the contribution of atomic vibrations (see Fig.
18.7, right) and the corresponding ground state is obtained at much lower temperatures.

In principle, the Planck statement of the Third Law allows one to attribute an absolute value to
te entropy S. In practice, singling out all the possible contributions to the system energy, so as to
uniquely determine the ground state, is far from trivial.

It is more correct to say that the Planck statement allows one to determine an absolute reference
value of the entropy which depends on the contributions to the system energy that can be actually
taken into account.

20.4.1 Planck statement and unattainability statement

One can demonstrate that the Planck statement entails the unattainability of the absolute zero by
a finite number of thermodynamical transformations.

As a matter of fact, by drawing a qualitative graph of the entropy S as a function of the temperature
T , on can easily see that any two curves S(T ) (corresponding for example to two different values
of the magnetising field H) must join when T = 0, as a consequence of the Planck statement.
Therefore, an infinite sequence of reversible adiabatic and isothermal transformations is necessary
to attain T = 0.



262 P. Fornasini: Lectures on Thermodynamics

20.4.2 Consequences of the Planck statement

Thermodynamic equilibrium

The Planck statement allows an operative definition of the thermodynamical equilibrium at low
temperatures.

Let us consider a substance in the gas state, at a relatively high temperature T , so that the entropy
S can be calculated according to purely statistical considerations.
Let us now slowly reduce the temperature by extracting heat from the system and calculate the
entropy variation as ∆S =

∫
(d̄Q/T ).

According to the Planck statement, one expects that S → 0 when T → 0, that is when the ground
state is approached. If the entropy doesn’t tend to zero, three can be the causes:

1. The ground state is degenerate: the degeneracy is anyway generally small and the entropy
value is small.

2. A sufficiently low temperature has not been attained.

3. Some degrees of freedom are frozen even when T → 0 and the system doesn’t attain the
thermodynamical equilibrium. It is the case, for example, of substances in the vitreous state.
One speaks, in this case, of residual entropy.

Specific heat of solids

Let us consider the expression of the heat capacity of solids at constant volume,

Cv = T

(
∂S

∂T

)
v

=

(
∂S

∂(lnT )

)
v

,

and calculate the entropy variation from T = 0 to Tf :

∆S = Sf − S0 = Sf =

∫ Tf

0

Cv
T
dT ,

where one has imposed S0 = 0 according to the Planck statement.
In order that the value of Sf be finite, it is necessary that the integral be finite, which is possible
only if Cv → 0 when T → 0.

Note: In classical Physics, where the equipartition of energy holds at all temperatures, the heat
capacity would remain finite even when T → 0, so that S → −∞. The actual behaviour of
the heat capacity at low temperatures is a purely quantum effect.



Chapter 21

Negative kelvin temperatures

In thermodynamical equilibrium, the absolute temperature (measured in kelvin) is defined as non
negative (or even as positive, if the absolute zero is assumed as unattainable).
Negative kelvin temperatures would then appear as nonsense.
However, as we will see in the present chapter, one can speak of negative kelvin temperatures for
systems characterised by a finite number of energy levels, when the levels of higher energy are more
populated than the levels of lower energy. One such condition is in principle out of thermodynamical
equilibrium; however, if the interaction of the system with its ambient is sufficiently slow, this
condition can last for a sufficiently long time to be considered as of quasi-equilibrium.

In chapter 18 we have seen that the magnetic potential energy of an atomic system is characterised
by a finite number of levels. For paramagnetic salts (§18.4 and 19.2), the exchange of energy
between the magnetic levels of the paramagnetic ions (finite in number) and the vibrational levels
of the entire system (unlimited in number) can be so slow that the magnetic sub-system can be
considered as quasi-isolate for a non negligible time interval.

The population inversion of the energy levels in a quasi-equilibrium state can be obtained for a short
time in magnetic sub-systems. The interest of such a phenomenon is more academic than practical;
its study can anyway allow a deeper understanding of the statistical meaning of thermodynamical
quantities.

The population inversion in the energy levels has a strong practical interest in the case of Lasers
(acronym for ”Light Amplification by Stimulated Emission of Radiation”). In lasers, the population
inversion in the levels of electron energy is necessary to obtain the emission of electromagnetic
radiation. To guarantee a continuous operation of lasers, the population inversion has to be
maintained in time. The system has thus to be maintained in a stationary state of non-equilibrium.
Non-equilibrium stationary states will be considered in Part VI, dedicated to the Thermodynamics
of irreversible processes.

21.1 Meaning of negative kelvin temperature

21.1.1 Thermodynamical temperature, a review

In the cycle Thermodynamics (Part I), the temperature characterised the thermal equilibrium
between two systems or among the different parte of a system (§ 2.1). The absolute temperature
is defined, as a consequence of the Carnot theorem, as

T = Trif
Q

Qrif
, (21.1)

where Trif is a reference value and Q nd Qrif are heat amounts exchanged by the system in two
reversible isothermal transformations connected by reversible adiabatic transformations (Carnot
cycle).
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The reference value has been chosen at the triple point of water, Trif= 273.16 K. The temperature
T cannot be negative, because it is defined by the ratio between two positive quantities (the heat
amounts).

In the axiomatic approach, (Part II), the thermodynamical properties of a system in equilibrium
are contained in the function S(U, V, ...) in the entropy representation or in then function U(S, V, ...)
in the energy representation (Chapter 5). The temperature is defined by the derivative.

T =

(
∂U

∂S

)
V

. (21.2)

Since the entropy S is a monotonously increasing function of the energy U , the temperature T is
non negative.

21.1.2 Statistics: systems with an unlimited number of levels

In statistical Thermodynamics (Part III), a system maintained at constant temperature obeys
the canonical distribution (14.15), the thermal equilibrium being characterised by the parameter
β = 1/kBT .
Also in particle statistics (Chapter 16), the thermal equilibrium is characterised by the parameter
β = 1/kBT . In particular, for distinguishable particles and for indistinguishable particles i the
classical limit, the Maxwell-Boltzmann distribution (16.25) reproduces the same formalism of the
canonical distribution.

In equilibrium, the ratio between the populations of any two levels is given by the Boltzmann
factor

n2

n1
= e−β(ε2−ε1) . (21.3)

All real systems have an unlimited number of energy levels εi.
Let us consider for example a solid state system. The energy levels are of vibrational nature.
When the average vibrational energy attains the value corresponding to the melting point, the
solid melts. New higher energy levels become accessible in the liquid state, then in the gaseous
state and at last in the plasma state, without an upper limit.

Let us look over the relation between the sign of the temperature T (and of the parameter β) and
the populations of the levels.

- For positive temperatures (T > 0, β > 0), when ε2 > ε1 then, according to the Boltzmann
factor, n2 < n1: the levels of higher energy are less populated than the levels of lower energy;

- For possible negative temperatures (T < 0, β < 0), when ε2 > ε1 then, the Boltzmann factor
would require n2 > n1: the levels of higher energy should be progressively more populated,
so that the system would require an infinite amount of energy.

Therefore, in equilibrium necessarily β > 0 and T > 0.

21.1.3 Statistics: systems with a finite number of levels

Let us now consider a system with a finite number of energy levels.
For the sake of simplicity, let us consider a system of N particles with only two possible energy
levels, as in § 18.3, and let the energies of the two levels ε1 = −ε and ε2 = +ε, respectively.
Initially let it be n1 � n2, that is the upper level be much less populated that the lower level.
When n2/n1 → 0, according to the Boltzmann factor β →∞, that is T → 0.
Let us now heat the system, increasing its energy without modifying the values , ±ε. The temper-
ature T progresssively increases (β decreases) and the upper level ε2 becomes progressively more
populated.
The trend towards an equal population of the two levels (n2 → n1) corresponds to T → ∞, that
is β → 0.
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If further energy is supplied to the system, the population of the upper level can become larger
that the population of the lower level, n2 > n1.Such a condition corresponds to β < 0, that is
T < 0.
A negative kelvin temperature corresponds to an inversion of the populations of the energy levels.
Such a situation would be anyway possible in equilibrium only if the system had only a finite
number of energy levels. Actually, any system has an unlimited number of energy levels.

If the possibility of the population inversion is accepted, the behaviour of the kelvin scale is quite
odd: when the populations of the levels become equal, the temperature T changes abruptly from
the value +∞ to the value −∞.
More intuitive is the behaviour of the β parameter; when the populations become equal, the β
parameter changes from positive to negative values, crossing the zero value.

21.2 How negative temperatures can be obtained

No real system has a finite number of energy levels, so that the kelvin temperature of any system
is necessarily positive.

However, in some cases it is possible to isolate some sub-systems with a finite number of levels
(for example, sub-systems composed by atomic or nuclear magnetic moments) which are anyway
in thermal contact with subsystems characterised by an unlimited number of levels (for example
corresponding to the vibrational energy of solids).
If the relaxation time of the first sub-system is much shorter than the relaxation time between
the two sub-systems (for example the spin-lattice relaxation), a condition can take place of quasi-
equilibrium of the first sub-system, that subsists for a time comparable with the relaxation time
between the two sub-systems.

Example: The nuclear spins of LiF area subsystem with a finite number of energy levels. The
relaxation time of the sub-system is of the order of 10−5 s. The spin-lattice relaxation time is
about 2 minutes. Therefore, for a time interval of the order of minute, the subsystem of nuclear
spins can be maintained in an equilibrium state different from that of the global system.

For concreteness, let us a two-levels magnetic sub-system submitted to an external magnetising
field H, so that each one of the N magnetic moments composing the sub-system has two possible
energy levels ±ε. In § 18.3 the magnetic energy and the entropy was calculated for such a system,
and it was found that

a) when T → 0+, that is β → +∞
the magnetic energy tends to its minimum value 〈Em〉 → −Nε (only the lower level is
populated)
the entropy S → 0 (only one micro-state is possible);

b) when T → +∞, tha is β → 0
the magnetic energy 〈Em〉 → 0 (the two levels are equally populated)
the entropy attains its maximum value S → N kB ln2

Let us suppose that initially the system is in equilibrium with a finite temperature T .
A population inversion giving rise to a negative value of temperature can be obtained by inverting
the direction of the external field H very rapidly; the magnetic moments have no time to invert
their direction, so that the signs of the two energy levels are exchanged: the more populated lower
level becomes the upper level, and viceversa. For a time interval shorter than the spin-lattice
relaxation time, that is in quasi-equilibrium conditions, the upper level remains more populated
than the lower level and the kelvin temperature is negative.
The limiting condition takes place when only the upper level is populated, so that

c) when T → 0−, that is β → −∞
the magnetic energy tends to its maximum value 〈Em〉 → +Nε
the entropy S → 0 (only one micro-state is possible)
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21.3 Negative temperatures and Thermodynamics

The concept of negative kelvin temperature has been base in § 21.1 on purely statistical grounds.
A negative temperature corresponds to an inversion of the level populations. Such a condition can
be obtained only for a limited time interval and doesn’t correspond to a genuine equilibrium state.

One can inquire whether a system which is in a state characterised by negative temperature
can be described in terms of macroscopic Thermodynamics. Let us limit ourselves here to some
considerations of general character.

The formalism of Thermodynamics built in Parts I and II only refers to systems in equilibrium
states. Would it be possible to implement the macroscopic thermodynamical formalism also to a
state of quasi-equilibrium of a system with negative temperature ?

In the axiomatic approach, the III postulate (§ 5.3) asserts that the entropy S is a monotonously
increasing function of the internal energy. As a consequence, the temperature, defined by (6.5)
and (6.6)

1
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)
V,{ni}

, T =

(
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)
V,{ni}

. (21.4)

is necessarily non negative.
A condition of negative temperature, where the entropy decreases when the internal energy in-
creases, is inconsistent with the III postulate.

Actually, in the case of magnetic sub-systems, the average potential magnetic 〈Em〉, whose levels
undergo the population inversion, doesn’t contribute to the internal energy U . As already stated
(§18.3), the thermodynamical function most convenient to connect the macroscopic and statistical
approaches, is the magnetic enthalpy H∗, that corresponds, to within the term pV , to the total
energy of the system: H∗ = U + pV −HM = Etot + pV . The differential of the magnetic enthalpy
is

dH∗ = T dS + V dp−M dH (21.5)

so that the temperature T and the β parameter are
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)
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. (21.6)

If the internal energy U and the pV product are unchanged, one can assume, to within an irrelevant
additive constant, H∗ = −HM . Particularly significant is the graph of S as a function of H∗ =
−HM , which exhibits the shape of a dome. For the maximum and minimum values of H∗,
the entropy S = 0 and thus β = ±∞. When the magnetic enthalpy assumes its average value
H∗ = −HM = 0, the entropy assumes its maximum value, so that β = 0.



Part V

Phase equilibria and phase
transitions
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An important application of Thermodynamics concerns the rational treatment of the equilibrium
conditions between the different phases of substances as well as of the processes of phase transitions.

Chapter 22 contains a phenomenological introduction to phase equilibria and phase transitions.
The attention is mainly focused of the one-component systems: phase diagrams, critical transition
of fluids, stable and metastable phases of solids. Other phase are then introduced: superionic,
superfluid, order-disorder, ferromagnetic, ferroelectric. The chapter ends with a short introduction
to phase equilibria in many-component systems.

Chapter 23 is dedicated to the Thermodynamics of phase equilibria and phase transitions; the
relevance of the Gibbs function is stressed. Two kinds of phase transitions are distinguished, the
first-order transitions and the continuous transitions, the second ones characterised by the order
parameters and the critical exponents. The chapter ends with a section dedicated to the stability
of phase equilibria.

A detailed analysis of the liquid-vapour equilibrium is made in chapter 24, including an introduction
to the Van der Waals theory.

Chapter 25 contains a short introduction to the many-component systems.

Chapter 26 starts with the distinction between crystalline and non crystalline solids; attention is the
focussed on the glasses, an the phenomenology of the glass transition, and on its thermodynamical
aspects.



Chapter 22

Phenomenology of phase equilibria
and phase transitions

This chapter is dedicated to an introduction of the basic concepts concerning phase equilibria
and to an overview of the different phase transitions that will be studied by a thermodynamical
approach in the next chapter 23.

22.1 Introduction

The term phase means a macroscopic portion of a substance which is homogeneous and neatly
separated by other different regions. Different phases of a thermodynamical system can differ in
the type of atomic aggregation (solid, liquid or gaseous states), in the way the various components
are mixed or in other physical properties (magnetic, electrical, etc.)

Example 1: Let us consider a closed vessel containing a given amount of water H2O. Above liquid
water a mixture of air and water vapour is present. The system is composed by two phases:
liquid water and the gaseous mixture. Notice that any gas forms only one phase, because all
its components are perfectly miscible.

Example 2: Let us pour an amount of alcohol in the water of the previous example. Since alcohol
is perfectly miscible with water, there are again two phases: a liquid one and a gaseous one.

Example 3: Let us pour a few drops of mercury in the water of the first example. Mercury is not
miscible with water. There are now three phases, two liquids (water and mercury) and one
gaseous (water vapour). The mercury phase can be composed by different drops dispersed on
the bottom of the vessel; a single phase doesn’t necessarily correspond to a single geometrical
region.

Example 4: Let us introduce an ice block in the water of the first example. There are now
three phases, one solid, one liquid and one gaseous. However, it can happen that the solid
phase progressively disappears (the ice melts). The three initial phases were in a condition of
thermodynamical non-equilibrium.

The last example introduces the issue of phase equilibria and of the transformations between
different phases. It is relevant to determine under which conditions (of pressure, temperature,
possible external fields, etc.) a given phase of a substance can be present or two or more phases
can coexist in thermodynamical equilibrium. It is also relevant to understand the mechanisms
responsible of the transition between two phases.

22.2 One-component systems: states of aggregation

In one-component systems, once the amount of matter is known, the thermodynamical state is
defined by two coordinates. In general, temperature T and pressure p are chosen as independent
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Figure 22.1: Schematic representation of phase diagrams (T, p) for a one-component system. The
three regions (solid, liquid and gas phases) are separated by coexistence curves. The curve corre-
sponding to the liquid–solid equilibrium can exhibit positive slope (left graph), or, less frequently,
negative slope (right graph). The three coexistence curves meet at the triple point. The liquid–gas
coexistence curve abruptly ends at the critical point (cr).

coordinates, because they are easily controlled in the laboratories and in the everyday life.

22.2.1 Temperature-pressure diagrams

An equilibrium state corresponds to each value of temperature and pressure; and to ach equilibrium
state it corresponds a well defined phase. The simplest examples are given by the aggregation states
of matter, solid, liquid and gaseous, that are represented in the (T, p) diagrams, with T as abscissa
p as ordinate.

In the (T, p) diagrams, the plane is divided in monophasic regions, each one corresponding to a
given aggregation state. The different phases can be macroscopically distinguished by qualitative
properties (solids have proper volume and form, liquids have only a proper volume, gases have no
proper volume nor proper form) or by quantitative properties (e.g. the molar volume v and the
molar entropy s). The different phases can be distinguished at the microscopic level too, according
to the atomic arrangement, detectable for example through X-ray diffraction.

The monophasic regions are separated by coexistence curves, corresponding to the (T, p) values
for which two different phases coexist in equilibrium. Along the coexistence curves the system
is physically separated in two spatial regions containing the two different phases, with different
values of molar volume v and molar entropy s.

Three coexistence curves can meet in a triple point, at whose (T, p) values three different phases
coexist in equilibrium. At a triple point, the system is physically separated in three spatial regions
corresponding to the three phases.

22.2.2 The solid–liquid–gas equilibrium

For any substance, at least three monophasic regions can be singled out, corresponding to the
aggregation states: solid, liquid and gas (Fig. 22.1). In the solid state different phases can be
present; we deal with this further division of the (T, p) plane later on, in § 22.3. Let us study here
the main characteristics of the solid–liquid–gas equilibria.

There are (at least) three coexistence curves, meeting in the triple point, where the three states,
solid, liquid and gas, coexist (Fig. 22.1).

The slope of the solid–gas and liquid–gas coexistence curves is always positive.

The slope of the solid–liquid coexistence curve can be positive or negative:
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Figure 22.2: Phase diagrams of nitrogen N2 (left) and of carbon dioxide CO2 (right).

a) for most substances, the slope is positive (Fig. 22.1, left): these substances increase their
volume when melting (Chapter 23);

b) for a few substances, the slope is negative (Fig. 22.1, right); these substances decrease their
volume when melting (Chapter 23); examples are water, Bi, Sb, Ge.

The liquid–gas coexistence starts at the triple point and ends at the critical point (Tcr, pcr). It is
possible to go from the liquid state to the gas state without crossing the coexistence curve, that is
without discontinuities in the molar volume v and in the molar entropy s, by choosing a path in
the Tp plane going around the critical point. Liquid and gas can thus be considered as different
modifications og a unique phase, the fluid phase.

On the liquid–gas coexistence curve the system is physically separated in two regions (liquid and
gas) with different values of molar volume v and entropy s. When one moves along the coexistence
curve towards right, the differences of v and s between the liquid and the gas progressively decrease,
and become zero at the critical point.

The gaseous modification of the fluid phase is generally called vapour when T < Tcr,. It is called
gas when T > Tcr.

When T > Tcr and p > pcr, the fluid is said to be in a supercritical state.

When the vapour (that is the gas below Tcr) is in equilibrium with the liquid, it is said to be
saturate.

Temperature and pressure of the triple and critical points of some substances are listed in Table
22.1.

Examples

Example 1: The phase diagram of nitrogen N2is shown in Fig. 22.2, left. The critical temperature
is Tcr = 126.3 K, lower than the ambient temperature (Table 22.1). One cannot liquefy or
solidify nitrogen at ambient temperature by only varying its pressure. One can instead liquefy
and solidify nitrogen at ambient pressure by progressively reducing its temperature (§19.1).
The pressure of the triple point (0.125 bar) is lower than the ambient pressure (1.013 bar).

Example 2: The phase diagram of carbon dioxide CO2 is shown in Fig. 22.2, right. The critical
temperature is Tcr = 304 K, lower than the ambient temperature (Table 22.1). Also carbon
dioxide cannot be liquefied at ambient temperature by only varying its pressure. The pressure
of the triple point, 5.17 bar, is higher than the ambient pressure; therefore the liquid phase
cannot be present at ambient pressure; the gas phase directly transforms to the solid phase,
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Table 22.1: Temperature and pressure of the triple point and of the critical point of some sub-
stances.

Triple point Critical point
T (K) p (bar) T (K) p (bar)

N2 (nitrogen) 63.18 0.125 126.3 33.9
CO2 (carbon dioxide) 216.55 5.17 304. 74.
H2O (water) 273.16 0.061 647.4 220.

and viceversa; the solid phase of carbon dioxide is often called “dry ice”. The slope of the
solid–liquid coexistence curve is positive, as in the schematic left diagram of Fig. 22.1.

Example 3: At last, let us consider water H2O (Fig. 22.4, left). The critical temperature is Tcr =
674.4 K, higher than the ambient temperature. The gaseous phase of water is thus a vapour.
The slope of the coexistence curve of water is negative, as in the right diagram of Fig. 22.1 .
The pressure of the triple point (0.061 bar) is lower than the ambient pressure (1.013 bar); if
water is maintained at the ambient pressure, one can progressively go from the liquid phase
to the solid phase by reducing the temperature.

Nomenclature of solid–liquid–gas transitions

The transitions between the different states of aggregation of matter are characterised by a well
established terminology, that is schematised in Table 22.2, where, for the sake of completeness, a
fourth state of aggregation has been included, the ionised gas or “plasma”.

Let us draw an horizontal line in a (T, p) diagram, in correspondence with the atmospheric pressure
p = 1.013 bar. The intersection of the horizontal straight line with the solid–liquid coexistence
curve is called melting point. The intersection of the horizontal straight line with the liquid–gas
coexistence curve is called boiling point.

Table 22.2: Nomenclature of the phase transitions between the different aggregation states of
matter, including the plasma state. The start states are listed in the first column, the end states
in the first row.

Solid Liquid Gas Plasma
Solid melting - fusion sublimation
Liquid freezing vaporisation
Gas deposition condensation ionisation
Plasma recombination

22.2.3 The critical transition of fluids

The liquid–gas (or liquid–vapour) coexistence curve abruptly ends at the critical point (Fig. 22.1).
The behaviour of fluids near the critical point is worth being analysed in detail, since it presents
some peculiar characteristics which are common to other phenomena to be considered later on (§
22.5 and 23.4).
Let us consider a generic point on the liquid–gas coexistence curve: the system is physically
separated in two regions, liquid and gas (liquid and vapour) with different values of molar volume
v and entropy s. The ratio between the amounts of the two phases (two modifications of the
fluid phase) can be modified by exchange of heat with the ambient, maintaining unchanged both
temperature and pressure. In the limiting cases, the system can contain only the liquid or the gas
phase, with different values of molar volume, vl and vg, and of molar entropy, sl e sg.
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Figure 22.3: Left: isothermal curves in the pV plane; in the grey zone, the liquid and the gas
(saturated vapour) coexist. Right: molar volumes of the liquid phase vliq and of the gas phase vgas

as a function of temperature for system whose molar volume is equal to the critical volume vcr.

Let us now move along the coexistence curve towards the critical point. The differences between
the two phases progressively diminish, and at the critical point become zero. At the critical point,
Tcr and pcr, the molar volume has a unique value vcr.
The phenomenon can be better understood with the aid of the Andrews graph, wich represents
the isothermal curves in the V p plane (Fig. 22.3, left). The points of the coexistence curve in the
(Tp) diagram correspond, in the Andrews graph, to the isothermal horizontal segments within the
region delimited by the bell-shaped curve.

Let us now consider a system whose molar volume is constrained to a value equal to the critical
molar volume vcr (vertical dashed line in Fig.. 22.3, left). Let the temperature of the system
increase along the liquid–gas coexistence curve in the (Tp) diagram, that is in the up direction
along the vertical line in the (V p) graph. The differences between the molar volumes vl and vg
and between the molar entropies sl and sg of the liquid and of the gas progressively decrease and
become zero at the critical point (Fig. 22.3, right).
At the critical point, a phase transition takes place, between a set of states where two different
modifications of the fluid state coexist, to a set of states where the fluid phase is undifferentiated.
The critical transition takes place without discontinuities in the molar volume and molar entropy.
Let us consider the behaviour of the density ρ of the two phases, liquid and gas, as a function of
the temperature. The difference ρl − ρg progressively decreases when the temperature increases,
and becomes zero at the critical point, where T = Tcr.
The critical transition can be considered as the transition from a more ordered state (two different
physical regions, liquid and gas) to a less ordered state (a single undifferentiated region). Therefore,
the difference of the densities ρl − ρg is named order parameter of the transition.

22.3 Solid phases

Let us now focus our attention on the solid state. A number of substances can exhibit different
crystal structures in different regions of the (T, p) plane; otherwise state, different solid phases
can exist. The phenomenon is named polymorphism or allotropy. The experimental study of
solid phases can be very difficult, typically at high pressures, so that the phase diagrams of some
substances are still incomplete.

Example 1: Solid water (ice) exhibits a large number o crystalline phases, that are labeled by
roman numbers. Some of thee phases are shown in the diagram of Fig. 22.4, left. The low-
pressure structure is named “ice I”. Up to now, 14 different phases have been identified, from
ice I to ice XIV.

Example 2: Tin (50–Sn) exhibits to allotropic forms at ambient pressure:
1. for T < 13.2◦C the stable form is α tin, or gray tin: density ρ = 5.769 g/cm3, electrical
insulator, fragile, diamond cubic crystal structure;
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2. for T > 13.2◦C the stable form is β tin, or white tin: density ρ = 7.265 g/cm3, metal,
malleable, tetragonal crystal structure (a = b 6= c;α = β = γ = 90◦).
The two allotropic forms differ in molar volume and crystal structure. At high pressures, of
the order of some kilobar, two other allotropic forms have been identified, named δ and γ tin.

Example 3: Carbon (C) can be found in two crystalline phases, graphite and diamond, that are
thermodynamically stable in different regions of the (T, p) plane (Fig. 22.4, right) and exhibit
very different physical properties.
a) At relatively low pressures, below some tens of kilobar, graphite is the thermodynamically
stable phase of carbon. In graphite, the carbon atoms, connected by strong covalent bonds,
form planar lattices of hexagonal rings. The planes are maintained parallel by weak Van der
Waals bonds. The lamellar structure of graphite explains its use in pencils or as a lubricant.
Graphite is a good electrical conductor. Unique mechanical and electrical properties are
exhibited by the single isolated planes, named “graphene”.
b) At high pressures, the thermodynamically stable phase of carbon is diamond, in which
the strong covalent bonds give rise to an isotropic three-dimensional structure: each atom is
tetrahedrally bonded to four nearest neighbours. Diamond is characterised by a high degree
of hardness and is a good electrical insulator.

Poly-amorphism

Polymorphism is generally considered a peculiar property of crystalline solids. However, experi-
mental evidence has been recently obtained that some liquids, or more generally some amorphous
substances laking crystalline order, can exhibit different phases when subjected to high pressures.
One speaks, in these cases, of “poly-amorphism”.
Because liquids and amorphous solids don’t exhibit long range crystalline order, the difference
between the different phases concern the short-range and the medium-range order: for example,
they can differ in the coordination number, that is in the average number of nearest-neighbours.

22.4 Metastable phases and systems out of equilibrium

The phase diagrams of Figs. 22.1, 22.2 and 22.4 show the regions of the (T, p) plane in which the
different phases are in thermodynamical equilibrium. As we will see in Chapter 23, the stable
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equilibrium phase for a given pair of (T, p) values is characterised by the minimum value of the
Gibbs free energy G.
However, some systems can assume and maintain indefinitely in time a state that doesn’t cor-
respond to the absolute minimum of the Gibbs function. It is the case of metastable phases,
corresponding to relative minima (different from the absolute minimum) of the Gibbs function, or
event of states far from thermodynamical equilibrium.

Example 1: A classical example is carbon, whose thermodynamically stable phase at ambient
temperature and pressure is graphite l(Fig. 22.4, right). However, one can find and maintain
in ambient conditions also diamond, whose Gibbs function has a larger value than the Gibbs
function of graphite. The diamond phase has been originated in geological conditions of
very high pressure and remains frozen also at lower pressures, in a condition of metastable
equilibrium. The transition to the graphite stable phase would require a modification of the
atomic structure, that would in turn require to cross a high potential energy wall, in order to
break the diamond strong covalent bonds to form the new bonds of graphite.

Example 2: Another interesting example is tin. The β phase (white tin) is thermodynamically
stable at ambient temperature and pressure. Below 13.2◦C, the stable phase is instead α
tin (grey tin). If the β phase is cooled below 13.2◦C, it slowly transforms to the α phase, a
phenomenon known as tin pest, favoured by the presence of aluminum and zinc impurities;
to avoid the β → α transition, small amounts of antimony and bismuth are added to tin and
succeed in blocking the transformation kinetics.

The above examples evidence the importance of microscopic kinetics for the attainment of thermo-
dynamical equilibrium in solids. In gases and in liquids, the unstable phases are very short-lived,
owing to the high mobility of molecules. In solids, instead, metastable and unstable phases can
last for long times.

A very interesting family of materials is composed by non-crystalline materials, whose structure is
frozen in a state of non-equilibrium owing to the high viscosity.
In particular, glasses are non-crystalline materials which are obtained when a liquid is cooled so
rapidly that a regular crystalline structure has no time to form. The cooling speed depends on the
substance. In materials in which the atomic bonds are covalent, and thus directional, rigid units
containing a few atoms form already in the liquid phase, and require a relatively long time to be
re-oriented and form a long-range crystalline structure. In metals, on the contrary, the bonds are
not directional and the crystal structure takes place very rapidly.
For example, boron oxide B2O3 can be found can be found almost uniquely in the vitreous state;
the structural units are triangles with boron in center and oxygen at the vertices, the triangles are
in turn connected to form rings with random spatial orientation. Crystal B2O3 can be obtained
with difficulty, by heating the glass for a long time: the high temperature favours the kinetic of
reorientation of the structural units.
Metals are characterised by a completely different behaviour. Metallic glasses can be obtained
only as alloys of two or more components through very fast cooling, in some cases of the order
of hundreds or thousands of kelvin per second. The presence of different atomic species in alloys
slows down the kinetic and favours the glass formation.

New techniques have been developed in the last decades, that allow the production of solid materials
through atom by atom deposition of one or more substances on a suitable substrate. By such
techniques, one can obtain stable non-equilibrium states, if the substrate temperature is sufficiently
low to block the single atoms in the position of their arrival on the substrate, thus preventing the
formation of crystalline order. When the substrate temperature is instead sufficiently high, one
can obtain mono-crystalline films; one speaks then of “epitaxial growth”.

22.5 One-component systems: other phase transitions

Up to now, we considered the phase equilibria and phase transitions related to the atomic structure,
that is to types of atomic aggregation.
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Figure 22.5: Phase diagram of helium (isotope 4).

Other phase equilibria and phase transitions exist which are related to different physical properties,
e.g. electrical or magnetic. In some cases, such phase transitions are accompanied by structural
variations, in other cases the structure remains unchanged.
Below, some significant cases are presented, for which electrical, magnetic, and other physical
properties have to be considered and new thermodynamical coordinates have to be introduced.
It is worth noting that the phase transitions to be considered are generally studied as a function
of temperature at constant ambient pressure; only rarely the effects of pressure have been studied.

22.5.1 The superionic transition

The electrical conductivity due to the motion of ions (both positive and negative) is well known
for liquids, in particular for molten salts. There are also a number of crystals which, above a given
temperature, exhibit electrical conductivity due to the ion motion. A typical example of such
crystals is silver iodide AgI.
Below T = 410 K, silver iodide is in the non-conducting β phase; the crystal structure is hexagonal
(wurtzite structure), each iodine atom is surrounded by four silver atoms, and viceversa.
Above T = 410 K, silver iodide is in the α phase, where the iodine ions I− form a crystal lattice
with body-centred cubic symmetry, and the Ag+ ions are highly mobile and can give rise to an
electrical current comparable to that of molten salts. Silver iodide in the α phase is said to be a
“superionic” conductor.
The superionic transition β → α of AgI at T = 410 K is characterised by the abrupt change of
electrical conductivity as well as by the abrupt change of the crystal structure, with a discontinuous
variation of the molar volume v and of the molar entropy s.

22.5.2 The superfluid transition of liquid helium

In the phase diagram of helium (isotope 4) there is no triple point solid–liquid–gas (Fig. 22.5). To
obtain solid helium, a pressure of at least 25 bar has to be applied; at such pressures there is no
gas phase. Solid and gaseous phases cannot coexist.
Helium 4 cannot be frozen at ambient pressure because the quantum zero point energy of atomic
vibrations is larger than the binding energy of the weak Van der Waals forces (of the order of 0.001
eV).
Of the utmost interest is the existence of two liquid phases, labeled He I and He II, respectively.
The low-temperature He II phase, called “superfluid”, is characterised by extremely small values
of viscosity as well as by other peculiar properties, such as negative thermal expansion and very
large thermal conductivity. These and other unusual properties make superflua very interesting
scientific subject.
The phase transition between the phase I and the phase II (superfluid) takes place without dis-
continuities in the molar volume and molar entropy, as the critical transition in normal fluids.
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Figure 22.6: Order–disorder transition in the CuZn alloy. White and black circles represent the
two atomic species.

The phase diagram of Fig. 22.5 shows the existence of two triple points (liquid-liquid-solid and
liquid-iquid-gas).

22.5.3 Order-disorder transition in the CuZn alloy

Brass is a Cu–Zn alloy with different possible compositions (Fig. 22.9). Let us consider here the
stoichiometric composition, 50% copper, 50% zinc. This composition has no practical applications,
but it exhibits a behaviour particularly relevant for the classification of phase transitions.
The crystal structure of stoichiometric 50%-50% CuZn alloy is body-centred cubic, formed by the
interpenetration of two simple-cubic sub-lattices: each point of the sublattice A is at the center of
a cube of the sublattice B, and viceversa.
At very low temperatures, Cu atoms are placed at the points of the sublattice A and Zn atoms
are placed at the points of sublattice B (Fig. 22.6, left). When the temperature increases, the
system becomes progressively more disordered, some Cu atoms can occupy points of the sublattice
B and Zn atoms can occupy points of the sublattice A. At the temperature Tc = 733 K the crystal
becomes completely disordered, so that for T > Tc a given point of any one of the two sublattices
can be occupied indifferently by a Cu or by a Zn atom (Fig. 22.6, right).
The phase transition is named order–disorder phase transition. The re-distribution of the Cu and
Zn atoms from the low-temperature perfectly ordered phase to the perfectly disordered phase for
T ≥ Tc takes place gradually, without abrupt variations. There is a similarity with the critical
transition of fluids.
Also for order–disorder transitions one can define an order parameter that progressively decreases
when the temperature increases and becomes zero at and above the transition temperature Tc. Let
us choose one of the two sublattices, for example the A sublattice, and let wCu and wZn be the
numbers of copper and zinc atoms, respectively, present in the sublattice. The order parameter is
defined as

η =
|wCu − wZn|
wCu + wZn

. (22.1)

Above the transition temperature Tc, the probability of finding a Cu atom in a given point of the
sublattice is equal to the probability of finding a Zn atom, and the order parameter is η = 0. At
sufficiently low temperatures, all points of the sublattice are occupied by a single atomic species,
and η → 1.

22.5.4 Ferromagnetic phase transition

Paramagnetic materials, studied in Chapter 4, when in presence of an external magnetisation field
exhibit a magnetisation proportional to the field. The magnetisation is due to the orientation of
permanent magnetic dipoles of atomic dimensions already present in the material.
Ferromagnetic materials can exhibit permanent magnetisation, independent of the presence of
an external magnetising field. In the absence of the external field, the ferromagnetic material is
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Figure 22.7: Crystal structure of barium ti-
tanate BaTiO3.

Ba

Ti

O

composed of a large number of small regions, the magnetic domains, each one characterised by the
orientation of all its magnetic dipoles in the same direction.

Let us consider here only some aspects relevant for the thermodynamical description, without going
in the details of the phenomenon. For the sake of simplicity, let us consider only one-dimensional
magnetisation along the two possible directions up and down and let us suppose that there is no
external field.

At low temperatures, each domain is strongly magnetised along one of the two directions, up or
down; the inversion of the magnetisation direction is a phase transition whose properties are similar
to those of the transition between aggregation states, the magnetisation inversion substituting the
variation of the molar volume; for ferromagnetism there is however no entropy variation.

When the temperature increases, the magnetisation of domains progressively decreases, and be-
comes zero at the Curie temperature Tc For T > Tc the system is paramagnetic, that is the
magnetisation requires the presence of an external field. The transition from ferromagnetism to
paramagnetism takes place takes place gradually, without abrupt variations, and is similar to
the critical transition in fluids: the order parameter is the modulus of the magnetisation in zero
external field.

Iron (Fe) and cobalt (Co) are ferromagnetic materials; their Curie temperatures are Tc = 1043 K
and Tc = 1388 K, respectively.

22.5.5 Ferroelectric phase transition

Some materials exhibit permanent electrical polarisation below a given temperature Tc, while
above Tc are not polarised. Due to the analogy with ferromagnetism, they are called ferroelectric
materials.

The prototype of ferroelectric materials is barium titanate BaTiO3.

At high temperature, for T > Tc, barium titanate has the cubic structure of perovskite, like many
other ferroelectric materials (Fig. 22.7: the Ti+ ion is surrounded by a regular octahedron of six
O− ions; the O− ions, in turn, occupy the centres of the faces of a cube at which vertices the Ba
ions sit. In this configuration, the system has no electric dipole moment.

At low temperature, for T � Tc, the Ti+ ion is displaced with respect to the cage of the O−

ions, giving rise to a local electric dipole moment; the displacement of the Ti+ ions reduces the
crystal symmetry from cubic to tetragonal, so that the system acquires a permanent electric dipole
moment.

When the temperature increases towards TcT, the displacement of the Ti+ ions with respect to
the cage of O− ions progressively decreases and becomes zero at Tc = 120◦C. Also the ferro-
electric transition is similar to the critical transition of fluids; the order parameter is the electric
polarisation.
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Figure 22.8: Two-components fluid mixture AB with a positive contribution of the mixing en-
thalpy. Left: variation ∆G of the Gibbs free energy as a function of the composition at different
temperatures (the temperature increases from top to bottom); the dashed curve delimits the two-
phases region. Left: (xT ) phase diagram at constant pressure: the monophasic and two-phasic
regions are singled out.

22.6 Systems with two or more components

Phase equilibria of systems containing two or more components represent a wide field of scientific
and technological interest. The thermodynamical state of such systems is defined, in addition to
temperature and pressure, also by the molar percent amount of the different components. One
is interested in understanding if and how the different components are mixed and structurally
organised as a function not only of temperature and pressure but even of the ratios between their
amounts.
The graphic display is more complex than for one-component systems. For example, for two-
components systems one often resorts to diagrams with the percent amount of one of the two
components in abscissa and the temperature on the ordinate; the pressure is assumed to be the
ambient pressure (Fig. 22.8, right).
Let us first consider the simple case of a two-component fluid mixture, then the more complex case
of the metallic alloy Cu–Zn.

22.6.1 Two-components fluid mixtures

Let us consider a fluid mixture (typically liquid) of two components A and B. The composition of
the mixture is given by the molar fraction of one of the two components, for example xA = nA/n;
obviously, xB = 1− xA.

If the interaction forces between all the pairs A − B, A − A and B − B are equal, the mixture is
said to be an ideal mixture. For an ideal fluid mixture, the variation of the Gibbs function as a
consequence of mixing has the same expression (11.23) of ideal gases, introduced in § 11.2:

∆G = RT (nA lnxA + nB lnxB) = nRT (xA lnxA + xB lnxB) < 0 . (22.2)

The mixing reduces the Gibbs free energy.

The real mixtures are formed by molecules for which the interactions A−A, A−B and B−B are
different. As a consequence, the enthalpic contribution ∆H to the variation ∆G = ∆H − T ∆S
can be non negligible. In particular, if the process of mixing gives rise to large positive variations
of the enthalpy (because the attraction force of the pairs A−B is much weaker than the attraction
forces of the pairs A − A and B − B) the variation of the Gibbs function can be positive, ∆G =
∆H−T∆S > 0, for sufficiently low temperatures. In that case, the mixing process is energetically
not convenient. In some cases, the mixing process can be characterised by a negative entropy
variation, due to the molecular organisation.
The behaviour of fluid mixtures with a positive contribution of the mixing enthalpy is shown in the
graph of the mixing Gibbs free energy ∆G as a function of the concentration xA (Fig. 22.8, left).
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Figure 22.9: Phase diagram of brass (Cu–Zn alloy) at atmospheric pressure as a function of com-
position (horizontal axis, % Zn) and of temperature (vertical axis).

At high temperature, the graph is always upward concave. At sufficiently low temperatures, the
curve G(xA) is characterised by two minima in correspondence of two values xαA and xβA. Within

the interval xαA < xA < xβA the Gibbs function G exhibits a maximum. For the mixture it is

energetically more convenient, in the interval xαA < xA < xβA, to separate in two different phases,
one rich in the A component, the other rich in the b component.
The corresponding phase diagram (Fig. 22.8, right) is characterised by two regions. Outside the
dome-shaped curve one homogeneous phase exists. Below the dome-shaped curve, the systems
separates into two phases, one rich in the A component, the other rich in the B component.
It is interesting to stress the similarity between the coexistence of the two fluid phases in the AB
mixture here considered and the coexistence of liquid and gas (vapour) along the coexistence curve
of pure substances.
Also in the case of mixtures, when the temperature increases, the extent of the interval xαA < xA <

xβA progressively decreases, and becomes zero at the critical temperature Tc, in correspondence of
a critical composition.
It is another example of critical phenomenon, that characterised by the order parameter

η = xαA − x
β
A . (22.3)

22.6.2 Two-components solid alloys

A simple example of two-components solid alloy is represented by brass, the alloy formed by copper
Cu and zinc Zn. The phase diagram of the Cu–Zn alloy is shown in Fig. 22.9.
Different phases can form as a function of temperature and composition: the liquid phase at high
temperatures or single solid phases of different crystal structure (α, β, γ, δ). In some regions of the
phase diagram two phases can coexist, both crystalline or one cristalline and the other liquid.



Chapter 23

Thermodynamics of phase
equilibria

In this chapter is devoted to the thermodynamic description of phase equilibria and phase transi-
tions.
The fundamental role of the Gibbs function for characterising the equilibrium between the different
phases of a substance is enlightened in § 23.1. The problem of the possibility of coexistence of two
or more phases for sys tems with one or more components is solved in § 23.2 by the Gibbs phases
rule.
The effects of temperature and pressure on the phase equilibria are considered in § 23.3, where the
Clausius–Clapeyron equation is introduced and its application to the liquid–solid and liquid–gas
equilibria is studied.
§ 23.4 is dedicated to the classification of phase transitions into first order and continuous phase
transitions; continuous transitions are characterised by order parameters and critical exponents.
The chapter ends, in § 23.5, with some considerations on the relation between the stability of
thermodynamical equilibrium and the phase transitions; the difference between first order and
continuous transitions is enlightened.

23.1 Phase equilibri and Gibbs function

The independent coordinates useful for describing the solid–liquid–gas phase equilibria are temper-
ature and pressure. The suitable thermodynamic potential is thus the Gibbs function G(T, P, {ni}).

23.1.1 Phase equilibria and chemical potentials

The equilibrium condition for a system maintained at constant temperature and pressure (§ 8.4) is

dG =
∑

i
µi dni = 0 , (23.1)

where µi = gi are the chemical potentials of the components of the systems, corresponding to the
molar Gibbs functions gi.
If the equilibrium of the different phases α, β, γ, . . . of a given substance in a closed system is
considered, (23.1) becomes

dG = µα dnα + µβ dnβ + µγ dnγ + · · · = 0 . (23.2)

The differentials dni are not independent, because the total number of moles of he substance
doesn’t change in a phase transition, so that∑

i
dni = 0 . (23.3)

281
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Figure 23.1: Schematic representation of two surfaces gα and gβ , corresponding to two phases α
and β, in the three-dimensional space (T, p, g) and their projection on the (T, p) plane. The two
surfaces intersect in a coexistence curve.

The extremum problem (23.2) constrained by (23.3) can be solved by the general method of
Lagrange multipliers: ∑

i
µi dni + ξ

∑
i
dni =

∑
i
(µi − ξ) dni = 0 , (23.4)

where ξ is the Lagrange multiplier. Since the differentials dni in (23.4) are now independent, that
is arbitrary, (23.4) is fulfilled if

µi = ξ (∀i) . (23.5)

In equilibrium conditions, the chemical potential of all the phases present are equal:

µα = µβ = µγ = · · · or gα = gβ = gγ = · · · (23.6)

In what follows, when referring to a single phase, the symbols of the chemical potential µ and of
the molar Gibbs function g = G/n will be used indifferently.

Note: For chemical reactions (Chapter 11), (23.1) is always fulfilled, but (23.3) is not .

23.1.2 Phase diagrams and Gibbs function

The thermodynamical properties of a one-component system can de described by a three-dimensional
graph, whose three axes correspond to the values of temperature T , pressure p and molar Gibbs
function g (Fig. 23.1).

In principle, to each phase (α, β, γ, . . .) of the system one can associate a function g(T, p), so that
different functions gα(T, p), gβ(T, p), gγ(T, p) ... correspond to the different phases in the (T, p, g)
space. A quantitative evaluation of the functions g(T, p) is generally far from trivial; we will limit
ourselves here to consider their qualitative properties, from which one can anyway obtain important
information.
For each value of temperature and pressure (T, p), the thermodynamically stable phase is charac-
terised by the lowest value of the molar Gibbs function (chemical potential) g(T, p) = µ(T, p).

It is common practice to project the g(T, p) surfaces on the (T, p) plane and obtain graphs like those
of Fig. 22.1. In each zone, the function g(T, p) of a given phase is smaller than the functionsg(T, p)
of the other phases. The coexistence curves are the projections of the intersection curves of different
surfaces g(T, p), where gα = gβ . At a triple point, gα = gβ = gγ .

Let us now study some general properties of the g(T, p) function. Starting point is the differential
for a one-component closed system

dg = −s dT + v dp . (23.7)
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23.1.3 Dependence of the Gibbs function on temperature

Let us assign a fixed value to the pressure p and study the dependence of the molar Gibbs function
g on the temperature T , starting from the solid phase and ending to the gas phase (Fig. 23.2, top
left).
For each phase, one can determine some general properties of the g(T ) function (Fig. 23.2,top
center). From (23.1) one can obtain the first and second derivatives of g with respect to T :(

∂g

∂T

)
p

= −s < 0 ,

(
∂2g

∂T 2

)
p

= −
(
∂s

∂T

)
p

= −cp
T
< 0 . (23.8)

The value of s has been assumed to be positive as a consequence of the statistical definition of
entropy. The g(T ) curve at constant pressure has negative slope and is downward concave for all
phases. The absolute value of the slope is the molar entropy s, that increases when the temperature
increases within each phase region.
In the coexistence points of two phases α and β, the two curves gα(T ) and gβ(T ) meet: the
molar Gibbs function g is continuous, gα = gβ . Its first derivative exhibits instead a discontinuity,
because the molar entropies of different phases are different in the equilibrium points: ssol < sliq e
sliq < sgas. For each phase, the molar entropy s increases when the temperature T increases (Fig.
23.2, top right); the first derivative is cp/T , where cp is the specific heat at constant pressure.

Latent heat

In the points of equilibrium between two phases there is a discontinuity ∆s in the molar entropy,
and thus a divergence of the specific heat (first derivative of s and second derivative of g).
The finite entropy variation multiplied by the temperature is the molar enthalpy of the phase
transition, ∆htra = T∆s, often called latent heat of transition. The latent heat of a transformation
is and amount of heat exchanged between the system and its ambient without modification of the
temperature. The exchange of heat at constant temperature corresponds to a divergence of the
specific heat.

Example: To melt aa solid and transform it to a liquid without temperature variation, energy has
to be supplied to the system in order to transform the atomic bonds.

23.1.4 Dependence of the Gibbs function on pressure

Let us now a fixed value to the temperature T and study the dependence of the molar Gibbs function
g on the pressure p. For concreteness, let us consider a system whose solid–liquid coexistence curve
ha positive slope; let us start from the low-pressure gas phase and end to the high-pressure solid
phase (Fig. 23.2, bottom left).
For each phase, some general properties of the molar Gibbs function g(p) can be evidenced (Fig.
23.2,bottom center). From (23.7) one can calculate the first and second derivatives of g with
respect to p: (

∂g

∂p

)
T

= v > 0 ,

(
∂2g

∂p2

)
T

=

(
∂v

∂p

)
T

= −vχT < 0 . (23.9)

The g(p) curve at constant temperature has positive slope and is downward concave for all phases.
The slope corresponds to the molar volume v, and decreases when the pressure increases within
each phase.
In the coexistence points of two phases α and β, the molar Gibbs function g is continuous, gα = gβ ;
the first derivative, that is the molar volume v, is discontinuous, vgas > vliq and vliq > ssol.
For each phase, the molar volume v decreases when the pressure p increases (Fig. 23.2, bottom
right). The first derivative corresponds to −vχT . At the phase transitions there are discontinuous
variations of molar volume ∆v, so that the isothermal compressibility χT diverges.

(?) Study the case of negative slope for the solid–liquid coexistence curve (e.g. the case of water).
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Figure 23.2: Molar Gibbs function g and phase transition. Left: (T, p) graphs. Centre: dependence
of g on temperature (top) and on pressure (bottom). Right: dependence of the molar entropy on
temperature (top) and dependence of the molar volume on pressure (bottom).

23.2 Gibbs phase rule

The phase diagram of a one-component substance is characterised by the presence of mono-phasic
regions, bi-phasic coexistence lines and triple points. One could ask: can extended regions of
coexistence of two or more phases exist ? or coexistence curves of three phases ? or quadruple
points ?
A general answer to the problem is given by the Gibbs phase rule, that connects the number f of
free variables of a thermodynamical system to the total number of variables and the number of
constraint equations

(free vriables) = (total variables) − (constraints) . (23.10)

The Gibbs phase rule holds also for many-component systems, such as those considered in the
examples of § 22.6). In what follows, we consider first the phase rule for one-component systems
and then for many-component systems.

One-component systems

For a one-component system, the phase rule is:

f = 2− (φ− 1) that is f = 3− φ (23.11)

where:

→ 2 is the total number of variables, typically T and p,

→ φ is the number of coexisting phases,

→ φ− 1 is the number of constraints, corresponding to the equilibrium equations:

- if only one phase is present, there are no constraints tothe values of T and p, so that
φ− 1 = 1− 1 = 0,
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- for two coexisting phases, the equation gα = gβ is a constraint, φ− 1 = 2− 1 = 1,

- for three coexisting phases (triple point), the equations gα = gβ = gγ are two constraints,
φ− 1 = 3− 1 = 2

From (23.11) one deduces that

- if only one phase is present (φ = 1) there are f = 2 free variables, T and p;

- if two phases coexist (φ = 2) there is only one free variable: T and p are constrained on a
coexistence curve;

- if three phases coexist (φ = 3) there are no free variables, T and p can only get the triple
point values;

- it is impossible that four or more phases can coexist in equilibrium.

Many-components systems

Let us now consider a system containing c components (without chemical reactions). For example,
the Cu–Zn alloy of Fig. 22.9 has c = 2 components.
The number of coexisting phases be again φ.

The total number of variables is 2 + cφ:

→ 2 variables are T e p,

→ cφ are the concentration values of the c components in the φ different phases.

Example: Let us again consider the Cu–Zn alloy of Fig. 22.9: in a mono-phasic region (φ = 1) the
cφ = 2 variables are the two concentrations of Cu and Zn; along the coexistence curve of two
mon-phasic regions (φ = 2), the cφ = 4 variables are the Cu and Zn concentrations in each
one of the two phasee.

The number of constraints is c(φ− 1) + φ:

→ c(φ − 1) are the equations that make equal the chemical potentials of the each one of the c
components in each one of the φ coexisting phases,

→ φ are the equations that make equal to 100 the sums of the percent amounts of all the
components in each one of the coexisting phases.

Example: Let us again consider the Cu–Zn alloy of Fig. 22.9: in a mono-phasic region, φ = 1 e
2(φ− 1) = 0, along a coexistence curve of two phases, φ = 2 e 2(φ− 1) = 2.

The number of degrees of freedom f is the difference between the total number of variables and
the number of constraints; the phase rule for a many-components system is:

f = 2 + cφ− c(φ− 1)− φ , that is f = 2 + c− φ (23.12)

For a one-component system (c = 1), equation (23.12) reduces to (23.11).

Example: For the Cu–Zn alloy of Fig. 22.9 the phase rule is f = 4 − φ. In a mono-phasic region,
f = 3: temperature, pressure and relative concentration can vary independently. Along a
coexistence line, f = 2: only two variables can vary independently, the third one is univocally
determined once the values of the other are given.

23.3 Coexistence curves: Clausius–Clapeyron equation

In § 23.1, we separately considered the dependence of the molar Gibbs function g on temperature
T or on pressure p. We want now to consider the joint effects of temperature and pressure on
the phase equilibria, starting from the important example of the dependence on pressure of the
melting and boiling points of simple substances.
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23.3.1 Dependence of melting and boiling points on pressure

Let us consider again the dependence of the molar Gibbs function g on temperature for a given
value of pressure p (Fig. 23.3).
The equilibrium temperature between the solid and liquid phases is the melting point Tf at pressure
p. The equilibrium temperature between the liquid and gas phases is the boiling point Tb at pressure
p.
Let us increase the pressure from the value p to a value p′ (Fig. 23.3, left). The corresponding
variation of the molar Gibbs function g for each value of temperature depends, according to (23.9),
on the molar volume v. The molar volume is much larger in the gas phase than in the liquid
phase (as long as far from the critical point); the boiling point significantly increases when the
pressure increases (Fig. 23.3, right). The molar volume is generally larger in the liquid phase than
in the solid phase; the melting temperature increases when the pressure increases. (Exceptions are
substances like water, for which the molar volume is larger in the solid phase than in the liquid
phase).

23.3.2 Clausius–Clapeyron equation

A general quantitative expression can be found for the relation between temperature and pressure
of two phases in equilibrium.
In any point of a coexistence curve between two phases α and β, the Gibbs function has the same
value for the two phases: gα = gβ . If one moves along the coexistence curve by an infinitesimal
displacement (dT, dp), the Gibbs functions in the new point of the curve have again the same value
for the two phases: gα + dgα = gβ + dgβ . Therefore, the variations of g for the two phases are
equal: [

gα = gβ
gα + dgα = gβ + dgβ

]
⇒ dgα = dgβ . (23.13)

By substituting the differetials dg of (23.13) according to (23.7) one obtains:

− sαdT + vαdp = −sβdT + vβdp , (23.14)

whence

[vα − vβ ] dp = [sα − sβ ] dT , (23.15)

and at last
dp

dT
=

sα − sβ
vα − vβ

(23.16)
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Equation (23.16), known as Clausius-Clapeyron equation, connects the slope of the coexistence
curve of two phases α and β in the T, p diagram to the ratio between the difference of molar
entropy and the difference of molar volume.

An alternative expression of the Clausius-Clapeyron equation can be found as follows. Since the
phase transition takes place at constant pressure, the variation of molar entropy is connected to
the amount of heat exchanged at constant pressure, that is to the variation of the molar enthalpy
h: hα − hβ = T (sα − sβ). Therefore

dp

dT
=

hα − hβ
T (vα − vβ)

(23.17)

The variation ∆h = hα − hβ of molar enthalpy is the molar latent heat of the transition.

23.3.3 Solid–liquid equilibrium

For the solid–liquid coexistence curve, (23.17) becomes

dp

dT
=

∆hfus

T ∆vfus
, (23.18)

where

– the molar fusion enthalpy ∆hfus = hliq − hsol is always positive,

– the variation of molar volume ∆vfus = vliq − vsol is

- positive for most substances, so that dp/dT > 0,

- negative for a few substances, among which water, so that dp/dT < 0.

Example: Let us consider water. For T ' 273 K and atmospheric pressure,

∆hfus = 6.01 kJ/mol , ∆vfus = −1.7 cm3/mol ,

so that
dp

dT
=

∆hfus

T∆vfus
' −1.28× 107 Pa/K = −1.28× 102 bar/K .

(?) Evaluate the slope of the coexistence curve near T = 273 K.
Let us relate the molar fusion enthalpy to the averag energy per molecule. Since 1 eV = 1.6×1019 J,
lthe fusion enthalpy ∆hfus = 6.01 kJ/mol corresponds to about 0.16 eV/molecole.

23.3.4 Liquid–gas equilibrium

For the liquid–gas coexistence curve, (23.17) becomes

dp

dT
=

∆hvap

T ∆vvap
, (23.19)

where both the molar enthalpy of vaporisation ∆hvap and the molar volume of vaporisation ∆vvap

are positive.

Equation (23.19) can be made simpler if

– one takes into account that the molar volume vgas of the gas phase is generally much larger
than the molar volume vliq of the liquid phase (if sufficiently far from the critical point), so
that ∆vvap ' vgas

– one relies on the ideal gas approximation, vgas ' RT/p,
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so that
dp

dT
' ∆hvap

RT 2
p , that is

d ln p

dT
' ∆hvap

RT 2
(23.20)

Example: Let us consider again water. For T ' 373 K and p = 1 bar,

∆hvap = 40.66 kJ/mol ,

so that, from (23.20) one finds

dp

dT
= 3.51× 10−2 bar/K .

The slope of the liquid–gas coexistence curve at T= 373 K is smaller than the absolute value of
the slope of the solid–liquid coexistence curve, although the molar enthalpy of vaporisation is
larger than the molar enthalpy of fusion. The explanation relies on the fact that the difference
between the gas and liquid molar volumes is much larger than the difference between the solid
and liquid molar volumes.
Since 1 eV = 1.6×1019 J, the enthalpy of vaporisation ∆hfus = 46.66 kJ/mol corresponds to
about 1.24 eV/molecole.

We will consider in more detail the liquid–gas coexistence in Chapter 24.

23.4 Classification of phase transitions

The phase transitions can be divided in two categories, the first order transitions and continuous
transitions.

23.4.1 First order phase transitions

The solid–liquid–gas phase transitions, considered in § 23.1, are characterised by the following
properties of the molar Gibbs function (Fig. 23.2):

– lthe slope of the g function undergoes an abrupt variation;

– the first derivatives of the molar Gibbs functions, that is s an v, undergo a discontinuity,

– the second derivatives of the molar Gibbs function, that is the response functions cp, β, χT ,
abruptly diverge without previous notice.

The phase transitions, for which the first derivatives of the Gibbs function are discontinuous, are
said to be “first order” phase transitions.
For example, is first order the superionic transition considered in § 22.5; by the way, in this case the
variation of the electrical conductivity is accompanied by a modification of the crystal structure.

The expression “first order transitions” is historically motivated by the old unsuccessful attempt
to classify all phase transitions in terms of the degree of the derivative of g for which the first
discontinuity takes place.

23.4.2 Continuous transitions

A number of phase transitions cannot be included in the first order category. For example (§ 22.5),
lthe critical transition of fluids, the order-disorder transition in binary alloys, the ferromagnetic
and ferroelectric transitions, the superfluid transition of liquid helium are characterised by the
following properties:

– lthe slope of the g function doesn’t undergo any abrupt variation;

– lthe first derivatives of the g function are continuous;

– the specific heat exhibits, when the transition temperature is approached, a behaviour whose
shape is similar to the greek letter lambda (λ); there is some sort of notice of the transition
already within the monophasic regions.
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Since the first derivatives of the Gibbs function are continuous, these phase transitions are generally
called “continuous transitions”; sometimes also the name “higher order transitions” can be found.

In many cases, the thermodynamical treatment requires the introduction of specific coordinates
(electrical or magnetic fields, etc) and the derivatives of the Gibbs function have to be considered
also with respect to these new coordinates.

Order parameters

A property common to all continuous phase transitions is the possibility of defining a quantity,
the order parameter, that is different from zero in the low-temperature phase and equal to zero in
the high temperature phase. In the low temperature phase, the order parameter progressively and
continuously decreases when the transition temperature is approached, and becomes zero at the
transition temperature.

Let us give some examples.

1. In the critical transition of fluids (§ 22.2), a possible order parameter is the difference between
the density of the liquid and the density of the gas, ρliq − ρgas. In general, one prefers to
consider the normalised

ρliq − ρgas

ρcr
, (23.21)

where ρcr is the density at the critical point. The order parameter becomes zero at the critical
point, where the two modifications of the fluid phase coincide.
The order parameter (23.21) is a scalar quantity.

2. In the ferromagnetic transition (§ 22.5), the order parameter is the total magnetisation ~M

of one domain when the external magnetising fied is zero ( ~H = 0). The magnetisation ~M
decreases when the temperature increases and becomes zero at the Curie temperature Tc.
In this case, the order parameter is a vector quantity.

According to the type of transition, the order parameter can be a scalar, a vector or a tensor
quantity s well as a complex number.

Critical exponents

A general property of critical transitions is the similar and relatively simple dependence on tem-
perature of some relevant quantities, such as the order parameter and the response functions, when
the transition temperature is approached.

The approach to the critical temperature is measured by the a-dimensional parameter

ε =
T − Tcr

Tcr
,

 ε < 0 for T < Tcr

ε > 0 for T > Tcr

(23.22)

The experimental behaviour of the relevant quantity (order parameter or response function) is
generally fitted by simple functions as

f(ε) = Aελ (23.23)

or by more complicated functions as

f(ε) = Aελ [1 +Bey . . .] (23.24)

The exponent λ in (23.23) and (23.24) is called critical exponent.

Let us consider some examples.
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1. In critical transition of fluids, the order parameter follows an exponential law (23.23), with
the value of the critical exponent being similar for a number of fluidscon esponente critico
simile per molti fluidi:

ρl − ρv
ρc

∝ (−ε)β , β ' 1

3
(23.25)

The constant-volume specific heat follows an exponential law (23.23) too, the exponent is
however different according to whether the critical temperature is approached from bottom
or from top:

cv = (−ε)−α
′
, cv = (ε)−α , (0 ≤ α, α′ ≤ 0.2) . (23.26)

2. Also in the ferromagnetic transition the order parameter, that is the total magnetisation M ,
follows an exponential law (23.23):

M ∝ (−ε)β , β ' 1

3
. (23.27)

The parametrisation of the behaviour of different quantities (order parameter and response func-
tions) in terms of exponential functions is relevant for a number of reasons.

– The similarity of critical exponents for different systems stimulates the search for general
treatments (for example in terms of laws of corresponding states).

– The ability to calculate accurate values of the critical exponents is a good test for the theo-
retical approaches to phase transitions.

– General thermodynamical or statistical considerations can lead to relations connecting the
values of different critical exponents.

23.4.3 Symmetry considerations

Phase transitions can often be connected to symmetry variations. In general, the high temperature
phase is more symmetric than the low temperature phase. One speaks of “symmetry breaking”
for the transition from a higher symmetry phase to a lower symmetry phase.

Let us consider some examples.

– The gas → solid and liquid → solid transitions are characterised by a breaking of the trans-
lational symmetry: the fluid state (liquid or gas) is more symmetric than the solid state with
respect to spatial translations.

– In the liquid–gas transitions there is no symmetry breaking, in agreement with liquid and
gas being considered as two modifications of a unique fluid phase.

– In a ferromagnetic transition the rotational symmetry is broken; in the high temperature
paramagnetic phase the system is isotropic, while below the Curie Tc temperature the mag-
netisation direction is singled out.

The first order transitions are characterised by a discontinuous symmetry breaking; there is no
connection between the symmetry of the two phases. In the continuous transitions the variation
of symmetry is continuous and is measured by the variation of the order parameter.

23.5 Stability of equilibrium and phase transitions

The stability of thermodynamical equilibrium was first analysed in § 9.6. The stability condition for
isolated systems implies some constraints on the values of some response functions; in particular,
specific heats and compressibilities must be positive, cv ≥ 0, χT ≥ 0.

Let us now consider the topic form a different point of view, particularly suited to study the
thermodynamical stability of phases.
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Figure 23.4: Left: to guarantee the stability of equilibrium, the S(U) function has to be downward
concave. Right: were the function upward concave, there could not be stable equilibrium.

23.5.1 Stability in the different representations

Entropy representation

According to Axiom III of § 5.3, the entropy S is a monotonously increasing function of the internal
energy U . The stability condition requires that the function S(U) is downward concave. As a
consequence, the specific heat is necessarily positive (§ 9.6).
Actually, let us consider an isolated system divided in two identical subsystems by a diathermic
wall, and study the effects of a fluctuation consisting in the transfer of an energy amount ∆U from
subsystem 1 to subsystem 2 (Fig. 23.4).
For the equilibrium to be stable, the transfer of energy from subsystem 1 to subsystem 2 has to
give rise to a reduction of entropy S, so that the system tends spontaneously to the equilibrium
state corresponding to the maximum value of entropy. The S(U) curve has thus to be downward
concave (Fig. 23.4, left).
Were the S(U) curve upward concave (Fig. 23.4, right), the energy fluctuation would lead the
system to a state of larger entropy and there would not be the trend to re-establish the initial
state.
A similar reasoning can be made for the S(V ) function, and, more generally, for the S(U, V )
surface. The local stability conditions are

∂2S

∂U2
≤ 0 ,

∂2S

∂V 2
≤ 0 . (23.28)

Energy representation

One can easily verify that, in the energy representation, the stability of equilibrium requires that
the U(S, V ) surface be upward concave with respect to both S and V . The local stability conditions
are

∂2U

∂S2
≥ 0 ,

∂2U

∂V 2
≥ 0 . (23.29)

Let us now consider the Helmholtz function F = U − TS. Since cv ≥ 0, χT ≥ 0, one can easily
verify that the stability conditions are

∂2F

∂T 2
≤ 0 ,

∂2F

∂V 2
≥ 0 : (23.30)

The F (T, V ) function is downward concave with respect to T , upward concave with respect to V .

At last, let us consider the Gibbs function G = F + pV . One can easily verify that the stability
conditions are

∂2G

∂T 2
≤ 0 ,

∂2G

∂p2
≤ 0 : (23.31)

The G(T, p) function is downward concave with respect to both T and p (see Fig. 23.2, center) .
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Figure 23.5: Molar Gibbs function g of a real fluid mixture AB at fixed temperature T and pressure
p, if the mixing enthalpy is large and positive (as in the low-T cases of Fig. 22.8). In the horizontal
axis the concentration xA.

23.5.2 Gibbs function

In what follows, we focus our attention of the properties of the Gibbs function for systems main-
tained at constant temperature T and pressure p.
As is was shown in § 8.4, in a closed system with constant temperature T and pressure p, the
thermodynamical equilibrium is characterised by the minimum of the Gibbs functionG with respect
to any process, real or virtual, leading the system out of equilibrium.
In particular, we consider some important cases: binary fluid mixtures, phase diagrams of pure sub-
stances, liquid–gas equilibrium. At last we introduce the Ginzburg-Landau theory for continuous
transitions.

23.5.3 Fluid mixtures

Let us consider the fluid binary mixtures AB introduced in § 22.6. It was shown (Fig. 22.8) that,
if the mixing process gives rise to large positive variations of the enthalpy, at sufficiently low
temperatures the g(xA) curve is characterised by two minima in correspondence of two values xαA
and xβA (Fig. 23.5). For a mixture whose concentration x0

A is within the interval xαA < xA < xβA,
it is energetically more convenient to split into two different phases, the one rich in A, with
concentration xβA, the other rich in B, with concentration xαA.

The two minima of the molar Gibbs function g for xA = xαA and xA = xβA correspond to two
conditions of stable thermodynamical equilibrium. Possible local fluctuations of the concentration
give rise to an increase of g and are thus reabsorbed.
In equilibrium conditions, the function g is upward concave with respect to the variable xA = nA/n
(nA is an extensive coordinate).

T

p

liquid.

gas

1 2 3

Point  1 Point  3Point  2

Figure 23.6: Transizione liquido–vapore. I tre grafici a destra mostrano l’energia libera molare di
Gibbs g in funzione del volume molare nei tre punti 1, 2 e 3 del grafico a sinistra.
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23.5.4 First order phase transitions

Let us now consider the Tp phase diagram of a pure substance (Fig. 23.6), and focus our attention
of the three points labeled 1, 2 e 3, corresponding to the same pressure but to different temperature
T . In point 1 the system is in the liquid phase, in point 3 the system is in the gas phase, point 2
is on the liquid–gas coexistence curve. In each one of the three points, both temperature T and
pressure p are fixed. The system can however undergo local or global fluctuations of molar volume
v and/or of molar entropy s.
For each point, let us plot the molar Gibbs function g as a function of the molar volume v (similar
plots could be drawn as a function of the molar entropy s). In correspondence of the molar volumes
of the liquid phase vliq and of the gas phase vgas, the g function is characterised by local minima.
In point 1 the absolute minimum of g corresponds to vliq; the stable equilibrium corresponds to
the liquid phase. In point 3 the absolute minimum of g corresponds to vgas; the stable equilibrium
corresponds to the gas phase. In point 2, on the liquid–gas coexistence curve, the two minima of
g are equivalent; liquid and gas (vapour) can coexist; the exchange of heat between the system
and its ambient gives rise to a progressive modification of the relative amounts of the two phases
(along the isothermal and isobar horizontal lines in the grey zone of Fig. 22.3).

23.5.5 Continuous transitions, Ginzburg–Landau theory

The Ginzburg-Landau theory allows a phenomenological interpretation of the continuous tran-
sitions. The qualitative agreement with experiment is good, less good is often the quantitative
agreement.

Phenomenological starting point

The basic idea of the theory can be understood by considering the behaviour schematised in
Fig. 23.7 for the critical transition of fluids.
In the left graph, the behaviour ig the molar Gibbs function g is shown as a function of the molar
volume v for the first order transition liquid–gas (see again Fig. 23.6).
In the right graph, the behaviour of the molar Gibbs function g as a function of the molar volume
v is considered along the liquid–gas coexistence curve up to the critical point and beyond. The
two minima of the g(v) function progressively approach and at the critical point give rise to unique
large flat minimum, that progressively narrows beyond the critical point. The large flat minimum
at the critical point physically corresponds to large fluctuations of the molar volume.

Mathematical approach

Let us consider a fluid system whose molar volume is constrained to be equal to the critical value,
v = vc, and let us increase the temperature along the liquid–gas coexistence curve (Fig. 23.7,
right). When the temperature increases, the two minima of the g(v) come progressively closer up
to coincide at the critical temperature Tc. For T ≥ Tc, the g(v) function exhibits a single minimum.
This behaviour can be suitably described by the difference between the molar volumes of the two
phases, normalised to the critical value, giving rise to the critical parameter

η =
vgas − vliq

vcr

{
= 0 per T ≥ Tc
6= 0 per T < Tc

(23.32)

For the case here considered of a fluid the order parameter is positive when T < Tc and zero when
T ≥ Tc, so that η is never negative.
Let us now consider the case of a one-dimensional ferromagnetic system, for which the magneti-
sation M can only gave two values, positive and negative. The order parameter η = M is in this
case symmetrical with respect to zero.
In what follows, for mathematical convenience, symmetrical values of the order parameter with
respect to zero are considered.
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Figure 23.7: Left: liquid–gas first order phase transition. Right: critical transition of fluids. The
inserted plots show the molar Gibbs function as a function of the molar volume.

Let us focus our attention on a small temperature interval around the critical temperature Tc, and
study the general dependence of the g function on both temperature T and order parameter η that
allows to reproduce the qualitative behaviour of the order parameter as a function of temperature
(we don’t consider the dependence on the pressure p, because p and T are not independent along
the coexistence curve).

Since the order parameter η is small, it is convenient to expand the g function g as a power series
of η:

g(T, η) = g0 + α1(T ) η + α2(T ) η2 + · · · (23.33)

The g function cannot depend on the sign of the order parameter η, so that only the terms of
(23.33) containing even powers are non zero:

g(T, η) ' g0 + α2(T ) η2 + α4(T ) η4 . (23.34)

The phenomenological behaviour of the g(T, η) function requires that

– for T < Tc, one has α2(T ) < 0 and α4(T ) > 0 (two minima and one maximum),

– for T = Tc, one has α2(T ) = 0 and α4(T ) > 0,

– for T > Tc, one has α2(T ) > 0 and α4(T ) > 0.

Let us now introduce the further approximation that α2 linearly depends on T − Tc, that is
α2(T ) = α0

2 (T − Tc). As a consequence, by imposing α0
2 > 0, one has that α2 is positive for

T > Tc and negative for T < Tc. Equation (23.34) becomes

g(T, η) ' g0 + α0
2 (T − Tc) η2 + α4(T ) η4 . (23.35)

The stability of the thermodynamical equilibrium at a given temperature requires that g be min-
imum with respect to the possible values of the order parameter η. Let us calculate the first
derivative of (23.35) with respect to η and impose that it be zero:

∂g

∂η
' 2η

[
α0

2 (T − Tc) + 2α4(T ) η2
]

= 0 (23.36)

Let us consider the consequences of (23.36):

– For T > Tc, since α2 > 0 and α4 > 0, equation (23.36) is fulfilled only for η = 0.
One can easily verify that the second derivative of g is positive for η = 0; in the super-critical
region there is thus a single minimum of the g function.

– For T < Tc, since α2 < 0 and α4 > 0, equation (23.36) is fulfilled

– for η = 0;
the second derivative of g is negative for η = 0; the solution corresponds to a maximum
of g, that is to an unstable state;
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– for η2 = α0
2 (Tc − T )/2α4;

there are two minima of g for the two equivalent values η = ±[α0
2 (Tc − T )/2α4]1/2,

corresponding to a stable solution.

The stable solutions for T < Tc show that

η ∝
(
Tc − T
Tc

)1/2

= (−ε)1/2. (23.37)

According to the theory, the order parameter approaches the critical point by a power law; the
theoretical critical exponent 1/2 is however different from the experimental value 1/3.
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Chapter 24

Equilibrium and transitions of
fluids

It was noticed in Chapter 22 that the liquid and gas phases of a substance can be considered as two
modifications of a unique fluid phase. In the present chapter the phase equilibria and transitions
of fluids are studied in detail.
As already observed in § 22.2, below the critical temperature the gas is generally called vapour.
In § 24.1 the liquid–vapour coexistence curve is studied and the concept of saturated vapour and
vaporisation enthalpy is introduced, with a particular reference to water.
The liquid↔ vapour transitions (condensation, vaporisation and ebullition) are then studied in
a region so far from the critical point that liquid and vapour can be considered as two different
phases (the liquid being characterised by a proper volume). In § 24.2 we preliminarily consider
the surface tension of a liquid in equilibrium with its vapour. In § 24.3 we then study the surface
tension effects on the liquid↔ vapour transitions, with a particular reference to water.
In § 24.4 our attention is extended to neighbourhood of the critical point, in order to better un-
derstand the critical transition of fluids, already shortly presented at the end of § 22.2.
The chapter is concluded by the Van der Waals theory (§ 24.5), that allows to obtain a function of
state for real gases and to qualitatively describe the liquid–vapour critical transition.

24.1 The liquid–vapour coexistence curve

Let us start from the liquid–vapour coexistence curve in the (T, p) plane, already introduced in
§ 22.2.
As an example, the graph of the liquid–vapour coexistence curve of water is shown in Fig. 24.1, in
the entire region from the triple point to the critical point (left) and in more restricted temperature
intervals (center and right).

24.1.1 The pressure of saturated vapour

Let us insert a given amount of liquid in a closed vessel maintained at constant volume and constant
temperature. At the beginning, the volume above the free surface of the liquid is empty. When
time goes on, some molecules come out from the liquid and give rise to a vapour phase in the
initially empty volume (vaporisation process). When the number of molecules in the gas phase
increases, also increases the probability that some of them go back in the liquid phase (condensation
process). After a sufficiently long time interval, a dynamical macroscopic equilibrium state sets
up, the average number of molecules going from the liquid to the vapour phase being equal to the
average number of molecules undergoing the opposite process.
In this equilibrium state, the vapour is said to be saturated and its pressure is the saturated vapour
pressure at the T temperature.
For example, for water at the temperature T = 20◦C= 293.15 K:

297
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– the saturated vapour pressure is psat = 0.023 bar

– the molar volume of the liquid phase is vliq = 1.8× 10−5 m3/mol

– the molar volume of the vapour phase is vvap = 1 m3/mol
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Figure 24.1: Liquid–vapour coexistence curve of water in different temperature intervals. Left: the
entire curve from the triple point (T = 273.16 K, p = 0.061 bar) to the critical point (T = 647.4 K,
p = 220 bar). Centre: from the triple point to the boiling point at atmospheric pressure. Right: in
the temperature interval between 0 and 40◦C.

If the fluid temperature T is modified, the saturated vapour pressure changes. The coexistence
curve represents the saturated vapour pressure as a function of the temperature.

24.1.2 Latent heat and transformation enthalpy

When the liquid and the vapour are in equilibrium, that is on the coexistence curve, the relative
quantities of the two phases can change through exchange of heat. The amount of heat absorbed or
given up by the liquid phase is called latent heat (or enthalpy) of vaporisation or of condensation.
As a consequence, at constant T and p, the total volume can change. The process corresponds to
the horizontal part of the Andrews isotherms in the (V, p) graph (see Fig. 22.3).

The molecules going from the liquid phase to the gas phase are on the average the fastest (that
is carrying more energy). As a consequence, evaporation gives rise to cooling of the liquid. To
maintain the liquid at constant temperature during evaporation, heat must be supplied by the
ambient. Evaporation at constant T and p takes thus place with an increase of the system enthalpy.
The molar vaporisation enthalpy of water is shown in Fig. 24.2 (left) as a function of temperature.
The vaporisation enthalpy goes to zero at the critical point (647 K for water).

24.1.3 Alternative derivation of the Clausius-Clapeyron equation

In § 23.3 we have shown that the relation between pressure and temperature along a coexistence
curve of two phases is expressed by the Clausius-Clapeyron equation, in the two equivalent forms
(23.16) and (23.17). For the liquid–vapour equilibrium, the Clausius-Clapeyron equation (23.17)
can be derived in an alternative way.
To this aim, let us consider the Andrews graph (V, p) of a fluid (§ 22.2) and focus our attention
on the region of liquid–vapour coexistence (light grey in Fig. 24.2, right. Let us consider two
isothermal–isobaric lines with temperature and pressure T, p and T − dT, p− dp, respectively.
Let us start from the initial state in which the fluid is entirely in the liquid state at pressure p and
temperature T and takes up the volume V1. The following Carnot cycle can now be considered:

1. Isothermal expansion at temperature T and pressure p from the volume V1 to the volume
V2, with total evaporation of the liquid.



24. Equilibrium and transitions of fluids 299

V

p

liq vap

dp

V1 V2
0

10

20

30

40

0

0.2

0.4

0.6

0.8

1

300 400 500 600

Δ
h
v
a
p
 (

k
J
/m

o
l)

E
v
a

p  (e
v
 / m

o
le

c
u

le
)

T (K)

Figure 24.2: Left: molar vaporisation enthalpy of water as a function of temperature; the left and
right vertical scales correspond to the values in kJ per mole and in eV per molecule, respectively.
Right: infinitesimal Carnot engine cycle (dark grey) allowing the alternative derivation of the
Clausius-Clapeyron equation.

2. Adiabatic expansion of the vapour from the pressure p to the pressure p−dp with temperature
variation from T to T − dT .

3. Isothermal compression at temperature T − dT and pressure p − dp from the volume V2 to
the volume V1, with total condensation of the vapour.

4. Adiabatic compression of the liquid from the pressure p− dp to the pressure p with temper-
ature variation from T − dT to T .

The total work performed by the system during the entire cycle corresponds to the area enclosed by
graph od the cycle (dark grey rectangle in Fig. 24.2, right): |Wprod| = (V2 − V1) dp = ∆V dp. The
heat amount absorbed during the isothermal and isobaric expansion corresponds to the vaporisation
enthalpy Qin = ∆Hvap.
By equating the general expression of the efficiency of a thermal engine with the expression of the
efficiency of the Carnot cycle as a function of the operating temperatures

η =
|Wprod|
Qin

=
∆V dp

∆Heva
= 1− T − dT

T
=

dT

T
(24.1)

one gets the Clausius-Clapeyron equation in the form (23.17):

dp

dT
=

∆Heva

T ∆V
. (24.2)

24.1.4 Liquid–vapour equilibrium for water

Liquid water and water vapour are present in everyday life. In general, water vapour is mixed
with atmospheric air. In the following, we inquire on the meaning of the liquid–vapour coexistence
curve (Fig. 24.3) in a number of significant cases.

1.
A pot, half filled with pure water, is maintained without cover in an ambient at temperature 25◦C
and pressure 1 bar.
From the microscopic point of view, the molecules which continuously get out from the liquid and
form water are progressively dispersed in air and only in little number come back into the liquid
(provided the air is not saturated with water vapour, that is provided the partial pressure of water
vapour in air is not equal to the saturated water vapour at the temperature 25◦C).
From the macroscopic point of view, for a closed system the stable phase of water at 25◦C and 1
would be the liquid phase. In this case, however, the system is open and exchanges matter with
its ambient. If air is not saturated with water vapour, the system (the liquid water) progressively
looses matter through evaporation; the macroscopic state is out of equilibrium. After a convenient
time interval all liquid water evaporates and the pot remains empty.
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2.
Let us now close the pot, half filled with liquid water at 25◦C, with an airtight cover. By means
of a pump, let us evacuate the volume over the free surface of liquid water.
Now the molecules which get out from the liquid occupy the initially empty space, but cannot be
dispersed in air. The system is closed. After a convenient time, a dynamic microscopic equilibrium
state will take place (an equal number of molecules go from one phase to the other and viceversa).
From the macroscopic point of view, water is in an equilibrium state at a pressure equal to the
saturated vapour pressure at T = 25◦C, that is, according to the graph of Fig. 24.3, at p = 32 mbar.
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Figure 24.3: Liquid–vapour coexistence curve of water. The temperature is measured in kelvin
and in Celsius degrees in the lower and in the upper horizontal scales, respectively. The pressure
scale is logarithmic.

3.
Let us again close the pot, half filled with liquid water at 25◦C, with an airtight cover, but let the
air within the volume above the free liquid surface.
The molecules outgoing from the liquid phase mix with the air molecules below the cover, but
cannot be dispersed in the atmosphere. The system is closed. After a convenient time, a dynamic
microscopic equilibrium state will again take place (an equal number of molecules go from one
phase to the other and viceversa).
From the macroscopic point of view, liquid water is in a state of equilibrium at a pressure equal to
the sum of the air atmospheric pressure and the partial pressure of the water vapour. The partial
vapour pressure corresponds to the saturated vapour pressure at T = 25◦C, that is, according to
the graph of Fig. 24.3, at p = 32 mbar.

4.
Let us maintain the pot, containing water and air at atmospheric pressure, closed with the airtight
cover. The cover is now provided with an outlet valve calibrated to the pressure p = 2 bar (pressure
cooker). Let us increase the temperature. The saturated vapour pressure progressively increases
when the temperature increases; when the total pressure (air + vapour) attains the value 2 bar,
the outlet valve opens, and the gas progressively gets out. As the gas gets out of the pot, the
partial air pressure progressively decreases and the partial vapour pressure increases. When the
gas phase is completely made of water vapour, the temperature is T = 120◦C, corresponding to
the temperature of liquid–vapour coexistence at the pressure 2 bar (Fig. 24.1, center).

5.
Let us come back to the initial condition of the pot without cover at ambient temperature and pres-
sure. Let us progressively increase the temperature. When the temperature T=100◦C is attained,
corresponding to the liquid–vapour equilibrium temperature at the 1 bar ambient pressure, the wa-
ter starts to boil and its temperature remains constant. Ebullition gives rise to a fast evaporation
of the liquid.

The ebullition of a liquid (not only of water) is a quite complex phenomenon. We consider it in
detail in § 24.3, after an introduction to surface tension in § 24.2.
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24.1.5 Absolute and relative humidity

According to the above examples, in a number of situations the water vapour is dispersed in
atmospheric air. The water vapour thus contributes to the atmospheric pressure with a partial
pressure pvap, whose value depends on the molar fraction of water with respect to the molar fraction
of anhydrous air. The partial pressure of water vapour is connected to the concept of humidity.

If, at a given temperature, the partial pressure of the water vapour is equal to the pressure of
saturated vapour at that temperature, the humidity is said to be 100%. In that situation, the air
is saturated with water vapour. A light increase of pressure or a light decrease of temperature
gives rise to the condensation of part of the saturated vapour.

Example 1: Let the ambient temperature be 20◦C. According to Fig. 24.3 the saturated vapour
pressure is 23.3 mbar. The humidity is 100% at 20◦C if the partial pressure of the water vapour
is 23.3 mbar (with respect to the total pressure 1 bar). The humidity cannot increase above
100%: a further increase of the molar fraction of water vapour at constant temperature would
give rise to the condensation of the vapour in excess.

Example 2: Let the ambient temperature initially be 20◦C and the air be saturated by vapour at a
partial pressure 23.3 mbar (100% humidity). Let now suppose that the temperature decreases
to the value 19◦C, corresponding to which the saturated vapour pressure is 21.4 mbar. Part
of the vapour which was present at 20◦C condensates in order to reduce its partial pressure
from 23.3 mbar to 21.4 mbar; humidity remains 100%.

The relative humidity is the ratio between the water vapour pressure measured at a given tem-
perature and the saturated vapour pressure at the same temperature. Hygrometers (humidity
measuring instruments) generally measure the value of relative humidity.

Example 1: Let the ambient temperature be 20◦C and the partial vapour pressure be pvap =
10 mbar. Since the saturated vapour pressure at 20◦C is 23.3 mbar, the relative humidity is
10/23.3, that is 43%.

Example 2: Let the ambient temperature be again 20◦C and the partial vapour pressure be again
pvap = 10 mbar (humidity 43%). Let us now suppose that the temperature increases to
the value 25◦C, to which it corresponds a saturated vapour pressure 32 mbar. The relative
humidity reduces to 10/32, that is to 31%.

The dew point (or dew temperature) is the temperature at which the vapour, for a given value of
partial pressure, condensates.

Example: Let the partial pressure of water vapour be 8 mbar. The dew point is the tempera-
ture corresponding to the intersection of the isobaric line at 8 mbar with the liquid–vapour
coexistence curve (Fig. 24.1, right); in this case its value is 4◦C.

24.2 Surface tension

To get a deeper understanding of the mechanism of the liquid↔ vapour transitions (§ 24.3) it is
necessary to preliminarily introduce the concept of surface tension.

24.2.1 Definition

Let us consider a liquid, for example water, contained in an open vessel (Fig. 24.4, left) at a
temperature much lesser than the critical. The surface separating the liquid and the above gas
(typically a mixture of air and vapour) is flat; it is an equi-potential surface with respect to the
gravity force.

One has to distinguish the case of the molecules within the liquid and the molecules near the
surface.

a) Within the liquid (in the “bulk”) the inter-molecular forces act isotropically on each molecule;
the displacement of a molecule within the liquid doesn’t require work.
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b) Near the free surface of the liquid, in a layer whose thickness is comparable with the range of
molecular forces (that is of the order of the nanometer) isotropy is destroyed. The molecules of
the surface layer are subjected to a resultant force directed towards the interior of the liquid;
the attraction of the molecules of the gas above the surface being is actually negligible, in
view of the much smaller density of the gas with respect to the liquid (obviously far from the
critical point).

To move a molecule from the interior of the liquid to the free surface requires the performance of
work against the inter-molecular forces. By the same token work is necessary to increase the area
As of the liquid surface, because it is necessary to move molecules from the interior to the surface.

24.2.2 Thermodynamical aspects

The work Ws required to increase the area As of the liquid free surface, increasing the number of
molecules of the surface layer, corresponds to the increase of a potential energy Es proportional to
the area As:

Es = σ As , (24.3)

where the proportionality constant σ is called surface tensionand is measured in J/m2, or equiva-
lently N/m. Therefore

d̄Ws = σ dAs = dEs (24.4)

(d̄Ws is a type of generalised work) and the variation of internal energy of the system is

dU = T dS − p dV + σ dAs . (24.5)

The most suitable thermodynamical potential is the Gibbs function,

dG = −S dT + V dp + σ dAs . (24.6)

For a process taking place at constant temperature T and pressure p, dG = σ dAs, and the surface
tension is

σ =

(
∂G

∂As

)
Tp

. (24.7)

24.2.3 Forces of surface tension

At constant temperature T and pressure p, the system tends to minimise the Gibbs functionG,
that is, according to (24.6), to minimise the free surface As.
The surface tension corresponds thus to the presence of forces tangent to the surface, that oppose
the increasing of its area, The work (24.4) necessary to increase the area of the free surface can be
expressed as

d̄Ws = σ dAs = σLdx = F dx , (24.8)

where dx is a unidimensional displacement and F is the external force which has to be applied to
equilibrate the surface tension and increase the area As of the free surface. Otherwise stated,

F = σL , σ = F/L ; (24.9)

the surface tension is actually measured in N/m.

Note: The force (24.9) doesn’t originate from the interaction between the molecules of the surface
layer. Such interaction would give rise to an approximatively elastic force, proportional to the
elongation x.

Example: The effects of surface tension can be easily evidence by using soapy water (the effect
of soap is to reduce the surface tension and facilitate the formation of thin films). If a wire
frame, for example of square shape, is immersed in soapy water and extracted, a thin film
can be observed within the frame. The film is a thin volume, limited by two surfaces. If one
of the sides of the frame is mobile, the film tends to contract as an effect of surface tension;
to maintain the area of the film unchanged a counter-acting force has to be applied on the
mobile side of the frame.
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Figure 24.4: Flat free surface (left), convex surface (centre) and concave surface (right).

24.2.4 Shape of the free surface

If external forces are absent, an amount of liquid takes on the spherical shape, that minimises the
free surface for a given volume, and thus minimises the surface energy Es (Fig. 24.4, centre).

If a uniform external force field is present (such as gravity), and no other forces are present (such
as friction or support reactions), the liquid again takes on the spherical shape.

A liquid contained in a vessel is subject, in addition to the gravity force, to the support reaction
force (Fig. 24.4, left). In the equilibrium state, the free surface is flat.

In the region of contact between the liquid and the walls of the vessel, the free surface can be
deformed by surface tension forces due to the liquid–solid contact. These effects can give rise to
capillarity effects in thin pipes. In the following, we will not consider the effects of liquid–solid
contact.

24.2.5 Surface curvature and vapour pressure

The liquid–vapour coexistence curve in the (T, p) plane (Fig. 24.3) refers to a flat surface of sepa-
ration between the liquid and vapour phases.

To understand the mechanisms of the liquid↔ vapour transitions (§ 24.3) it is necessary to study
the behaviour of the curved free surfaces.

Convex surface

Let us consider a convex surface, for example the surface of a liquid sphere (Fig. 24.4, centre).

The surface potential energy is, according to (24.3), Es = σAs. A reduction of the radius r of the
sphere gives rise to a reduction of the area As of the surface and thus to a reduction of the surface
energy Es.

The evaporation causes the reduction of the radius r of the liquid sphere and of the potential
surface energy Es. The reduction of Es facilitates the evaporation from a convex spherical surface
with respect to evaporation from a flat surface (for which evaporation doesn’t cause reduction of
Es).

Therefore the liquid–vapour equilibrium for a liquid sphere takes place at a vapour pressure p>
higher that the saturated vapour pressure psat for a flat surface at the same temperature.

The difference between the pressures p> and psat increases when the radius r of the sphere decreases:
p> − psat ∝ 2σ/r.

Example: A liquid sphere paced in the neighbourood of a flat surface of the same liquid evaporates
completely, because the vapour spontaneously transfers from the region at higher pressure p>
to the region at lower pressure psat.

The surface tension gives rise to a pressure ps within the spherical volume. To evaluate the amount
of ps one can equate the variation dEs of the surface potential energy due to a variation dAs of
the surface area, that is

dEs = σ dAs = σ 8πr dr , (24.10)

to the generalised work corresponding to the variation dAs

d̄Ws = σ dAs = ps dV = ps 4πr2 dr ; (24.11)
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by equating (24.11) to (24.10) one obtains (for a spherical surface)

ps =
2σ

r
. (24.12)

The pressure ps due to the surface tension increases when the radius r of the sphere decreases.

The purely hydrostatic pressure within the sphere, Pint, is smaller than the pressure outside the
sphere, Pext, since the equilibrium requires that

Pext = Pint + ps . (24.13)

Note: For a flat surface the hydrostatic pressure within the liquid is equal to the external hydrostatic
pressure, Pext = Pint; as a matter of fact, for a flat surface r = ∞, so that, according to
(24.12), ps = 0. Besides, evaporation from a flat surface doesn’t cause a variation of the
surface area As, while for a convex surface evaporation causes a reduction of the surface area.

Superficie concava

Let us now consider a concave surface, for example the surface of a spherical air bubble embedded
in a liquid (Fig. 24.4, right).
The evaporation of the liquid within the bubble causes an increase of the radius r and thus an
increase of the surface energy. The increase of Es makes the evaporation from a concave surface
more difficult than from a flat surface. Therefore the liquid–vapour equilibrium is obtained with
a vapour pressure p< within the bubble smaller than the pressure of saturated vapour psat over a
flat surface at the same temperature.
The bubble tends spontaneously to lcose.
The difference between the pressures psat and p< increases when the radiur r of the bubble de-
creases: psat − p< ∝ 2σ/r.

24.3 Condensation and ebullition

Let us now consider the effects of surface tension on two phenomena of liquid–vapour transition:
the condensation and the ebullition processes.

24.3.1 Condensation of the atmospheric vapour

Let us consider a mass of air saturated with water vapour (that is a mass of air in which the
partial pressure of water vapour corresponds to the value of the coexistence curve at the given
temperature). In such a situation, the water vapour tends to condense into the liquid phase. The
condensation of the water vapour present in the atmosphere gives rise to rain, fog, etc.
At the microscopic level, the condensation process takes place through the mechanisms of nu-
cleation and growth of the liquid phase; these mechanisms are common to all first order phase
transitions.
Let us suppose that, due to a casual fluctuation of the local vapour density, a liquid condensation
nucleus is formed, made by a small number of water molecules. As it was said above, the vapour
pressure p> around the nucleus (approximated by a sphere) is larger than the pressure psat of the
saturated vapour at than temperature, and the smaller is the radius of the sphere the larger is the
pressure difference.
If the size of the nucleus is very small, the vapour pressure p> is larger than the pressure of the
saturated vapour of the atmosphere, and the nucleus rapidly dissolves.
In order that the condensation be stable, the partial pressure of the saturated vapour in the
atmosphere has to be larger than the pressure p> near the condensation nuclei.
The condensation is facilitated by the presence of powders, that favour the formation of relatively
large nuclei, with relatively small p>. For example, the formation of fog is favoured by the presence
of particulate matter in air.
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In particular, electrically charged impurities, such as ionised atoms, are particularly effective in
favouring the condensation: the repulsive forces of the electric charges equilibrate the attractive
forces due to the surface tension, that are in turn responsible of the reduction of the size of
condensation nuclei.

Supersaturated vapour

If there are no impurities that favour the formation of condensation nuclei, the vapour can re-
main unaltered at higher temperatures and/or smaller pressures with respect to the values of the
coexistence curve. In these cases, the vapour is said to be supersaturated.

(Consider the corresponding graphical representations in the (T, p) plane and in the (V, p) plane).

Cloud chamber

The cloud chamber was devised by the Scottish physicist C. T. R. Wilson in 1912 as a detector for
ionising particles of cosmic rays.

The cloud chamber is filled with the saturated vapour of a liquid, such as a misture of alcool
and water dispersed in argon. A fast adiabatic expansion causes a cooling of the vapour; if no
impurities are present, the vapour remains in a supersaturated state.

Ionising particles traversing the cloud chamber cause the ionisation of the argon gas, that in turn
favours the vapour condensation along the particles trajectories; the trajectories can thus be easily
recorded on photographic plates.

24.3.2 Ebullition

The process of vaporisation of a liquid mass can be described in terms of nucleation and growth
of the new phase, as the process of condensation considered above. However, in the case of
vaporisation, the creation of nuclei caused by local density fluctuations is very difficult, due to the
high density of liquid water.

The nucleation of the vapour phase generally requires that a gas, typically air, is already mixed
with water. According to the Henry law, a gas that exerts a pressure on the surface of a liquid
enters in solution in the liquid and the pressure it acquires within the liquid is equal to the pressure
exerted above the free surface. Therefore, little bubbles of air are dispersed in liquid water.

Water evaporates within the little air bubbles. At low temperature, however, the surface tension
of the concave surface tends to crush the little bubbles. The little ir bubbles saturated by water
vapour are thus unstable.

When the temperature increases, the saturated vapour pressure within the unstable bubbles in-
creases too.

When the pressure of the saturated vapour within the little bubbles is equal to the sum of the
external atmospheric pressure + the hydrostatic pressure of water + the pressure due to the surface
tension, then the bubbles can expand and, due to the Archimedes principle, go up to the surface
(where the hydrostatic pressure becomes zero). The phenomenon of ebullition takes place.

The temperature of the saturated vapour outgoing from the liquid free surface is called boiling
point. The boiling point decreases when the external pressure decreases. The boiling point of
water at the atmospheric pressure 1.013 is 100◦C=373.15 K. At an altitude of 1000 m above the
sea level, the average pressure reduces to 0.897 bar and the water boiling point reduces to 96.7◦C.

Superheated liquid

If no gas bubbles are present, a liquid can remain unaltered at higher temperatures and/or lower
pressures than the values of the liquid–vapour coexistence curve. The liquid is then said to be
superheated.

(Consider the corresponding graphical representations in the (T, p) plane and in the (V, p) plane).
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Quasi-critical conditions

In the neighbouroud of the critical point, where vliq ' vvap, that is the densities of the liquid and
vapour phases are similar, the ebullition can take place even if no gas is dissolved in the liquid.
Fluctuations of the density of the liquid phase can lead some regions to exhibit the vapour phase
density, and then expand and give rise to an intense ebullition.

Cloud chamber

The bubble chamber was devised by the American physicist D. A. Glaser in 1952 as a detector of
ionising particles produced in collisions within particles accelerators.
A suitable liquid (hydrogen, propane, helium, etc.), previously heated and compressed, is led to a
superheated metastable state through a fast reduction of the external pressure when crossed by the
elementary particles. The particles are slowed down by the liquid, causing a local heating which
favours the formation of vapour bubbles along their trajectory. The trajectories of particles can so
be recorded on photographic plates.
The high density of the liquid filling the bubble chamber allows an effective slowing down of the
particles, so that their entire trajectories can be evidenced and studied; in the cloud chamber,
on the contrary, the gas density is much smaller, and only a little part of the trajectories can be
evidenced.

24.4 The liquid–vapour critical transition

Let us focus our attention on the liquid–vapour coexistence, represented by the coexistence curve
in the (T, p) graphs of Fig. 22.1 as well as by the region below the bell-shaped curve in the (v, p)
graph of Fig. 22.3, in order to study the critical transition.

24.4.1 Liquid–vapour coexistence

The liquid and vapour phases are characterised by different values of both molar entropy s and
molar volume v.

In a given point of the coexistence curve of Fig. 22.1, the transition between the two phases takes
place at constant temperature T and pressure p. The finite variation of entropy and volume, ∆s
and ∆v, respectively, entails the divergence of the specific heat at constant pressure cp, of the
isothermal compressibility χT and of the coefficient of thermal expansion β.
When the critical point is approached along the coexistence curve, the entropy and volume dif-
ferences between the two phases progressively decrease, and at the critical point ∆s = 0 and
∆v = 0.

Let us now consider a point in the region below the bell-shaped curve in the (v, p) graph of Fig. 22.3
and modify the pressure (and the temperature) maintaining unaltered the molar volume v. The
transformation, represented by a vertical line in the graph, corresponds to a variation of the ratio
between the amounts of the two phases, liquid and vapour. The constant-volume specific heat cv
maintains a finite value.

24.4.2 Phenomenology of the critical point

With reference to Fig. 24.5, let us start from a temperature higher than the critical temperature
T > Tc, and study the process of cooling of a fluid for three different values of molar volume:
v1 < vcr, vcr and v2 ' vcr, where vcr is the molar critical volume.

Case 1: v1 < vc

Cooled at constant molar volume v1 < vc, the system doesn’t undergo any discontinuity in going
from the gaseous phase to the liquid phase when crossing the critical isotherm T = Tc.
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Figure 24.5: Cooling of a fluid from the gaseous phase above the critical temperature down to the
region of liquid–vapour coexistence for three different values of molar volume, v1 < vcr < v2. Left:
p, V Andrews diagram. Right: schematic representation of the three cases.

When the temperature is further reduced below Tc and the bell-shaped curve is crossed, a small
amount of vapour appears on top of the liquid phase. The liquid → vapour transition takes
place at constant volume. The relative amount of vapour phase progressively increases when the
temperature T decreases. For each value of T , the relative amounts of the liquid and vapour phases
are given by the lever rule.

Cas2 2: v2 > vc

Cooled at constant molar volume v2 > vc, the system remains in the gaseous phase when crossing
the critical isotherm T = Tc.

When the temperature is further reduced below Tc and the bell-shaped curve is crossed, a small
amount of liquid appears at the bottom of the container. The vapour → liquid transition takes
place at constant volume. For each value of T , the relative amounts of the liquid and vapour phases
are given by the lever rule.

Case 3: v ' vc

Let us now consider the cooling at constant molar volume v ' vc.
Above the critical isotherm (T > Tc) there is a homogeneous gaseous phase. The values of cp, χT , β
are finite.

Below the critical isotherm (T < Tc) the system is divided in two phases, liquid and vapour,
separated by a neat surface.

In the neighboroud of the critical temperature, T ' Tc, an abrupt transition takes place, accompa-
nied by large fluctuations of energy and density, that cause the phenomenon of critical opalescence.

Immediately after the transition, finite amounts of both phases appear (in cases 1 and 2, on the
contrary, one of the two phases appears gradually below the bell-shaped curve).

Note: In case 3, the molar volume of the system has not to exactly correspond to the critical
value, v = vc, in order that the critical transition could take place. Actually, at the critical
point the critical isotherm in the (V, p) plane exhibits an inflection, so that the isothermal
compressibility diverges:

χT = −1

v

(
∂v

∂p

)
T

= ∞ . (24.14)

The tiny variation of hydrostatic pressure along the vertical direction due to the gravity field
causes large variations of the density ρ. The meniscus of separation between the two phases
appears where ρ ' ρc.
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Response functions

In the entire region below the bell-shaped curve in the Andrews V, p diagram, the values of cp, χT , β
diverge.

24.4.3 Density: order parameter and critical exponent

Let us study the behaviour of the liquid and vapour densities, ρliq and ρvap, respectively, as a
function of temperature.
Above the critical temperature, for T > Tc,

ρliq = ρvap , ∆ρ = ρliq − ρvap = 0 . (24.15)

Below the critical temperature, for T < Tc, in the coexistence region below the bell-shaped vurve
in the Andrews diagram,

∆ρ = ρliq − ρvap > 0 ; (24.16)

the difference ∆ρ increases when the temperature decreases.

The graph of ρliq and ρvap as a function of the temperature is different for different substances.
However, if the reduced coordinates T/Tc and ρ/ρc are used, where Tc and ρc are the temperature
and the density at the critical point, respectively, the graph of ρ/ρc as a function of T/Tc is similar
for a number of substances (for example for the noble gases, and for N2, O2, CO, CH4). This is
an example of the so-called law of corresponding states.

One defines as order parameter for the critical transition of fluids the ratio

η =
ρliq − ρvap

ρc
=

ρliq

ρc
− ρvap

ρc
; (24.17)

the distance from the critical temperature is measured by the parameter

ε =
T − Tc
Tc

=
T

Tc
− 1 . (24.18)

The behaviour of the order parameter η for T < Tc (ε < 0) is consistent with the expression

η = (−ε)β . (24.19)

For a number of substances the critical exponent β has the same value β = 1/3.

24.4.4 Specific heat at constant volume: critical exponents

Let us consider the critical transition at constant molar volume v = vc.
The temperature dependence of the specific heat at constant volume has a behaviour similar to
the greek letter lambda (λ), and can be described in terms of two critical exponents α and α′:

if T > Tc (ε > 0) ⇒ cv ' ε−α (24.20)

if T < Tc (ε < 0) ⇒ cv ' (−ε)−α
′

(24.21)

24.4.5 Critical transition and fluctuations

It was shown in § 15.1 that the heat capacity at constant volume Cv is proportional to the variance
of the energy distribution of a system:

kBT
2Cv = kBT

2

(
∂U

∂T

)
v

= 〈E2〉 − 〈E〉2 . (24.22)

The divergence of the specific heat cv when T → Tc means that the energy fluctuations of the
system become very large.

Also the isothermal compressibility diverges at the critical point, corresponding to large density
fluctuations.
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24.5 Van der Waals theory

From the kinetic model of ideal gases one can obtain the thermal equation of state

pV = nRT , pv = RT , (24.23)

(here for n moli or for one mole, respectively). The kinetic model is based on the assumptions of
dimensionless molecules and absence of inter-molecular interactions.
The Van der Waals theory, dated 1873, is free from these assumptions; it is useful

- to describe the behaviour of real gases,

- to give a qualitative interpretation of the liquid–vapour phase transition.

A short introduction to the interaction forces between the gas molecules is necessary to understand
the Van der Waals theory.

24.5.1 Inter-molecular interaction forces

Attractive forces

The weak attractive forces between electrically neutral molecules with filled electron shells are
called Van der Waals forces. The attraction between non-polar molecules is due to fluctuating
dipole forces. For concreteness, let us consider a monatomic gas (such as a noble gas), whose
molecules contain only one atom, and follow a simplified phenomenological approach.
Even if an atom is electrically neutral, its negatively charged electron cloud can oscillate with
respect to the positively charged nucleus; the atom behaves as a quantum harmonic oscillator.
The instantaneous electric dipole ~p1 due to the oscillation of the electron cloud of atom 1 generates
an instantaneous electric field of intensity E proportional to p1/r

3 at a distance r. In turn,
the electric field induces an instantaneous electric dipole in a neighbouring atom 2, of modulus
p2 = αE ∝ αP1/r

3 (where α is the tomic polarisability).
The two dipoles attract each other. The interaction between the two dipoles causes a reduction of
energy proportional to p1p2/r

3, that is to αp2
1/r

6.
The attractive force due to the fluctuating dipoles is thus described by a potential energy −A/r6,
where A is a suitable constant.

Repulsion forces

The repulsion forces between two atoms or molecules is due to the Pauli exclusion principle. The
behaviour of the potential energy is characterised by a steep negative slope as a function of the
distance r; various analytic expressions have been suggested to approximate this behaviour, one of
the most frequently used is B/r12, where B is a suitable constant.

The Lennard-Jones potential and the rigid sphere approximation

The total potential energy (repulsive + attractive) is conveniently expressed by the Lennard-Jones
potential

Ep =
B

r12
− A

r6
. (24.24)

If the rigid spheres approximation is assumed, the repulsive term of the potential energy is approx-
imated by an infinite value.

24.5.2 The Van der Waals equation

The Van der Waals state equation for real gases is obtained by phenomenologically modifying the
state equation (24.23) of ideal gases, for which the pressure is p = RT/v, taking into account

- the finite volume of molecules, due to the repulsion forces and schematised by the rigid
spheres model;

- the attractive inter-molecular forces.
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Finite volume of molecules

The actual volume accessible to the molecules is modified, with respect to the volume appearing
in the equation of state (24.23) of ideal gases, according to:

v → v − b , V → V − nb , (24.25)

where b is a phenomenological parameter, called “excluded volume” (for one mole), whose value is
determined experimentally.

Example: Let us consider a model of rigid spheres of diameter d. The presence of molecule 1
prevents the center of molecule 2 from assuming the positions within a volume 4πd3/3 centred
on molecule 1. For one mole, neglecting the surface effects on the vessel walls, trascurando
l’effetto di superficie sulle pareti del recipiente, one obtains b = (1/2)N0(4/3)πd3 = 4N0vmol,
where vmol = πd3/6 is the volume of one molecule and N0 is the Avogadro number. The
excluded volume b is four times larger than the total volume of molecules. Actually, the
model is quite rough: the real molecules are not rigid spheres; the excluded volume b depends,
particularly at high pressures, on the peculiar form of repulsive forces.

Taking into account the excluded volume, the pressure is expressed (for one mole or for n moles)
by

p =
RT

v − b
, p =

nRT

V − nb
(24.26)

Attractive inter-molecular forces

The resultant of the inter-molecular attractive forces is non-zero for the molecules close to the
vessel walls (within the range of the inter-molecular forces). The effect is a reduction of the
pressure exerted on the vessel walls with respect to the ideal gas pressure.
The reduction is proportional to the product of two factors:

1. the frequency of the collisions of the molecules with the walls, proportional to the density
1/v,

2. the resultant of the forces acting on each molecule, again proportional to the density 1/v.

The expression of the density for the ideal gas has to be modified and becomes (for one mole or
for n moles)

p =
RT

v − b
− a

v2
, p =

nRT

V − nb
− n2a

V 2
, (24.27)

where a is a phenomenological constant, whose value is determined experimentally.

The equation of state

By readjusting (24.27), one obtains the Van der Waals equation of state; for one mole,(
p+

a

v2

)
(v − b) = RT (24.28)

For n moles, (
p+

n2a

V 2

)
(V − nb) = nRT (24.29)

The Van der Waals equation has been derived from quite rough assumptions; its interest based on
the qualitative agreement with experimental results.

24.5.3 Statistical derivation of the Van der Waals equation

An alternative derivation of the Van der Waals equation, whose range of application is more general,
is based on a statistical approach. It is again convenient to start from the ideal gas case and to
introduce suitable modifications.
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Statistics of the ideal monatomic gas

In the ideal monatomic gas the energy of each particle is purely kinetic and the particles can be
considered as independent. The single-particle partition function is

z =
∑
i

gie
−εi/kT '

∫ ∞
0

g(ε)e−ε/kT dε , (24.30)

where k = kB (Boltzman constant) and the distribution of discrete values has been approximated
by a continuous distribution. The density of states g(ε) depends on the energy ε and on the volume
V according to

g(ε) dε =
2π

h3
(2m)3/2 V

√
ε dε , (24.31)

so that the single-particle partition function is

z =
V (2πmkT )3/2

h3
=

V

Λ3
, (24.32)

where Λ = h/(2πmkT )1/2 is called “De Broglie thermal wavelength”.

Note: We can resort to the quantum statistics in the classical limit, that is we can use the Maxwell-
Boltzmann statistics (§ 16.4) for indistinguishable particles, because ni � gi.

The partition function for a system of N identical indistinguishable particles is, according to
(16.31),

Z = zN/N ! (24.33)

Using the Helmholtz function F = −kT lnZ, the pressure can be expressed as

p = −
(
∂F

∂V

)
T

= kT

(
∂ lnZ

∂V

)
T

=
kTN

V
=
nRT

V
. (24.34)

We have thus recovered the equation of state of the ideal gas.

Statistics of the Van der Waals gas

For a real gas, the inter-molecular interaction can be represented, in the rigid spheres approximation
of diameter d, by the potential energy

u(r) =

{
∞ for r < d
−ε′(d/r)6 for r ≥ d (24.35)

The finite size of molecules is taken into account by substituting the volume V in the expression
of the partition function (24.32) of the ideal gas by

V −Nb′ , b′ = 2πd3/3 , (24.36)

where N is the total number of molecules and b′ = 4vmol is the contribution of each molecule to
the excluded volume.
Due to the presence of attractive forces, the molecules are not independent. This difficulty can
be overcome by supposing that each molecule moves in a mean field, that is a field of constant
potential energy generated by the average interaction with all the other molecules:

φ =

∫ ∞
d

u(r)
N

V
4πr2 dr = −2

N

V
ε′b′ = −2a′

N

V
. (24.37)

In the mean field approximation the particles can be considered as independent. The single-particle
partition function (24.32) is modified by the addition of the Boltzmann factor exp(−φ/2kT ) (the
factor 2 in the denominator is due to the fact that the interaction energy is shared by two molecules)

z =
(V −Nb′) eNa′/V kT

Λ3
, (24.38)
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Figure 24.6: Left: Van der Waals isotherms for nitrogen; the thick line is the critical isotherm (Tc =
126 K). Right: an isotherm for temperature lower than the critical temperature Tc (continuous line);
the dashed line represents the experimental behaviour between the points b and f .

and the partition function of the system is again Z = zN/N !

One can easily check that the pressure is

p = −
(
∂F

∂V

)
T

= kT

(
∂ lnZ

∂V

)
T

=
kTN

V −Nb′
− N2a′

V 2
=

nRT

V − nb
− n2a

V 2
(24.39)

as in (24.27).

24.5.4 The Van der Waals isotherms

For a given value of temperature T , (24.27) is the equation of the corresponding isotherm:

p =
RT

v − b
− a

v2
. (24.40)

The typical behaviour of the Van der Waals isotherms is shown in Fig. 24.6, left.

At high temperatures, the second term in the right member of (24.40) can be neglected, and the
graph of the equation reduces to an hyperbola, as for the ideal gas, with the difference that v è is
substituted by v − b.
A low temperatures the graph is more complicated; the behaviour of the isotherms is oscillating.

In Fig. 24.6, right, the behaviour of a low-temperature Van der Waals isotherm a−b−c−d−e−f−g
is compared with the corresponding experimental isotherm a− b− f − g:

– line a−b: the Van der-Waals isotherm corresponds to the experimental isotherm of the liquid
in stable equilibrium;

– line b− c: the Van der-Waals isotherm reproduces the possible experimental behaviour for a
superheated liquid;

– line c−d−e: this part of the Van der-Waals isotherm corresponds to states thermodynamically
unstable (with negative compressibility), that cannot be experimentally reproduced;

– line e − f : the Van der-Waals isotherm reproduces the possible experimental behaviour for
a supersaturated vapour;

– line f−g the Van der-Waals isotherm corresponds to the experimental isotherm of the vapour
in stable equilibrium.

Between the point b and the point f , in the region of liquid–vapour coexistence below the bell-
shaped curve, the Van der Waals isotherm and the experimental isotherm are significantly different.
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Figure 24.7: Dependence of the molar Gibbs free energy on the pressure at constant temperature.
Left: experimental behaviour. Right: for a Van der Waals isotherm. The letters a to g correspond
to the points of Fig. 24.6.

24.5.5 Gibbs free energy

The meaning of the Van der Waals isotherms at low temperatures can be better understood
by considering the dependence of the molar Gibbs free energy g on the pressure p at constant
temperature (see the Fig. 23.2 of § 23.1).
We consider here, in Fig. 24.7, the liquid and vapour phases.
Experimentally (left) the line a− b corresponds to the liquid phase, the line f − g corresponds to
the vapour phase. The dashed lines correspond to the metastable phases of the superheated liquid
(b− c) and of the supersaturated vapour (e− f).
For the Van der Waals isotherms (fright) the line c− d− e is present too.

Considerations on stability

The isothermal compressibility

χT = −1

v

(
∂v

∂p

)
T

= −1

v

(
∂2g

∂p2

)
T

(24.41)

– is positive, χT > 0, for stable or metastable states
lines (a− b− c) and (e− f − g) in Fig. 24.6 and Fig. 24.7

– is negative, χT < 0, for unstable states
line (c− d− e) in Fig. 24.6 and Fig. 24.7

Connection between theory and experiment

The Van der Waals theory doesn’t provide the saturated vapour pressure at a given temperature
(given by the experimental isobaric dashed line in Fig. 24.6, right).
The position of the isobaric line can be determined, in the Van der Waals theory, from considera-
tions on the Gibbs free energy. As a matter of fact, from the relation

dg = −s dT + v dp (24.42)

one deduces that for any isotherm line

∆g =

∫ 2

1

v dp . (24.43)

On the closed path b − c − d − e − f − d − b in Fig. 24.6 the variation of any function of state is
zero, so that

∆g =

∮
v dp = 0 . (24.44)
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As a consequence, the areas of the two regions enclosed by the curves (b−c−d−b) and (d−e−f−d)
must be equal. Otherwise stated, once a Van der Waals isotherm has been calculated, the isobaric
line of liquid–vapour equilibrium is univocally determined by the condition (24.44).

24.5.6 The critical state

Let us rewrite the equation of the Van der Waals (24.28) isotherms in the form

pv3 − (bp+RT ) v2 + a v − ab = 0 . (24.45)

If a pressure value p = p0 is imposed, the left member of (24.45) becomes a polynomial of third
degree in the variable v. Th third-degree polynomial has thee real roots, distinct or coincident,
corresponding to the intersections of the Van der Waals isotherms with the isobaric line p = p0.
For the high-temperature isotherms, the polynomial has one single root v0 for any value of pressure
p0.
For the low-temperature isotherms, values of pressure p0 exist for which the polynomial has three
distinct roots, v1, v2, v3. As it was seen above, it is experimentally consistent the value p0 that
fulfils equation (24.44).
When the temperature increases, the three roots v1, v2, v3 move closer and, at the critical temper-
ature Tcr, become coincident. Equation (24.45) becomes, at the critical temperature,

pcr (v − vcr)
3 = 0 , (24.46)

where pcr is the corresponding critical temperature.
Let us now rewrite (24.45) with p = pcr and T = Tcr and compare it with the expansion of (24.46):

pcr v
3 − (bpcr +RTcr) v

2 + a v − ab = 0 ,
pcr v

3 − 3pcrvcr v
2 + 3pcrv

2
crv − pcrv

3
cr = 0 .

(24.47)

By equating the coefficients of the corresponding terms, one obtains the critical values of molar
volume, pressure and temperature as functions of the Van der Waals parameters a, b:

vcr = 3b , pcr =
a

27b2
, Tcr =

8a

27Rb
(24.48)

The same result can be obtained by imposing an inflection point to the critical isotherm at the
critical point, (

∂p

∂v

)
T

= 0 ,

(
∂2p

∂v2

)
T

= 0 , (24.49)

where the pressure p is given by (24.40).

The Van der Waals theory can thus foresee the existence of the critical point.
According to the Van der Waals theory (24.48) holds, from which the critical values are connected
by the relation

RTcr

pcrvcr
= Kcr = 2.67 , (24.50)

where the Kcr constant is called critical coefficient. Experimentally, values of Kcr larger that the
theoretical are obtained, for example 3.03 for H2 and 4.49 for CO2.

Law of corresponding states

The qualitative behaviour of the Van der Waals isotherms is equal for all real gases. The parameters
a and b appearing in (24.28) are different for different gases.
One can eliminate the parameters a and b from the Van der Waals equation by introducing the
three reduced parameters:

π =
p

pcr
, ω =

v

vcr
, τ =

T

Tcr
. (24.51)
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By substituting p = πpcr, v = ωvcr, T = τTcr in the Van der Waals equation(24.28), one obtains(
πpcr +

a

ω2v2
cr

)
(ωvcr − b) = Rτ Tcr . (24.52)

By further substituting the values pcr, vcr, Tcr of (24.48) one obtains the reduced equation of state,
approximately valid for all real gases:(

π +
3

ω2

) (
ω − 1

3

)
=

8

3
τ . (24.53)

24.5.7 Thermodynamical properties of the Van der Waals gas

Internal energy

The differential of the molar internal energy as a function of temperature T and volume V is:

du = T ds− p dv = T

(
∂s

∂T

)
v

dT + T

(
∂s

∂v

)
T

dv − p dv

= cv dT +

[
T

(
∂p

∂T

)
v

− p
]
dv (24.54)

For the ideal gas,

p =
RT

v
;

(
∂p

∂T

)
v

=
R

v
=
p

T
(24.55)

so that (24.54) becomes
du = cv dT . (24.56)

The internal energy only depends on temperature.

For a Van der Waals gas

p =
RT

v − b
− a

v2
;

(
∂p

∂T

)
v

=
R

v − b
(24.57)

so that (24.54) becomes

du = cv dT +

[
TR

v − b
− p
]
dv = cv dT +

a

v2
dv . (24.58)

For a Van der Waals gas the internal energy depends on volume too, because the intensity of
the attraction forces depends on volume: when the molar volume increases, the average distances
between the molecules increase and the interaction potential energy increases.

Joule effect: free expansion

Let us consider the free expansion introduced in § 10.4.
IAccording to (24.54), the Joule coefficient is

η =

(
∂T

∂v

)
u

= − 1

cv

[
T

(
∂p

∂T

)
v

− p
]

(24.59)

For the ideal gas, taking into account (24.55), one obtains

η = 0 . (24.60)

For a Van der Waals gas, taking into account (24.57), one obtains

η = − 1

cv

a

v2
< 0 ; (24.61)

the Joule free expansion always gives rise to a cooling of a Van der Waals gas. Actually, when the
volume increases at constant internal energy, the potential energy increases, so that the average
kinetic energy, which is connected to the temperature, must decrease.
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Enthalpy

The differential of the molar enthalpy as a function of T and p is

dh = T ds+ v dp = T

(
∂s

∂T

)
p

dT + T

(
∂s

∂p

)
T

dp+ v dp

= cp dT −

[
T

(
∂v

∂T

)
p

− v

]
dp . (24.62)

Effetto Joule-Thomson

Let consider the Joule-Thomson expansion, introduced in § 10.5.
According to (24.62), the Joule-Thomson coefficient is

µJ =

(
∂T

∂p

)
h

=
1

cp

[
T

(
∂v

∂T

)
p

− v

]
(24.63)

For the ideal gas, taking into account the equation of state, one can easily verify that µJ = 0.

Let us now consider a Van der Waals gas. Since it is difficult to calculate the derivative of v with
respect to T for the Van der Waals equation, it is convenient to substitute, using the identity
(7.51), (

∂v

∂T

)
p

= −
(
∂v

∂p

)
T

(
∂p

∂T

)
v

(24.64)

and express the Joule-Thomson coefficient as

µJ = − 1

cp

T

(
∂p

∂T

)
v

+ v

(
∂p

∂v

)
T(

∂p

∂v

)
T

. (24.65)

By substituting, in the denominator of (24.65),(
∂p

∂T

)
v

=
R

v − b
,

(
∂p

∂v

)
T

= − RT

(v − b)2
+

2a

v3
(24.66)

and approximating the derivative in the denominator with the ideal gas expression(
∂p

∂v

)
T

' −RT
v2

(24.67)

one obtains

µJ ' 1

cp

v2

RT

[
RT

v − b
− RTv

(v − b)2
+

2a

v2

]
' 1

cp

[
2a

RT
+

v2

v − b
− v3

(v − b)2

]
' 1

cp

[
2a

RT
− b
]
. (24.68)

From (24.68) one can conclude that

– if 2a/RT > b the expansion causes cooling

– if 2a/RT < b the expansion causes heating

Lt us consider two limiting cases, in the rigid spheres approximation:
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1. Dimensionless molecules, that is b = 0; the Joule-Thomson expansion causes cooling: µJ '
2a/cpRT .

2. Absence of inter-molecular forces, that is a = 0; the Joule-Thomson expansion causes heat-
ing: µJ ' −b/cp.
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Chapter 25

Many-components systems

In § 23.2, to evaluate the maximum number of phases that can coexist in one-component systems,
we introduced the Gibbs phase rule (23.11)

f = 2− (φ− 1) cioè f = 3− φ , (25.1)

where f is the number of free variables, 2 are the available variables (typically T and p), φ is the
number of coexistent phases.
For a system with c components where no chemical reactions take place, the phase rule becomes
(23.12)

f = 2 + cφ− c(φ− 1)− φ , that is f = 2 + c− φ (25.2)

In this chapter we will study in more detail the problem of phase equilibrium for systems containing
more than one component.
We will start with some simple systems (§ 25.1). We will then give a demonstration of the Gibbs
phase rule for systems where no chemical reactions take place (§ 25.2).
At last, we will deal in more detail with two-components solid systems (§ 25.3).

25.1 Examples

Let us start, as in § 23.2, from the general expression

(free variables) = (available variables) − (constraints) , (25.3)

and see how this expression suits to some significant cases.

Example 1

Let us consider a system containing c=4 components that form a single phase, φ=1, and in which
no chemical reactions take place.
The available variables are:

> the two state variables p, T

> the c=4 values of the molar fractions xi of the four components

The unique constraint is represented by the sum over the molar fractions,
∑
xi = 1.

Therefore the number of free variables (degrees of freedom) is

f = 2 + 4− 1 = 5 . (25.4)

Temperature, pressure and three of the four molar fractions can be arbitrarily varied.

319
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Example 2

Let us again consider, as in the Example 1, a system containing c=4 components that form a single
phase, φ=1. Let us however suppose that the following chemical reaction can take place

− ν1A1 − ν2A2 ⇀↽ ν3A3 + ν4A4 , (25.5)

where Ai are the chemical species and νi are the stoichiometric coefficients, according to the
nomenclature of § 11.4.
The chemical equilibrium requires that (11.53) is fulfilled:∑

i

µiνi = 0 , (25.6)

where µk are the chemical potentials of the four components.
Equation (25.6) represents a further constraint on the system, in addition to the constraint already
considered in Example 1.
Therefore the number of free variables (degrees of freedom) is now

f = 2 + 4− 2 = 4 . (25.7)

Example 3

Let us now consider a system containing c=3 components that form φ=2 phases, and in which no
chemical reactions take place. The available variables are:

> the two state variables p, T

> the c × φ=6 values of the molar fractions of the three components in each one of the two
phases

There are 5 constraint equations:

> φ=2 constraints on the molar fractions of the three components,
∑
xi = 1, in each one of

the two phases

> 3=c(φ − 1) equations of equilibrium between the φ=2 phases for each one of the c=3 com-
ponents

Therefore the number of free variables (degrees of freedom) is

f = 2 + cφ− φ− c(φ− 1) = 2 + 6− 2− 3 = 3 (25.8)

25.2 Demonstration of the phase rule

We give now a general demonstration of the phase rule (25.2) for a many-component closed system
in which no chemical reactions take place.

25.2.1 Total number of variables

The calculation of the total number of variables is relatively simple, as shown by the previous
examples. For a system with c components forming a number φ of phases, the total number of
variables is 2 + cφ:

> 2 are the state variables p, T

> cφ are the values of the molar fractions of the c components in each one of the φ phases

25.2.2 Number of constraints

The evaluation of the number of constraints is more complicated, and is based on two distinct
considerations.
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1.

The equilibrium condition for a system maintained at constant temperature and pressure (dT =
0, dp = 0) is characterised by the minimum of the Gibbs free energy, that is, according to (8.45),
by

dG =
∑
k

µαkdn
α
k +

∑
k

µβkdn
β
k + . . .

∑
k

µφkdn
φ
k = 0 , (25.9)

where each sum concerns a different phase (α, β, . . .) and the index k labels the different compo-
nents.
The differentials dnk in (25.9) cannot have arbitrary values. The amounts of each component can
be exchanged by the different phases but cannot vary in the entire closed system. There are thus
c constraints on the differentials dn:∑

fasi

dn1 = 0 ,
∑
fasi

dn2 = 0 , . . .
∑
fasi

dnc = 0 . (25.10)

The problem of constrained minimum for the Gibbs function can be solved by the method of
Lagrange multipliers. The c equations (25.10), each one multiplied by a different factor λk, are
summed to (25.9). By this procedure, the differentials dnk become independent. One easily finds
that the equilibrium condition is expressed by the c equations:

−λ1 = µα1 = µβ1 = . . . = µφ1

−λ2 = µα2 = µβ2 = . . . = µφ2
. . .

−λc = µαc = µβc = . . . = µφc (25.11)

According to the equations (25.11), in an equilibrium state the chemical potentials of each one of
the c components are equal in the different phases. Each one of the c equations (25.11) contains
φ − 1 equalities. Therefore, the condition that the Gibbs function be minimum, gives rise to a
number c (φ− 1) of constraints.

2.

A further number of constraints is due to the fact that the system characteristics cannot change if
the number of moles of each one of the c components is multiplied by a scale factor within a single
phase.
There are thus φ equations (one for each phase)∑

k

xαk = 1 ,
∑
k

xβk = 1 , . . .
∑
k

xφk = 1 , (25.12)

where xk are the molar fractions of the k component within each phase. The condition on the
scale factors gives rise to a number of I φ constraints.

25.2.3 Final results

In conclusion, for a closed system with c components and φ phases, where no chemical reactions
take place, the number f of free variables is, as anticipated in (23.12),

f = 2 + cφ︸ ︷︷ ︸
total variables

−c(φ− 1)− φ︸ ︷︷ ︸
constraints

that is f = 2 + c− φ . (25.13)

Note: If chemical reactions take place, the number of constraints increases. The treatment of
chemical reactions is however in general far from trivial, and will be not considered here.
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25.3 Two-components solid systems

Let us now study in more detail the case, already briefly considered in § 22.6, of systems with c = 2
components, that will be identified as A and B. We will consider the important case of binary
solid systems, such as the metal alloys, for example steel (alloy iron–carbon).
For a two-components system the phase rule (25.13) reduces to f = 4− φ.
The maximum number of free variables f is 3, when only one phase exists, so that φ=1. When
only one phase exists, the independent variables are the temperature T , the pressure p and the
molar fraction of one of the two components, for example xA.

25.3.1 Enthalpy, entropy and Gibbs function

To understand the behaviour of the two-components solid systems, it is necessary to study the
role of the enthalpy H, of the entropy S and of the Gibbs function G, whose molar amounts are
connected by the relation

g = h − Ts . (25.14)

In this § 25.3.1 we consider simple systems maintained at constant temperature T and pressure p,
so that the only free variable is the molar fraction of one of the two components, for example xA
(obviously xB = 1− xA).
The behaviour of the two-components solid systems depends on the relation between the three
possible pair interactions between the constituents: AA, BB and AB. We have thus to consider
three possible cases. For each case, we will consider the graphs of h, s, g as a function of the molar
fraction xA, variable from 0 to 1.

h s g

0 1 0 1 0 1 xA

0 1 0 1

+

+

=

smxAsA + xBsB

sB

sA

hB

hA

xA

Figure 25.1: Bottom row: behavior of the three functions h, s, and g as a function of the molar
fraction xA for an ideal binary solid solution maintained at constant temperature and pressure. In
the top row the two contributions to the entropy are separated.

Case 1 - Ideal solution: equal AA, BB and CC interactions.

If the different interactions are of equal force, the molar enthalpy h − u + pv linearly depends on
concentration (Fig. 25.1, bottom left):

h = xAhA + xBhB = hB + (hA − hB)xA . (25.15)

The molar entropy is the sum of two contributions (Fig. 25.1, top): the weighted sum of the
entropies of the components, that linearly depends on concentration, and the entropy of mixing
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0

h s g

0 01 1 1 xA

Figure 25.2: Behaviour of the three quantities h, s, and g as a function of the molar fraction xA for
a solid binary solution, maintained at constant temperature and pressure, for which the interaction
AB is stronger than the interactions AA e BB. The dashed lines correspond to the behaviour of
an ideal solution.

sm, that is zero for xA = 0 and for xA = 1:

s = xAsA + xBsB + sm

= sB + (sA − sB), xA − R (xA lnxA + xB lnxB) (25.16)

The resulting behaviour of the molar entropy is shown in Fig. 25.1, bottom center.

The molar Gibbs free energy, g = h− Ts, is represented by an upward concave (Fig. 25.1, bottom
right).

Note: The expression (25.16) of the molar entropy of mixing corresponds to the expression (11.21)
for the mixing of ideal gases (§ 11.2). The expression for ideal gases is valid also for the ideal
solutions, and is a satisfactory approximation for the non-ideal solutions considered below.

Case 2 - Non-ideal solution, with AB interaction stronger than AA and BB.

If the interaction AB between different components is stronger than the interactions AA and BB
between equal components, the functions h, s and g exhibit the behaviour of Fig. 25.2.
The behaviour of the molare enthalpy h = u + pv is different from the behaviour for an ideal
solution (dashed line): because of the stronger intensity of the interaction AB, the molar enthalpy
is smaller than for an ideal solution.
As a consequence, also the behaviour of the molar Gibbs free energy is different from the behaviour
of an ideal solution: the graph, even if qualitatively similar, is characterised by a deeper concavity.

h s g

0 0 01 1 1 XA

Figure 25.3: Behaviour of the three quantitiesh, s, and g as a function of the molar fraction xA for
a solid binary solution, maintained at constant temperature and pressure,for which the interaction
AB is weaker than the interactions AA e BB. The dashed lines correspond to the behaviour of
an ideal solution.

Case 3 - Non-ideal solution, with interaction AB weaker that AA and BB.

If the interaction AB between different components is weaker than the interactions AA and BB
between equal components, the typical behaviour of h and s is shown in Fig. 25.3, left and centre.
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Figure 25.4: Molar Gibbs function g for a binary solid solution, maintained at constant temperature
and pressure, for which the interaction AB is much weaker than the interactions AA and BB.

Due to the weaker AB interaction, the molar enthalpy is larger that the enthalpy of an ideal
solution: the mixture is energetically less convenient.
For sufficiently large deviations of the behaviour of h from linearity, the behaviour of the molar
Gibbs function can assume a shape such as the one of Fig. 25.3, right: the g function is characterised
by a maximum separated by two minima.
Let us better analyse in Fig. 25.4 the consequences of the peculiar behaviour of the molar Gibbs
function g.
Let xα and xβ be the concentrations corresponding to the two minima of the molar Gibbs function
g. For concentrations xA ≤ xα and xA ≥ xβ , the mixture is homogeneous as in the previous cases:
there is a unique phase.
The situation is more complicated in the intermediate region xα < xA < xβ . Let us consider a
generic concentration x0 in the intermediate region (Fig. 25.4, left). The corresponding value of
g is larger than the values of the two homogeneous phases of concentrations xα and xβ . For the
system it is energetically more convenient to split in two different phases of concentrations xα and
xβ , respectively.
The molar quantities of the two phases are given by the lever rule (Fig. 25.4, right):

nβ =
x0 − xβ
xβ − xα

n0 , nα =
x0 − xα
xβ − xα

n0 .1b (25.17)

There are thus two phases, φ=2, of fixed composition. According to the phase rule, since temper-
ature and pressure are fixed, the number of free variables is zero.

25.3.2 Influence of temperature

Up to now, we only considered the effect on the molar Gibbs function g of the concentration, at
constant temperature and pressure. We want now to inquire on the effect of temperature variations,
still maintaining a constant pressure. Let us again consider a mixture of two components A and
B, and suppose that at sufficiently low temperatures the solid solution can exhibit two different
phases, α and β, while at sufficiently high temperatures the mixture is a homogeneous liquid.
Fig. 25.5 shows the graphs of the molar Gibbs free energy g as a function of concentration xA at
different temperatures.

A.
At sufficiently high temperature, T4 in Fig. 25.5, the free energy g of the liquid phase L is smaller
that the free energies of the two solid phases α and β for all values of concentration xA.
There is only the liquid phase for each value xA. According to the phase rule, the number of free
variables is f = 4− φ = 3. Since the pressure is maintained constant, the number of free variables
reduces to f ′ = 2, temperature and concentration xA.

B.
At the temperature T3 in Fig. 25.5, the situation is more complicated. For different values of xA
the system exhibits two mono-phasic cristalline regions (α and β), a mono-phasic liquid region (L)
and two two-phasic regions (Lα and Lβ).
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Figure 25.5: Molar Gibbs free energy g for a binary mixture AB at different temperatures (de-
creasing from left to right). The liquid phase L is represented by a black curve, the solid phases α
and β are represented by red curves.

In the mono-phasic regions the free are f ′ = 2: temperature T and concentration xA.
In the two-phasic regions, f ′ = 1, there is only one free variable, the temperature.

C.
At the temperature T2 = TE in Fig. 25.5, for different values of xA the system exhibits two
cristalline mono-phasic regions (α and β) and one three-phasic region, in which the two crystalline
phases coexist with the liquid phase.
In the three-phasic region, f ′ = 0, there are no free variables, the temperature is uniquely deter-
mined. The temperature TE at which the three phases coexist is caled “eutectic” (from the Greek
“eu-tektos” = well melted).

D.
At sufficiently low temperatures (T1 in Fig. 25.5), only the solid phases are present, the free energy
of the liquid phase being larger in the entire range of concentration.
In two concentration ranges the single phases α and β are present, in the central range the two
solid phases coexist.

25.3.3 Diagrammi di stato

As it was shown above, for a two-components systemAB maintained at constant pressure the
maximum number of free variables is two, that is the temperature T and the concentration xA.
Therefore, the state diagrams can be drawn with concentration xA in abscissa and temperature T
in ordinate. Fig. 25.6 shows a possible state diagram for the binary mixture AB considered above.
The pressure is considered constant.
The diagram includes:

- Three mono-phasic regions, the liquid phase L and the two solid phases α and β,
in which there are two free variables, temperature T and concentration xA (pressure is fixed).

- Three regions of coexistence of two phases, α− L, β − L and α− β,
in which there is only one free variable, the temperature; for different values of xA the relative
proportions of the two phases in each region are determined by the lever rule.

- A line, at the eutectic temperature TE , corresponding to the coexistence of the three phases
L, α and β.
In the eutectic state there are no free variables. The temperature is fixed. For different values
of xA the relative proportions of the three phases are uniquely determined.

It is interesting to study the process of solidification of a binary alloy such as the one represented
in Fig. 25.6. Starting from the liquid phase and decreasing the temperature, the phase transition
to the solid phase doesn’t take place at a well determined temperature. The system first enters
in a region of liquid–solid coexistence (for example α+ L), and at the temperature TE also the β
phase appears.
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Figure 25.6: Temperature.vs.concentration phase diagram for a binary mixture AB for which two
solid phases α and β and the liquid phase L are possible.

Example

A simple example of binary solid solution is given by brass, an alloy formed by copper Cu and zinc
Zn. The phase diagram of the Cu-Zn alloy is shown in Fig. 25.7.
For different values of temperature and of pressure, different phases can form: the high-temperature
liquid phase or single crystalline phases of different structure (α, β, γ, δ). In some regions of the
diagram, two phases can coexist, both crystalline or one crystalline and one liquid.
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Chapter 26

Non-crystalline solids. The glass
transition

In § 22.4 we mentioned the possibility that some solid substances are not characterised by the micro-
scopic crystalline structure. Such substances are classified as non-crystalline solids or amorphous
solids.
Among crystalline solids, particularly relevant from the thermodynamical point of view are the
glasses, that are formed when a liquid is so fast cooled that the formation of a regular crystalline
structure is prevented by the high value of viscosity.
In this chapter the difference between crystalline and non-crystalline solids is studied in some detail
(§ 26.1); the attention is then focused on glasses and on the phenomenological aspects of the glass
transition which takes place when a cooled liquid transforms to a glass (§ 26.2).
The glass transitions exhibits some peculiar thermodynamical characteristics, that are studied in
§ 26.3; in particular, the difference between system in stable and metastable equilibrium and out
of equilibrium will be stressed, and the thermal and configurational contributions to the system
entropy will be singled out.

26.1 Microscopic structure of solids

At the atmospheric pressure, all substances (excepted helium) at sufficiently low temperatures are
solid, that is characterised by well defined volume and shape.
The great variety of possible interatomic interactions for different substances gives rise to different
microscopic structures.
From the thermodynamical point of view, the stable equilibrium state is characterised by

1. minimum of the Gibbs free energy G = U + pV − TS for a system maintained at constant
temperature T and pressure p;

2. minimum of the Helmholtz free energy F = U − TS for a system maintained at constant
temperature T and volume V .

Therefore, the condition of stable equilibrium at T = 0 is the minimum of the enthalpy H = U+pV
or of the internal energy U .

26.1.1 Crystalline solids

Thermodynamical considerations lead to the conclusion that the stable equilibrium state of solids
at T = 0 corresponds to a microscopic crystalline structure, characterised by a long-range geomet-
rically ordered arrangement of atoms (Fig. 26.1). Actually, the minimum value of the energy (or
of the enthalpy) of an enire system require that the energy (or the enthalpy) be minimum in all
its constituent part. The possibility that any part of a solid system be in the same state of stable
equilibrium can only be guaranteed by the presence of a long-range crystalline order.

327
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Figure 26.1: A crystal structure (on the right) is made by a regular lattice of points (such as the
one on the left) and a base of atoms (such as the one in centre) repeated at each lattice point.
There are 14 different types of lattices, differing for their symmetry properties. A base can be
made by a single atom or by a larger number of atoms (up to some thousands, as in the case of
protein crystals).

Note: The crystal structure of a solid refers to the average positions of the atoms, around which
the atoms oscillate as a consequence of the zero point quantum energy and of the thermal
vibrations. It has to be anyway noted that crystals with a perfect average structure don’t
exist; the presence of defects (vacancies, interstitials, dislocations, stoichiometric defect) is
unavoidable, if it were not for statistical reasons.

In § 22.4 we have seen that some crystals can assume and maintain equilibrium states that don’t
correspond to the absolute minimum of the free energy. These metastable states correspond to
relative minima of the free energy. A typical example is carbon, whose stable state at ambient
temperature and pressure is graphite, while diamond is a metastable phase.

26.1.2 Non-crystalline solids

Solids without a microscopic crystalline structure can be found in nature (for example the solid-
ified volcanic lava) or can per artificially produced (for example glasses, amorphous metal alloys,
amorphous semiconductors). In non-crystalline solids, often called amorphous solids, there is no
long-range order.
From the thermodynamical standpoint, non-crystalline solids correspond to non-equilibrium states,
that can be maintained for extremely long times at relatively low temperatures. A short introduc-
tion to non-crystalline solids has already been made in § 22.4.

Production methods

To obtain a non-crystalline solid, the production methods must prevent the attainment of a ther-
modynamic equilibrium state (crystalline at the microscopic level). A number of substances, such
as silica SiO2 or germanium Ge, can assume both the crystalline and the non-crystalline forms.
The choice between the crystalline and the non-crystalline forms is influenced by a number of
factors, such as the type of chemical bond and the velocity of the formation process.

The preparation methods can be classified in three main categories; starting point can be a disor-
dered phase (liquid or gaseous) or an ordered crystalline phase.

1. Fast cooling of a liquid phase.
The formation of a cristalline phase at the solidification temperature requires the birth of
small crystalline nuclei and their progressive growth. However, when the liquid phase is
progressively cooled, its viscosity progressively increases. If the cooling process is sufficiently
fast, the atomic kinetics that gives rise to the processes of nucleation and growth is hindered
by the increasing viscosity, so that the liquid can become undercooled and at last frozen in
a solid disordered structure (the glass structure).
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2. Vapour condensation of a cold surface.
Atoms of an element or of a mixture of elements, present as a vapour, can be deposited on a
solid substrate maintained at a sufficiently low temperature to prevent the formation of an
ordered crystalline structure. By this procedure, thin non-crystalline films (amorphous films)
can be obtained. If the substrate temperature is instead sufficiently high and the deposition
velocity sufficiently low, a crystalline film can be formed.
Different methods have been devised to obtain the vapours to be deposited from solid sources:
from the heating by Joule effect to the bombardment with ion beams (“sputtering”).

3. Introduction of disorder in a crystalline phase.
The creation of an amorphous structure in an initially crystalline solid can be obtained by
different methods, for example by collision of ions or fast neutrons (“radiation damage”), by
mechanical friction, by shock waves.

Influence of the chemical bond

Although no rigorous rule exist, some general considerations can be made on the relation between
the type of chemical bond and the easiness to solidification in a non-crystalline structure.

The non-directional bonds (such as the metallic bond) represent a very weak constraint for the
kinetics of atomic rearrangement, so that the liquids of materials with isotropic bonds become
crystalline very easily even if the cooling velocity is high.

Viceversa, the directional covalent bonds represent an effective constraint for the atomic rearrange-
ment necessary for the crystallisation of a liquid. Therefore the liquids with covalent bonds require
reduced cooling velocity in order to crystallise, and can give rise to non-crystalline solids even for
relatively low cooling velocities.

26.1.3 Glasses

Glasses are non-crystalline solids obtained from a liquid phase through a peculiar process called
glass transition.

If the cooling process is sufficiently fast (the speed depends on the type of material), the liquid of a
glass-forming substance can be cooled below the solidification temperature Tm, avoiding crystalli-
sation and becoming a supercooled liquid. If the supercooled liquid is further cooled, its viscosity
progressively increases and definitively prevents crystallisation. When the viscosity reaches the
typical value of 1013 poise (1 poise = 0.1 N s/m−2), the substance is frozen in a state of thermo-
dynamic non-equilibrium, in which it maintains the topological microscopic disorder of the liquid
but appears as a solid from the macroscopic point of view.

Note: The dynamic viscosity of a liquid is defined as follows. Let us consider a layer of a fluid in-
cluded between two parallel horizontal planes moving in the horizontal x direction at constant
but different velocities. The horizontal shear foce per unit area A to be applied in order to
maintain the relative motion of the two planes can be expressed as

F

A
= η

dvx
dz

, (26.1)

where dvx/dz is the vertical gradient of the horizontal velocity and η is the viscosity coefficient,
measured in N s m−2. The old cgs unit poise is frequently used too: 1 poise = 0.1 N s m−2.

In § 26.2 the phenomenology of the glass transition will be described. In § 26.3 the peculiar ther-
modynamical aspects of the glass transition will be considered.

Here below same examples of non-crystalline solids are presented.

Oxide glasses

A number of oxides can easily form glasses. Among the different oxides one can distinguish
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- glass formers oxides, such as silica SiO2 or boron oxide B2O3, that can form glasses by
themselves,

- modifier oxides, such as Na2O, that can be added to the former oxides in order to modify
the chemical and physical properties of the resulting glass.

Let us consider two important oxide glasses.

1. Silica SiO2 is perhaps the most common glass former.
Silica can exhibit a number of crystal structures (α and β quartz, α and β tridimite, etc).
All crystal structure are based on regular tetrahedra Si–O4 joined at the corners in different
configurations. Each silicon atom is coordinated to four oxygen atoms nearest neighbours
and each oxygen atom is coordinated to two silicon atoms nearest neighbours.
In the glassy state, the structure of silica is again based on Si–O4 tetrahedra connected at the
corners. However, the tetrahedra are not perfectly regular and are randomly connected. The
glass structure is generally represented as a continuous random network (CRN, see Fig. 26.2).
Silica SiO2 is the main component of many commercial glasses, from windowpanes to bottles.
The glass transition temperature of the pure silica is quite high, about 1500 K. To reduce
the transition temperature as well as to improve the time duration of the glass properties,
modifier oxides are added, such as Na2O, CaO, etc. A typical composition of a commercial
glass could be: 70 SiO2, 20 Na2O,10 CaO.

Figure 26.2: Two-dimensional schematic representation of the crystal structure of silica SiO2 (left),
of a continuous random network (CRN) of silica in the glassy state (centre) and of the modified
continuous random network of the glass SiO2-Na2O (right).

2. Boron oxide B2O3, already considered in § 22.4, is probably the most effective glass former
oxide. Actually, it is very difficult to obtain boron oxide B2O3 in crystalline form.
In the glassy structure of boron oxide, each boron atom is coordinated to three oxygen atoms
nearest neighbours and each oxygen atom is coordinate to two boron atoms nearest neigh-
bours. Often the BO3 triangles, joined at the corners, give rise to hexagonal rings, called
boroxol rings.
Boro-silicate glasses, containing both boron and silicon oxides, are characterised by a small
coefficient of thermal expansion and are thus used to produce instrumentation for chem-
istry laboratories as well as heat-resistant kitchenware. A typical composition is: 80.6 SiO2,
12.6 B2O3, 4.2 Na2O, 2.2 Al2O3, 0.04 Fe2O3, 0.1 CaO, 0.05 MgO, 0.1 Cl.

Metal glasses

The first metal glasses have been obtained as a thin ribbon in 1960 by very the fast cooling (about
106 K/s) of a Au75Si25 alloy. A very fast cooling is necessary in order to prevent the formation of a
crystal structure, that is facilitated by the isotropy of the metal bond. The presence of two different
metals in the alloy slows down the crystallisation process and facilitates the glass formation.
In the subsequent years, new glassy alloys have been produced, the cooling speeds have been
reduced in some cases down to 1 K/s and now some bulk metallic glasses(BMG) are available too;
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Figure 26.3: X-ray powder diffraction patterns of crystalline silica SiO2 (centre) and silica glass
(right). The quantity in abscissa is the modulus of the scattering vector K = 4π sin θ/λ, where θ
is the angle of incidence of the X-rays on the sample and λ is the X-ray wavelength (different for
the two patterns).

in general, the presence in an alloy of a large number of atomic species favours a sort of “confusion
effect”, that hinders the formation of a regular crystalline structure.

Amorphous metals can be obtained also by vapour deposition (always through fast cooling) or by
bombardment of crystalline samples.

Among the possible advantages of amorphous metals there is the absence of micro-crystals and of
interstitials between the micro-crystals, which guarantees a better resistance to corrosion.

26.1.4 Amorphous semiconductors

Non-crystalline solids are classified as glasses when characterised by the glass transition (§ 26.2).
Not all non-crystalline solids can be classified as glasses. A relevant example is given by amorphous
semiconductors, such as amorphous silicon, a-Si, and amorphous germanium, a-Ge. The production
of amorphous semiconductors is generally based on vapour deposition. The extent of structural
disorder so obtained depends on the substrate temperature; a relatively high temperature facilitates
the movements of adsorbed atoms and the formation of crystalline structures.

26.1.5 Experimental information of the structure

The macroscopic distinction between a crystalline and a non-crystalline solid is made possible by
the diffraction of X-rays (or of neutrons).

In Fig. 26.3 the diffraction patterns of crystalline and amorphous silica are compared.

The diffraction patterns of crystals are characterised by very sharp intensity peaks (Bragg peaks),
due to the interference of the X-rays scattered by the atoms arranged in a regular lattice structure.
The degree of crystallinity of a sample is measured by the presence and intensity Bragg peaks.

In diffraction patterns of non-crystalline solids, such as glasses, Bragg peaks are absent, substituted
by broad continuous structures.

For crystalline solids, a suitable analysis of Bragg peaks generally allows the reconstruction of the
three-dimensional structure (lattice + base).

For non-crystalline solids (and for liquids) the analysis of diffraction patterns only allows a unidi-
mensional statistical description of the structure in terms of a radial distribution function (RDF)
of the inter-atomic distances (Fig. 26.4).

It has anyway to be noticed that in non-crystalline solids, even if long-range order is lacking, some
sort of short-range order is always present. The short-range corresponds to the correlation between
nearest-neighbour atoms, caused by the bond directionality in covalent structures or by the close
packing in metallic structures. The short-rage order is responsible for the first peak in the radial
distribution function (Fig. 26.4, left). The structures of the RDF beyond the first peak are due to
possible medium-range correlations.
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Figure 26.4: Left: a typical radial distribution function (RDF) obtained from the analysis of the
diffraction spectrum of a non-crystalline sample; the dashed line corresponds to 4πr2ρ, where ρ is
the average density of the substance. The RDF function measures the average density fluctuations
in the environment of each atom due to the presence of the other atoms (two-dimensional projection
on the right).

26.2 Phenomenology of the glass transition

The glass transition, that is the transition from the liquid state to the glassy state, exhibits
experimental characteristics well distinguished from those of the first-order transition from the
liquid state to the crystalline state.

In Fig. 26.5 the main differences between the glass transition an the transition to the crystal state
are schematically summarised; the attention is focused on the dependence on temperature of the
volume V , of the enthalpy H and on their first derivatives.

Let us start from the liquid phase and progressively decrease the temperature (from right to left
in ig. 26.5).

First-order liquid→crystal transition

If the cooling speed is sufficiently low, the liquid phase transforms to the solid crystalline phase
at the solidification (melting) temperature Tm. It is a first-order phase transition (§ 23.4) between
two phases in thermodynamical equilibrium, represented by dashed lines in Fig. 26.5.
The volume V undergoes a discontinuity at the temperature Tm (corresponding to a decrease
of volume for most substances), to which a divergence of the thermal expansion coefficient β
corresponds.
Also the enthalpy H undergoes a discontinuity at the temperature Tm; the variation ∆H corre-
sponds to the latent heat, that is to the heat emitted y the substance in passing from the liquid
to the solid state. To the discontinuity of H it corresponds a divergence of the heat capacity Cp.

Glass transition

If the cooling speed is sufficiently high, the liquid can go across the temperature Tm without
solidifying. The undercooled liquid is in a state of metastable equilibrium: the V (T ) and H(T )
curves of the undercooled liquid are a continuation of the curves of liquid above Tm.
The decrease of the temperature is accompanied by an increase of the liquid viscosity (Fig. 26.6),
that progressively hinders the movement of the liquid molecules.
The glass transition from the undercooled liquid state to the glassy state takes place at the tem-
perature Tg, lower than the solidification temperature Tm. In correspondence of Tg, the volume V
and the enthalpy H don’t undergo any discontinuity (continuous lines in Fig. 26.5), but suddenly
reduce their slope with respect to temperature; in correspondence of Tg, the thermal expansion
coefficient β and the heat capacity Cp exhibit discontinuities.
The glass transition is characterised by the absence of the latent heat typical of first-order transi-
tions and corresponding to a strong modification of the microscopic structure.
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Figure 26.5: Schematic comparison between the glass transition (continuous lines) and the
liquid→crystal transition (dashed lines). The graphs have to be considered for decreasing temper-
ature (from right to left). Tg and Tm are the temperatures of glass transition and of solidification
(melting), respectively. Top: to the left the volume V , to the right the thermal expansion coef-
ficient β = (∂V/∂T )p/V . Bottom: to the left the enthalpy H, to the right the constant-pressure
heat capacity Cp = (∂H/∂T )p.

The discontinuity of the heat capacity (and of other response functions) at Tg attests anyway
that a substantial difference exists between the undercooled liquid state and the glassy state. The
discontinuous reduction of the specific heat at Tg suggests the following interpretation of the glass
transition. In the undercooled liquid state the mobility of the molecules is sufficiently high to allow
the storing of energy not only in the vibrations with respect to equilibrium positions but also in the
translational motion. The undercooled liquid is in a state of thermodynamical equilibrium, even if
metastable (below Tm the stable equilibrium state is the crystalline state). At the temperature Tg
the viscosity becomes sufficiently high to prevent the relative translational motion of molecules; in
the glass, the energy can only be stored in the local vibrational motion. The glassy state can be
considered as the state of a liquid frozen in a particular microscopic configuration, not univocally
defined; the glass state is thus not a state of thermodynamical equilibrium.

TmTg T!
Figure 26.6: Schematic behaviour of the viscosity η as a function of the temperature (notice that
the vertical axis is here down-directed). The dashed line refers to the liquid→crystal transition,
characterised by a sharp increase of viscosity. The continuous line refers to the glass transition.
The dotted line corresponds to the value 1013 poise.
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Glass transition interval

The glass transition temperature Tg is not uniquely defined for a given substance, as is instead
the solidification temperature Tm. Actually, the value of Tg depends on the cooling speed of the
initial liquid. The lower is the cooling speed, the lower is the transition temperature Tg from the
undercooled liquid state to the glassy state.

H Cp

TTmTg1 Tg2 Tg3 TTmTg1 Tg2 Tg3

Figure 26.7: Glass transition interval. Left: behaviour of the enthalpy H for three different values
of Tg (the behaviour of the volume is similar). Right: behaviour of the heat capacity.

The dependence on temperature of the enthalpy H (or of the volume V or of the viscosity η) is thus
to be represented as in Fig. 26.7. The glass transition interval is the interval between the minimum
and maximum values of Tg for which the glass transition can be experimentally observed.
The glass transition interval can be very different for different substances. Some examples are
listed in Table 26.1.

Substance Transition interval (K)

SiO2 1500-2000
Windowpane 800-820
B2O3 470-530
Se 302-308
Ethanol 90-96

Table 26.1: Glass transition interval (in kelvin) for selected substances.

26.3 Thermodynamics of the glass transition

The glassy state is a non-equilibrium thermodynamical state Actually, a glass can be in thermal and
mechanical equilibrium, so that its temperature T can be defined. The absence of thermodynamical
equilibrium concerns the configurational aspect, that is the fact that the spatial disposition of the
elementari constituents (atoms or molecules) is not uniquely determined and doesn’t correspond
to a minimum (absolute or relative) of the free energy.
The situation is for some respects similar to that encountered for chemical reactions, for which
a thermodynamical treatment is possible even if there is no chemical equilibrium, provided the
system is in thermal and mechanical equilibrium (§ 11.4). The progress of a chemical reactions has
been described in terms of the degree of advancement ξ and of the affinity A and it has been possible
to calculate the variations dS of entropy. Anticipating the language of the Thermodynamics of
irreversible processes (Part VI), one calculated the contribution diS = n0 (A/T ) dξ to the total
entropy variation due to the creation of entropy in an irreversible chemical reaction.
For glasses, the irreversible process of modification of the molecular configuration is slowed down
and practically frozen by the high viscosity of the system, so that even more so one can resort to
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the thermodynamical quantities defined for equilibrium states, such as entropy S and enthalpy H.

Comparison between the entropy of glass and crystal

Starting point for a better understanding of the glass Thermodynamics is the comparison between
the entropy of the glassy state and of the crystal state for a given substance.
Experimentally, the information can be obtained by measuring the heat capacity as a function
of temperature (Fig. 26.5, bottom right, and Fig. 26.8), from which one can recover the entropy
variations by means of the relation

dS =
Cp(T ) dT

T
= Cp(T ) d(lnT ) . (26.2)

Let us focus our attention on a substance that can solidify as a crystal or as a glass depending on
the cooling speed. Let us consider a temperature T ∗ at which the substance is in the liquid state
and calculate the entropy S(T ∗) of the liquid along two different paths which lead the substance
from the temperature T = 0 K to the temperature T = T ∗.

TTmTg

liquid

crystal
glass

Cp

Hm / Tm

Figure 26.8: Evaluation of the difference between the entropy of the glass and of the crystal
t zero kelvin from the measurement of the heat capacities. The horizontal temperature scale
has to be considered as logarithmic. The entropy difference corresponds to the grey regions.
The grey rectangle on the right represents the entropy variation due to the first-order transition
liquid→crystal, ∆S = Hm/Tm, where Hm is the latent heat of the transformation.

In the first case, at T = 0 K the substance is in the crystalline state, with entropy Sc0, and the
entropy at T ∗ can be calculated as:

S(T ∗) = Sc0 +

∫ Tm

0

Ccp
dT

T
+

Hm

Tm
+

∫ T∗

Tm

Cliqp
dT

T
. (26.3)

The entropy variation is the sum of three terms, due to three different processes: the heating of
the crystal up to he melting temperature Tm, the phase transition to the liquid phase with latent
heat Hm and the heating of the liquid from the melting temperature Tm fup to the temperature
T ∗.

In the second case, at T = 0 K the substance is in a glass state, with entropy Sv0 , there is no first-
order phase transition to the liquid state and therefore there is no contribution of latent heat to the
entropy variation. The entropy variation can again be considered as the sum of two contributions,
one below and one above the melting temperature Tm, taking however into account that below Tm
the heat capacity of the glass and of the superheated liquid Cvlp is different from the one of the
crystal. The entropy at T ∗ can thus be calculated as:

S(T ∗) = Sv0 +

∫ Tm

0

Cvlp
dT

T
+

∫ T∗

Tm

Cliqp
dT

T
. (26.4)
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By subtracting (26.3) from (26.4) one finds that the difference between the entropy of the glass
and of the crystal at T = 0 K is

Sv0 − Sc0 =
Hm

Tm
−
∫ Tm

0

(Cvlp − Ccp)
dT

T
. (26.5)

One finds experimentally that the difference (26.5) is larger than zero, Sv0 − Sc0 > 0. According to
the Third Principle (Chapter 20), at zero kelvin the entropy of crystals is zero or negligible. The
glass entropy is larger than the entropy of the crystal, thus it is larger than zero.

26.3.1 The excess entropy

The difference (26.5) between the glass and the crystal entropies is called “excess entropy”. Let us
inquire on the meaning of the excess entropy.

In the liquid state the entropy is the sum of two contributions:

1. a thermal contribution, due to the vibration of atoms with respect to their equilibrium
positions,

2. a configurational contribution, due to the mobility of atoms or molecules, that gives origin
to different possible microscopic configurations.

The transition to the crystalline state at the temperature Tm entails an abrupt reduction of the
entropy, connected to the latent heat of transformation by ∆S = Hm/Tm. Such an entropy reduc-
tion corresponds to the cancellation (or sometimes to a strong reduction) of the configurational
contribution in the transition from the liquid disordered structure to the crystal structure.
The heat capacity of the crystalline solid, only determined by the thermal (vibrational) contribution
is smaller than the heat capacity of the superheated liquid.

Between Tm and Tg the undercooled liquid maintains the configurational disorder of the liquid,
although progressively reduced, and its heat capacity remains significantly larger than the heat
capacity of the crystal. Therefore the entropy reduction of the undercooled liquid between Tm and
Tg is larger than the one of the crystal.

At the glass transition at Tg, the variable microscopic configuration of the undercooled liquid is
frozen viene congelata, so that the corresponding contribution to the entropy is strongly reduced.
The heat capacity of the glass is slightly larger than the heat capacity of the crystal, so that slightly
larger is its entropy reduction below the temperature Tg.

Globally, in going from the liquid state at high temperature to the solid state at T = 0 K, both the
crystal and the glass undergo a strong reduction of the configurational entropy, but at different
temperatures. The experimental result is however that at T = 0 K the entropy of the glass is larger
than the entropy of the crystal.
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Thermodynamics of irreversible
processes
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Chapter 27

Introduction to Thermodynamics
of irreversible processes

27.1 Equilibrium Thermodynamics, a remainder

Thermodynamical functions (temperature, internal energy, entropy) are defined only for system in
equilibrium states (Chapter 1.3). In macroscopic Thermodynamics, that has been studied in Parts
?? and II, particular relevance is assumed by reversible transformations, in which the thermody-
namical systems transform without friction through states that negligibly differ from equilibrium
states.

Spontaneous natural processes are actually irreversible, and in many cases cannot be approximated
by reversible transformations. However, also in the equilibrium Thermodynamics one can obtain
relevant pieces of information on irreversible processes, provided the initial and final states are
equilibrium states. In this § 27.1 some relevant results of the equilibrium Thermodynamics are
summarised.

Criteria of spontaneous evolution

For an isolated system, the fundamental principle of the macroscopic Thermodynamics represents
an evolution criterion: the irreversible transformation from an initial state of constrained equilib-
rium to a final state of non constrained equilibrium is characterised by an increase of the state
function entropy S (§ 5.3). The entropy variation ∆S between the initial and final states can be
calculated by integration along whichever reversible transformation connecting the initial and final
states (§ 4.4).

The evolution criterion can be recast in the energy representation (§ 6.3) as well as tailored to
different experimental situations making use of the different thermodynamical functions that can
be obtained through the Legendre transforms: internal energy, enthalpy, Helmholtz function, Gibbs
function (Chapters 7 and 8). Anyway, the evolution criteria for non isolated systems can be traced
back to the increase of the entropy of the thermodynamical universe, that is of the sum of the
system and of its environment.

It is worth noting that in the equilibrium Thermodynamics the time never explicitly appears.

Stability of thermodynamical equilibrium

A fundamental property of thermodynamical equilibrium is its intrinsic stability (§ 9.6). Anyway,
thermodynamical systems, even if isolated, are subject to local fluctuations of energy and density.
A peculiar property of thermodynamic equilibrium is that the fluctuations are always reabsorbed
by the system. Only fluctuations of very large extent can lead to instabilities and phase transitions
(§ 23.5).
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The stability of thermodynamical equilibrium is connected to the curvature of the thermodynamical
functions with respect to extensive or intensive variables (§ 9.6). In particular, the stability requires
the positivity of specific heats and of compressibilities.

Entropy variations: Gibbs formula

The entropy S is a function of state. Its differential dS is expressed by the Gibbs formula (6.10)

T dS = dU + p dV −
∑

µi dni , (27.1)

that has a great importance also in the Thermodynamics of irreversible processes. Let us recall
some simple applications of the Gibbs formula. Ricordiamo alcuni semplici esempi di applicazione
della formula di Gibbs.

Example 1: For a closed system where no chemical reactions or phase transitions take place,

T dS = dU + p dV = d̄Qrev . (27.2)

Example 2: For a one-component open system (§ 11.3),

T dS = dU + p dV − µdn = d̄Qrev + Ts dn . (27.3)

Example 3: For a closed system in whih chemical reactions take place (§ 11.4),

T dS = dU + p dV + n0Adξ = d̄Qrev + n0Adξ , (27.4)

where A is the affinity and ξ is its degree of advancement.

In the first two examples, the entropy variation of the system is connected to reversible exchanges
of heat and/or of molar enthalpy with the surroundings. In the third example, the variation of
entropy also depends on chemical processes taking place within the system; let us recall that a
chemical reaction can be thermodynamically described also in the absence of chemical equilibrium,
provided the thermal and mechanical equilibria are guaranteed (§ 11.4).

Note: The Gibbs formula (27.1) refers to a system described only by the extensive variables U, V, ni.
The formula can however easily tailored to systems which require further extensive variables
, such as magnetic, dielectric, elastic systems, and so on. For example, for a magnetic system
with one component the Gibbs formula can be obtained by inverting equation (17.10).

27.2 Macroscopic non-equilibrium Thermodynamics

In this Part VI we will study the possibility of a more detailed description of irreversible processes,
not limited to considerations based only on the initial and final equilibrium states.

Main aims of the Thermodynamics of irreversible processes are the following.

– To define evolution criteria, always based on the increase of entropy, for irreversible processes
in which one of the to state, the initial one or the final one, is a no-equilibrium state (see
Example 1 below).

– To establish an entropy balance for stationary non-equilibrium states (see Example 2 below).

– To define stability criteria for stationary non-equilibrium statesand possibly to establish a
connection between the instability and the evolution, for example for biological systems.

– To mathematically describe the coupling of two different irreversible processes, in which one
of the two processes takes place against its natural direction.

To this aim, it is necessary to define and measure the entropy and its variations also for non-
equilibrium states.
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Basic concepts

The possibility of a thermodynamical description of irreversible processes is based on the following
concepts.

a) One assumes that the system undergoing an irreversible process can be divided in a large
number of sub-systems, sufficiently small to be considered in states of local quasi-equilibrium
but sufficiently large to be macroscopically described. For each one of the sub-systems,
supposed to be in an equilibrium state, one considers the local entropy variation dS.

b) The entropy variation of a system and of its sub-systems is decomposed as the sum of two
contributions: dS = deS + diS, where

– deS is the entropy variation due to the exchanges between the system and its ambient

– diS is the entropy variation due to processes taking place within the system

c) The local character of the entropy variations deS and diS allows one to focus the attention
only on the entropy, independent of the system conditions. There is thus no need to resort
to thermodynamical potentials (enthalpy, Helmoltz and Gibbs functions, etc)

d) Different formalisms are required for discrete and continuous systems. The largest interest
concerns continuous systems.

e) The time is now relevant. One focus the attention on the entropy production, defined as
diS/dt. The unique evolution criterion, valid for whichever system, is represented by the
positivity of the entropy production, I

diS

dt
> 0 . (27.5)

f) The entropy production (27.5) can be expressed as the product of a thermodynamical force
(the cause of the irreversible process) and a thermodynamical flux (effect of the thermody-
namical force).

We conclude this introductory chapter with two examples, suitable to clarify the two basic con-
cepts of local equilibrium and of non-equilibrium stationary state. The expressions of the entropy
production for different cases will be considered in detail in Chapter 28. In Chapter 29 the cou-
pling of irreversible processes will be studied. In Chapter ?? we will consider system maintained
in non-equilibrium stationary states by external constraints.

27.2.1 Example 1: local equilibrium

Let us consider a homogeneous metal bar of length `.
Initially the two ends of the bar are in thermal contact with two reservoirs maintained at the
temperatures T1 and T2, respectively, with T2 > T1 (Fig. 27.1). The bar is in a state of thermal
non-equilibrium, where heat flows from the hot to the cold reservoir; this situation will be analysed
in detail in the Example 2 below.
At a given time, the bar is isolated from the two reservoirs. At this time, to be considered as initial
time, the bar is out of thermal equilibrium. An irreversible process is triggered, leading the bar in
a final equilibrium state at the temperature

Tf =
T1 + T2

2
. (27.6)

Our goal is now to calculate the entropy variation ∆S = Sf −Si from the initial to the final state.

The initial state is a non-equilibrium state, so that the initial entropy of the entire bar is in principle
undefined. However, the difficulty can be overcome as follows.
Let us consider a section of the bar of infinitesimal width dx at the distance x from the hotter
end. Let us assume that any section of infinitesimal width dx can be considered in a state of local
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T2 T1

x0 dx

Figure 27.1: MBar of length ` connected at its ends with two reservoirs at the temperatures T1

and T2, with T2 > T1.

equilibrium. In the initial state the temperature of the bar in the position x can thus be defined
and can be calculated as:

Ti(x) = T2 −
T2 − T1

`
x . (27.7)

During the transformation from the initial to the final state, the section dx modifies its temperature
from the value Ti(x) to the value Tf (x). It we approximate the transformation as a quasi-static
one, the variation of its entropy can be calculated as

dS(x) =

∫ Tf

Ti(x)

Cpλ dx

T
dT = Cp λ dx ln

Tf
Ti(x)

, (27.8)

where λ is the linear density and Cp the heat capacity per unit mass. The variation dS(x) is positive
or negative according to whether the temperature increases or decreases during the irreversible
process.

For the entire bar, the entropy variation is

∆iS = Cp λ

∫ `

0

ln
Tf
Ti(x)

dx > 0 , (27.9)

where the index i means that ∆iS corresponds to entropy creation.
To easily verify that the value of the integral (27.9) is actually positive, one can consider two
sections dx in symmetrical positions with respect to the central point of the bar, x = `/2, for
which Ti = Tf . The initial temperatures of the two sections are Tf + ∆T and Tf − ∆T . The
contribution of the two sections to the integral in (27.9) is proportional to

lnTf − ln(Tf −∆T ) + lnTf − ln(Tf + ∆T ) > 0 .

One can generalise the previous example as follows. In many systems out of equilibrium one can
often assume that their single parts, small with respect to the entire system but still macroscopic,
can be considered in a state of local equilibrium. The local equilibrium can take place if microscopic
collisions are sufficiently intense to guarantee the local uniformity of the thermal state.
The local equilibrium can be conceived as obtained through a suitable number of ideal constraints
imposed to the system, able to frozen the instantaneous local situation.

In this example, the system (the bar) is isolated during the irreversible process. Its entropy
variation (27.9) corresponds to the entropy produced during the irreversible process.

27.2.2 Example 2: non-equilibrium stationary states

Let us again consider the homogeneous metal bar of length ` connected at the two ends with two
reservoirs at the temperatures T1 and T2, with T2 > T1 (Fig. 27.1). Contrary to the previous
example, the bar is now indefinitely maintained in contact with the two reservoirs, so that heat
flows continuously from the hot to the cold reservoir.
The state of the bar is
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– out of equilibrium, with a distribution of temperature values along its length,

– stationary, because the distribution of temperatures along the bar is invariable as time goes
on.

A flux of heat

IQ =
d̄Q

dt
(27.10)

takes place along the bar, propagating from the reservoir 2 to the reservoir 1. The amounts of heat
leaving the reservoir 2 and absorbed by the reservoir 1 in a given time interval are equal,

|Q1| = |Q2| . (27.11)

Let us separately analyse the entropy variations of the reservoirs and of the bar. Since the process is
stationary, instead of arbitrarily considering an initial state and a final state, it is more convenient
to refer to the entropy variations in unit time.

Entropy variations of the reservoirs

The two reservoirs can be considered in thermodynamical equilibrium, so that their entropy vari-
ations per unit time can be easily calculated:

dS2

dt
=

1

T2

d̄Q2

dt
< 0 ,

dS1

dt
=

1

T1

d̄Q1

dt
> 0 . (27.12)

Since for the reservoirs Q2 < 0, Q1 > 0 and T1 < T2, the entropy variation per unit time of the
system composed by the two reservoirs is positive.

Entropy variation of the bar

In each element dx of the bar the entropy S remains unchanged in time, because the state of local
equilibrium, s defined in the previous Example 1, remains unchanged in a stationary irreversible
process. Therefore, the entropy of the entire bar remains unchanged too:

dS

dt
= 0 . (27.13)

On the other hand, an irreversible heat transport takes place in the bar and produces entropy.
However, the entropy production within the bar doesn’t modify its total entropy, because the bar
in in a stationary state.
To understand the entropy balance of the bar, it is convenient to split its entropy variation per
unit time as the sum of three contributions:

1) Incoming entropy flux, opposite to the outgoing flux from the reservoir 2

dSin

dt
= −dS2

dt
> 0 . (27.14)

2) Outgoing flux, opposite to the incoming flux in the reservoir 1

dSout

dt
= −dS1

dt
< 0 . (27.15)

3) Entropy creation within the bar
diS

dt
. (27.16)

The sum of the entropy fluxes incoming in and outgoing from the bar is negative, its value being
opposite to the to the sum of the fluxes incoming in and outgoing from the reservoirs:

deS

dt
=

dSin

dt
+

dSout

dt
< 0 . (27.17)
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The amount of entropy outgoing from the bar per unit time is larger than the entering amount.
The bar is in a stationary state, for which there is no total entropy variation

0 =
dS

dt
=

deS

dt
+

diS

dt
, so that

diS

dt
> 0 (27.18)

The stationary irreversible process of the system bar + reservoirs is characterised by the creation
of entropy within the bar (dSi/dt > 0), caused by the flux of heat under a temperature gradient.
Locally, for each element of the bar, the outgoing flux is larger that the incoming flux, due to the
local entropy production.

In this example, the irreversible process causes an increase of entropy in the isolated system made
by the bar and the two reservoirs. The bar by itself is not an isolated system; since the irreversible
process is stationary, its entropy doesn’t change in time. The irreversibility is characterised by
the neat production of entropy along the entire bar, but the produced entropy is continuously
transferred to the colder reservoir.

The positive production of entropy per unit time characterises the irreversible processes also in
non-isolated systems.



Chapter 28

Entropy production

The evolution criterion for irreversible processes expressed by the fundamental axiom of the macro-
scopic equilibrium Thermodynamics, ∆S > 0 (§ 5.2), only holds for isolated systems. For non-
isolated systems, different evolution criteria have been introduced, based on different thermody-
namical functions (Chapter 8).

In the Thermodynamics of irreversible processes, the attention is focussed on the entropy produc-
tion. A unique evolution criterion is assumed, valid for all systems (isolated or non isolated):

diS

dt
> 0 , (28.1)

where diS/dt represents the entropy production per unit time. In this rspect, it is convenient to
consider the two examples of § 27.2.

In the present chapter our goal is to learn how the entropy production (28.1) can be calculated
for various types of thermodynamical systems. We will first consider discrete systems, formed by
a finite little number of homogeneous systems (§ 28.1). We will then consider continuous systems
(§ 28.2), whose practical interest is larger. In conclusion, we will discuss the concepts of generalised
fluxes and forces (§ 28.4).

28.1 Entropy production in discrete systems

Studying discrete systems allows an easy understanding of the mechanisms of entropy production
in terms of finite differences of intensive quantities and fluxes of extensive quantities.

It should anyway be considered that le concept of local equilibrium, introduced in § 27.2 and
essential for the thermodynamical treatment of irreversible phenomena, is more problematic for
discrete systems than for continuous systems, such as the metal bar of the examples in § 27.2.

28.1.1 Closed and isolated systems

Let us consider again some simple cases studied in § 6.2, where the intensive coordinates have been
introduced to characterise the thermal, mechanical and chemical equilibria. Let us now focus the
attention on the irreversible processes.

Example 1: two sub-systems with different temperatures

Let us consider an isolated system, divided in two sub-systems by a fixed wall, which can slowly
transmit heat. The temperatures of the two sub-systems are different, T (1) and T (2), respectively,
with T (1) < T (2) (Fig. 28.1, left).

The entropy variation dS due to the irreversible transfer of energy dU =d̄Q from the hotter to the
colder subsystem can be evaluated by means of equation (6.7), if the process if so slow that the
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Figure 28.1: An isolated systems divided in two sub-systems: at different temperatures (left), at
different temperatures and pressures (centre), at different temperatures and chemical potentials
(right).

two sub-systems remain homogeneous, that is if the two sub-systems can be considered in local
quasi-equilibrium:

dS =
1

T (1)
dU (1) +

1

T (2)
dU (2) =

[
1

T (1)
− 1

T (2)

]
dU (1) > 0 . (28.2)

Since the entropy variation dS is due only to heat exchanges within the system, dS = diS. The
irreversible process is characterised by entropy production within the system:

diS

dt
=

[
1

T (1)
− 1

T (2)

]
dU (1)

dt
> 0 . (28.3)

The expression (28.3) of the entropy production can be considered as the product of a generalised
force, that is the finite difference of an intensive quantity (here the inverse temperature), times the
flux of the conjugate extensive quantity (here the internal energy):

diS

dt
=

[
generalised force ∆

(
1

T

)]
×
[
flux

dU

dt

]
. (28.4)

Note 1: It should be noticed that the generalised force conjugate to the energy flux is the difference
of the inverse temperatures, ∆(1/T ), not the temperature difference ∆T .

Note 2: In the particular example here considered, the energy flux dU/dt corresponds to the heat
flux d̄Q/dt.

Example 2: two subsystems with different temperatures and pressures

Let us now consider an isolated system, divided in two homogeneous sub-systems by a movable
wall, which can again slowly transmit heat. The two sub-systems are at different temperatures
T (1) and T (2), respectively, with T (1) < T (2), and different pressures p(1) and p(2), respectively,
with p(1) < p(2) (Fig. 28.1, centre).
The entropy variation dS due to the irreversible exchange of energy dU and volume dV between
the two subsystems is, in the hypothesis that the process is sufficiently slow to maintain the sub-
systems homogeneous (local quasi-equilibrium),

dS =

[
1

T (1)
− 1

T (2)

]
dU (1) +

[
p(1)

T (1)
− p(2)

T (2)

]
dV (1) > 0 . (28.5)

The entropy production
diS

dt
= ∆

(
1

T

)
dU

dt
+ ∆

( p
T

) dV

dt
(28.6)

can be again expressed as the sum of products of generalised forces times conjugated fluxes:

diS

dt
=
∑
k

[(generalised force)k × (flux)k] . (28.7)

Note: Here, contrary to the previous Example 1, dU = T dS − p dV 6=d̄Q; the entropy production,
calculated through (27.2), depends on the heat flux d̄Q = dU + p dV .
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Electro-chemical potential

Given an electrical potential φ, the work on a charge dq is

φdq = φzF dn . (28.8)

In the second member of (28.8), n is the number of moles of elementary constituents, F =
96485 C/mol is the Faraday constant and z is the number of elementary charges on the elementary
constituent.
The energy balance is

dU = T dS − p dV + (µ+ φzF ) dn = T dS − p dV + µ̃ dn , (28.9)

where µ̃ = µ + φzF is called electro-chemical potential (the two contributions, electrical and
chemical, cannot be experimentally separated).
The entropy variation is

dS =
1

T
dU +

p

T
dV − µ̃

T
dn . (28.10)

Example: Let us consider an isolated system divided in two sub-systems with temperatures, elec-
trical potentials and chemical potentials, T (1), φ(1), µ(1) and T (2), φ(2), µ(2), respectively. The
entropy production due to the energy and matter transport is

diS

dt
= ∆

(
1

T

)
dU

dt
+ ∆

(
− µ̃
T

)
dn

dt
, (28.11)

where µ̃(k) = µ(k) + φ(k)zF , with k = 1, 2.
The entriopy production expressed by (28.11) is amenable to the general expression (28.7).

28.1.2 Closed non-isolated systems

Let us now consider the case of non-isolated discrete and closed systems, in which the entropy
production is not solely amenable to processes internal to the system, but is due also to energy
exchanges with the ambient.

Only thermal exchange with the ambient

Let us consider a system enclosed in fixed walls, able to slowly transmit heat, divided in two
homogeneous sub-systems by a fixed wall, as well able to slowly transmit heat. The energy variation
dU of both sub-systems can be due to the exchange of heat not only between the two sub-systems
(d̄Qi) but also between the sub-systems and the surrounding ambient (d̄Qe).
The differential entropy variation of the entire system, in the hypothesis of local quasi-equilibrium
of the sub-systems, can be expressed by separately considering the two sub-systems (first line of
the following equation) or by separating the exchange of heat with the ambient from the exchange
between the two sub-systems (second line of the following equation):

dS = dS(1) + dS(2) =

[
d̄Q

(1)
e

T (1)
+

d̄Q
(1)
i

T (1)

]
+

[
d̄Q

(2)
e

T (2)
+

d̄Q
(2)
i

T (2)

]

=
d̄Q

(1)
e

T (1)
+

d̄Q
(2)
e

T (2)︸ ︷︷ ︸
deS

+ d̄Q
(1)
i

[
1

T (1)
− 1

T (2)

]
︸ ︷︷ ︸

diS

(28.12)

One can thus single out two contributions to the entropy variation dS:

– the entropy flux deS/dt due to the heat exchange between the sub-systems and the ambient,
whose contribution can be both positive or negative;
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– the entropy production diS/dt > 0 due to the exchange of heat d̄Q = dU induced by the
temperature difference between the two sub-systems:

diS

dt
= ∆

(
1

T

)
× dU

dt
. (28.13)

The entropy production is again amenable to the general expression (28.7).

Chemical reaction at constant temperature and pressure

Let us now consider a homogeneous system, closed but not isolated, within which a chemical
reaction takes place.

A generic chemical reaction can be expressed (§ 11.4) as

− ν1A1 − ν2A2 ⇀↽ ν3A3 + ν4A4 , (28.14)

where Ak are reagents and products and νk are the stoichiometric coefficients.

The variations dnk of reagents and products can be expressed in terms of a unique parameter, the
degree of advancement ξ, as

dnk = νk dξ (28.15)

and the affinity A is defined as

A = −
∑

k
µkνk , (28.16)

where µk are the chemical potentials of reagents and products. If A > 0, the reaction (28.14) goes
forward; if A < 0, the reaction goes backwards; in equilibrium, A = 0 (Fig. 11.5).

Let us suppose that the reaction takes place at constant temperature and pressure, so that the most
suitable thermodynamical potential is the Gibbs function G = H − TS. The evolution criterion
§ 11.4 is

dG = −n0Adξ < 0 , (28.17)

where n0 is a scale factor. In conditions of equilibrium, A = 0 and the Gibbs function is minimal.

The entropy variation (§ 11.4) is

dS =
1

T
dU +

p

T
dV −

∑
k

µk
T
dnk

=
1

T
d̄Q + n0

A

T
dξ

= deS + diS .

(28.18)

The first term corresponds to the entropy variation due to the exchange of heat with the ambient,
and can be both positive or negative. The second term corresponds to the entropy production
due to the irreversible development of the reaction and is necessarily positive (when A > 0, also
dξ > 0, and viceversa).

The evolution criterion (28.17) can be recast in terms of entropy production:

diS

dt
= n0

A

T

dξ

dt
= n0

A

T
v > 0 ; (28.19)

the quantity v = dξ/dt is the reaction speed.

Also (28.19) has the form of the product of a thermodynamical force (A/T ) times a thermodynam-
ical flux (v). In this case both force and flux are scalar quantities, without directional properties.
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Coupled chemical reactions

Different chemical reactions can take place contemporarily within the same vessel. The entropy
production is expressed as the sum of the contributions of single reactions:

diS

dt
=

1

T

∑
ρ

Aρ vρ > 0 . (28.20)

The total entropy production (28.20) is positive. It can however be that single reactions take place
in the direction of a negative production of entropy.
The coupling of irreversible processes can make possible that one or more processes take place in
the direction of entropy reduction at the expenses of a larger entropy production in other coupled
processes.

28.1.3 Open systems

An open system can exchange matter with its environment (§ 11.3). We have already shortly
considered open systems in § 11.3. By generalising (11.34) and (11.35) to the case of systems with
more than one component, the energy balance of an open system is written as

dU = T dS − p dV +
∑

k
µk dnk

= T
∑

k
nk dsk − p dV +

∑
k
hk dnk

= d̄Q − p dV +
∑

k
hk dnk , (28.21)

where hk is the molar enthalpy of the k-th component.
Often the energy variation (28.21) is written as

dU = dΦ − p dV , (28.22)

where the term
dΦ = T

∑
nk dsk +

∑
hk dnk = d̄Q+

∑
hk dnk

is the total energy exchanged by conduction (thermal contact) d̄Q and by convection (matter
transport)

∑
hk dnk.

By substituting dU from (28.22) in the Gibbs equation, the entropy variation becomes

dS =
1

T
dU +

p

T
dV −

∑
k

µk
T
dnk

=
1

T
dΦ−

∑
k

µk
T
dnk , (28.23)

where the first term in the last line is the entropy variation due to the energy flux (conduction +
convection), the second term is the entropy variation due to the exchange of matter. The entropy
variation is only due to exchanges of energy and matter between the system and its ambient,
dS = deS; there is no entropy production.

Two sub-systems divided by a permeable wall

Let us now consider an isolated system, divided in two homogeneous divided by a permeable wall,
that can slowly transmit heat. The two sub-systems are at different temperatures, pressures and
chemical potentials, with T (1) < T (2), p(1) < p(2) and µ(1) < µ(2) (Fig. 28.1, right).
The two sub-systems can be considered as two open systems with one single component. The
internal energy variation of each one of the two sub-systems can be expressed in the form (28.22),
where dΦ =d̄Q+ h dn is the thermal energy exchanged by both conduction and convection.
The entropy variation of each one of the two sub-systems is given by (28.23):

dS =
1

T
dΦ− µ

T
dn . (28.24)
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The entropy variation dS of the entire system is due to the irreversible exchange of energy dU and
matter dn between the two sub-systems. If the process is sufficiently slow so as to maintain the
two sub-systems homogeneous,

dS =

[
1

T (1)
− 1

T (2)

]
dΦ(1) −

[
µ(1)

T (1)
− µ(2)

T (2)

]
dn(1) > 0 . (28.25)

The entropy production

diS

dt
= ∆

(
1

T

)
dΦ

dt
+ ∆

(
−µ
T

) dn

dt
(28.26)

can again be expressed as the sum of products

diS

dt
=
∑
k

[(generalised force)k × (flux)k] . (28.27)

Chemical reaction in an open system

If a chemical reaction takes place within an open system, that can reversibly exchange reagents
and products with its ambient, the entropy variation contains both the term (28.23), due to the
exchange of energy and matter with the ambient, and the term due to the irreversible development
of the reaction

dS =
1

T
dΦ−

∑
k

µk
T
dnk︸ ︷︷ ︸

deS

+
A

T
dξ︸ ︷︷ ︸

diS

. (28.28)

The entropy production per unit time due to the development of the reaction is again expressed
by (28.19), as for closed systems.

28.2 Continuous systems: fluxes and forces

In the discussion of irreversible processes in discrete systems of § 28.1 the concepts of thermody-
namical force and flux have been introduced. Those concepts can be more rigorously defined for
continuous systems, whose properties are continuous functions of spatial coordinates and of time.
Continuous systems are more interesting for practical purposes.

28.2.1 Thermodynamical fluxes

In § 28.1 two types of thermodynamical fluxes have been introduced:

– scalar fluxes, such as the velocity of chemical reactions v = dξ/dt;

– vector fluxes, characterised by a direction, such as the energy or matter fluxes.

Both scalar and vector fluxes are here considered for continuous systems too. It is convenient
to distinguish the fluxes of conservative quantities (such as mass and energy) from the fluxes of
non-conservative quantities (such as entropy).

28.2.2 Fluxes of conservative quantities

Our first step is to express the First Law of Thermodynamics (conservation of energy, Chapter 3)
in local terms, suited to the treatment of irreversible processes in continuous systems. Otherwise
stated, we want to give an analytic form the the law of local energy conservation. For a continuous
system it is necessary to give a local expression to the conservation of matter too, for one-component
systems as well as for many-component systems.
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The time variation of a conservative quantity G (for example the internal energy U or the mass
m) contained in a given volume V takes place through the transport of the quantity G across the
surface A forming the boundary of the volume:

dG

dt
=

∫
A

~JG · n̂ dA , (28.29)

where ~JG is the flux of the quantity G outgoing from the volume V per unit of time and surface
and n̂ is the unit vector perpendicular to the surface dA.
The integral form (28.29) of the law of conservation of the quantity G can be transformed into a
local form by introducing the density ρG of G, such that

G =

∫
V

ρG(~r) dV , (28.30)

and one uses the Gauss theorem for the flux∫
A

~J · n̂ dA =

∫
V

~∇ · ~J dV . (28.31)

One can thus obtain the differential continuity equation

∂ρG
∂t

= −~∇ · ~JG , (28.32)

Mass conservation (one component)

The local conservation of the mass is expressed in terms of the continuity equation (28.32) for the
mass density ρ = dm/dV :

∂ρ

∂t
= −~∇ · ~Jm , (28.33)

where ~Jm is the flux of mass.

Mass conservation (many components)

For a many-component system in which no chemical reactions take place, it is convenient to refer
to the continuity equation for the numerical density ci = dni/dV :

∂ci
∂t

= −~∇ · ~Ji , (28.34)

where ~Ji is the flux of moles of the i-th component.

Energy conservation

The continuity equation for the energy density ρe is

∂ρe
∂t

= −~∇ · ~Je , (28.35)

where ~Je is the energy flux.
Equation (28.35) is the local expression of the First Law of Thermodynmics.

28.2.3 Fluxes of non-conservative quantities

Let us now consider two relevant cases of non-conservative quantities: the reagents and product of
a chemical reaction and the entropy.
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Chemical reactions

Within a system which hosts a chemical reaction, the number ni of moles of the i-th component
can vary as an effect of two mechanisms: transport of matter (t) and chemical reaction (r); for a
finite volume V ,

∂ni
∂t

=
∂tni
∂t

+
∂rni
∂t

= −
∫
V

~∇ · ~Ji dV +

∫
V

νi
dξ

dt
dV . (28.36)

The amounts of reagents and products are left unchanged by the transport processes, are modified
by the chemical reaction.
The integral form of (28.36) can be transformed into the differential form of a modified continuity
equation

∂ci
∂t

= −~∇ · ~Ji + νi Jch . (28.37)

whereci are the concentrations of reagents and products, ~Ji are their incoming and outgoing fluxes,
and Jch = v = dξ/dt is a form of generalised flux connected to the chemical reaction.
In (28.37) two types of flux thus appear appear,

– a vector flux of matter ~Ji, which describes the matter transport processes,

– a scalar flux Jch = v = dξ/dt, which describes the advancement of the chemical reaction,
within which the amounts of reagents and products are not conserved..

28.2.4 Entropy flux and entropy production

The concept of flux can be considered also for non-conservative quantities, such as entropy.
However, the conservation equation (28.29) doesn’t hold; anyway, as we will see below, if can be
conveniently modified to take into account the processes of entropy production.

Let us define the local entropy density sv (entropy per volume unit) by means of the equations

S =

∫
V

sv dV ,
dS

dt
=

∫
V

∂sv
∂t

dV . (28.38)

Note: For the study of irreversible processes in continuous systems one refers to the densities per
volume unit rather than to the molar quantities.

Let us consider the entropy S contained in a volume V within the surface A. Let us decompose the
variation of entropy for unit time in two contributions, due to flux and production, respectively:

dS

dt
=

deS

dt
+
diS

dt
= −

∫
A

~Js · n̂ dA +
diS

dt
, (28.39)

where ~Js is the entropy flux outgoing from the surface A. Making use of the divergence theorem,
we can introduce the volume integrals:

dS

dt
= −

∫
V

~∇ · ~Js dV +

∫
V

σ dV , (28.40)

where σ is the local entropy production (entropy production per volume unit).
The differential equation corresponding to the integral equation (28.40) is

∂sv
∂t

= −~∇ · ~Js + σ . (28.41)

The general evolution criterion for continuous systems consists in the positivity of the local entropy
production,

σ > 0 (28.42)
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28.2.5 Thermodynamical forces

In § 28.1 two types of forces, of scalar and vector character, have been introduced for discrete
systems. Also for continuous systems two types of thermodynamical forces (also called generalised
forces or affinities) can be distinguished:

– scalar thermodynamical forces; for example, for chemical reactions, the affinity divided by
the temperature, Fch = A/T ;

– vector thermodynamical forces, characterised by a given direction; for discrete systems they
consist in finite differences, for continuous systems they consist in gradients of intensive
quantities; for example:

~FQ = ~∇
(

1

T

)
, ~Fi = ~∇

(
−µi
T

)
(28.43)

28.3 Local entropy production

Let us consider the Gibbs equation for the reversible entropy variation for a macroscopic system:

T dS = dU + p dV −
∑

i
µidni . (28.44)

For irreversible processes, the Gibbs equation (28.44) can still be used, provided the volume V of
the system can be contemporarily considered

– sufficiently small that the intensive quantities can be considered as uniform,

– sufficiently large that the statistical fluctuations can be neglected.

Otherwise stated, the the system enclosed in the volume V shouldn’t be too far from thermody-
namical equilibrium.

If the quantities per volume unit are introduced,

sv = S/V , uv = U/V , ci = ni/V , (28.45)

equation (28.44) becomes

T d(svV ) = d(uvV ) + p dV −
∑

i
µid(ciV ) , (28.46)

whence
V
[
T dsv − duv +

∑
i
µidci

]
= dV

[
−T sv + uv + p−

∑
i
µici

]
(28.47)

The expression in square parentheses in the second member of (28.47) is identically zero; for
a demonstration, it is sufficient to multiply by V and compare with the Euler relation (7.24),
G = U + pV − TS =

∑
µini.

As a consequence, the expression in square parentheses in the first member of (28.47) is identically
zero too.

Local Gibbs equation

Equating to zero the expression in square parentheses in the first member of (28.47), one obtains
the local Gibbs equation, which doesn’t contain the volume V :

T dsv = duv −
∑

i
µi dci (28.48)

From (28.48) one obtains in turn the time variation of the local entropy:

T
∂sv
∂t

=
∂uv
∂t
−
∑

i
µi
∂ci
∂t

. (28.49)
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Local entropy production

If the continuity equations (28.41), (28.35) and (28.37)

∂sv
∂t

= −~∇ · ~Js + σ ,
∂uv
∂t

= −~∇ · ~Ju ,
∂ci
∂t

= −~∇ · ~Ji + νiJch , (28.50)

are inserted in (28.49), after some steps of vector calculus (see the demonstration below), one
obtains the following expression for the local entropy production

σ = ~Ju · ~∇
(

1

T

)
−
∑

i
~Ji · ~∇

(µi
T

)
+ Jch

A

T
, (28.51)

that corresponds to a sum of terms, each one of which is the product of a generalised flux times a
thermodynamical force:

σ =
∑

k
Jk Fk (28.52)

Demonstration

By inserting the continuity equations (28.50) in (28.49), one obtains

− ~∇ · ~Js + σ = − 1

T
~∇ · ~Ju −

∑ µi
T

[
−~∇ · ~Ji + νiJch

]
. (28.53)

Making use of the vector calculus rule

~∇ · (a~v) = a~∇ · ~v + ~v · ~∇a ⇒ a~∇ · ~v = ~∇ · (a~v)− ~v · ~∇a (28.54)

the factor 1/T can be transferred under the ~∇ operator, so that one obtains

σ = ~∇ · ~Js − ~∇ ·
~Ju
T

+ ~Ju · ~∇
(

1

T

)
+
∑

i
~∇ · µi

~Ji
T
−
∑

i
~Ji · ~∇

(µi
T

)
+ JchA . (28.55)

The first, second and fourth terms on the right of (28.55) can be eliminated, because

~∇ ·

[
~Js −

~Ju
T

+
∑ µi

T
~Ji

]
=

~∇ ·
[

1

A

d

dt

(
dS − dU

T
+
∑ µi

T
dn

)
n̂

]
= ~∇ · 0 = 0 , (28.56)

where n̂ is the flux direction and A is the normal surface.
Equation (28.51) is then obtained.

28.3.1 Non-equilibrium stationary states

A system is said to be in a stationary state if its local properties are time independent. For
example, for a stationary system

∂ρ

∂t
= 0 ,

∂ci
∂t

= 0 ,
∂ρe
∂t

= 0 ,
∂sv
∂t

= 0 . (28.57)

Let us focus here our attention on the non-equilibrium stationary states already encountered in
one example of § 27.2 (Example 2).
By inserting the stationary conditions (28.57) in the continuity equations (28.50) one obtains
different conditions for conservative and for non-conservative quantities.



28. Entropy production 355

Conservative quantities

For conservative quantities, according to the continuity equations, for example (28.33), (28.34) and
(28.35) for the mass and the energy, the divergence of the fluxes is zero in the stationary state,

~∇ · ~Ji = 0 . (28.58)

Example: In the one-dimensional case, (28.58) becomes

dJ

dx
= 0 , that is J independent of x . (28.59)

The condition (28.58) for non-equilibrium stationary state, is less demanding than the condition
~Ji = 0, which holds in the case of thermodynamical equilibrium.

Non-conservative quantities

For non-conservative quantities in a stationary non-equilibrium state, the divergence of the fluxes
is not zero.

Let as consider, as a first example, a chemical reaction, in which reagents and products are not
conserved. In a stationary state, the first member of (28.37) is null, ∂ci/∂t = 0, so that

~∇ · ~Ji = νi Jch . (28.60)

The divergences of the fluxes ~Ji of the different components (reagents and products) are not null,
but equal to the chemical flux of the reaction Jch = v = dξ/dt multiplied by the stoichiometric
coefficients νi.

As a second example of non-conservative quantity , let us consider the entropy. In a stationary
state, the the molar entropy doesn’t vary. Therefore, if one imposes ∂sv/∂t=0, equation (28.41)
becomes

~∇ · ~Js = σ . (28.61)

The divergence of the entropy flux is equal to the local production of entropy σ.

The entropy created in a stationary state has to be transferred to the ambient, in order to maintain
the entropy density of the system constant. Therefore, non-equilibrium stationary states cannot
be established in adiabatic systems, that is in systems that cannot exchange entropy with the
ambient.

The properties of non-equilibrium stationary states will be considered in more detail in Chapter ??.

28.4 Properties of thermodynamical forces and fluxes

It has been established above that the entropy production can be expressed in terms of products
of generalised fluxes (or velocities) J times generalised forces (or affinities) F .

For discrete systems, the entropy production per unit time is

diS

dt
=
∑

k
Jk Fk . (28.62)

For continuous systems (see for example 28.51) the local entropy production per unit time is

σ =
∑

k
Jk Fk . (28.63)
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28.4.1 Equivalent systems of forces and fluxes

The choice of generalised forces F and generalised fuxes J is not unique. For example if in the
expression (28.51) of the local entropy production σ, one substitutes

~∇
(

1

T

)
=

1

T 2
~∇ (−T ) , ~∇

(
−µ
T

)
=

1

T
~∇ (−µ)− µ

T 2
~∇(−T ) , (28.64)

one obtains the equivalent expression

σ =
1

T

(
~Ju
T
−
∑
µi ~Ji
T

)
· ~∇(−T ) +

1

T

∑
~Ji · ~∇(−µi) + Jch

A

T

=
1

T
~Js · ~∇(−T ) +

1

T

∑
~Ji · ~∇(−µ) +

1

T
JchA , (28.65)

where ~Js is the entropy flux.

The product Tσ is sometimes called dissipation function.

Different choices of forces and fluxes can simplify the mathematical treatment of some problems,
like the choice of reference frames in Mechanics.

Conjugated forces and fluxes

By comparing (28.51) with (28.65), one can distinguish two different systems of conjugated forces
and fluxes:

J F

~Ju ~∇(1/T )

~Ji ~∇(−µ/T )

Jch A/T

J ′ F ′

~Js/T ~∇(−T )

~Ji/T ~∇(−µ)

Jch/T A

(28.66)

28.4.2 Relations between generalised forces and generalised fluxes

To calculate the local entropy production per unit time σ by means of (28.63), it is necessary
to know the fluxes Jk conjugated to the thermodynamical forces Fk. Thermodynamical forces
and fluxes are not independent, but are connected by cause-effect relations. The knowledge of the
relations between thermodynamical forces and fluxes, as well as of the properties of these relations,
plays o relevant role in the Thermodynamics of irreversible processes.

Phenomenological relations between thermodynamical forces and fluxes

In many cases, the dependence of flux J on its conjugated force Fk, experimentally determined,
can assume, to a good approximation, a relatively simple form. Let us consider some examples.

a) The heat flux is connected to the temperature gradient by the Fourier law:

~JQ = −Kth
~∇T (28.67)

where Kth is te thermal conductivity. One can easily verify that the relation between the
heat flux ~JQ = ~Ju and the conjugated generalised force~∇(1/T ) is

~JQ = Kth T
2 ~∇

(
1

T

)
. (28.68)
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b) The matter flux is connected to the gradient of the concentration ci (Fick first law) or to the
gradient of the chemical potential:

~Ji = −D ~∇ci = − D

µii
~∇µi , (28.69)

where D is the diffusion coefficient and µii = ∂µi/∂ci.

c) The flux of electrical charge is connected to the gradient of the electric potential:

~Jel = −σel
~∇φel , (28.70)

where σel is the electrical conductivity (don’t mistake with σ = entropy production) and φel

is the electrical potential.

Coupling of non-conjugated fluxes and forces

One finds experimentally that some relations can exist also between non-conjugated fluxes and
forces. In those cases, one speaks of coupling between irreversible processes that take place simul-
taneously. For example:

– In thermo-electrical effects an electromotive force is generated at the junction of two metals
maintained at different temperatures.

– In thermo-mechanical effects, a matter flux is generated in the direction of the pressure
gradient as an effect of a temperature gradient.

The study of the couplings between non-conjugated fluxes and forces is one of the main applications
of the Thermodynamics of irreversible processes and is treated in Chapter 29.

Purely resistive systems and linear systems

For a number of systems, the values of generalised fluxes at a given time only depend on the
values of the generalised forces at the same time. Such systems are said to be “purely resistive”, in
analogy with purely resistive electrical circuits, where no memory effects, due to capacitance and
inductance, are present.

A general expression of the relation between fluxes and forces for purely resistive systems in a state
not too far from equilibrium can be given by a series expansion with respect to the equilibrium
state (where Fi = 0, Jk = 0):

Jk =
∑
i

(
∂Jk
∂Fi

)
0

Fi +
1

2

∑
ij

(
∂2Jk

∂Fi ∂Fj

)
0

FiFj + · · · (28.71)

If the state of a system is sufficiently near to the equilibrium state, the expansion (28.71) can be
limited to the first order (linear approximation), so that

Jk =
∑

i
LikFi (28.72)

where the factors

Lik =

(
∂Jk
∂Fi

)
0

(28.73)

are called kinetic coefficients.
Since a given flux can depend not only on its conjugated force but also on other forces, one
distinguishes two types of kinetic coefficients:

1. direct coefficients Lii
2. coupling coefficients Lik(i 6= k)

Equations (28.68) , (28.69) and (28.70), concerning heat flux, matter flux and electric charge
flux, respectively, hold for purely resistive systems in linear approximation and contain only direct
kinetic coefficients.
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Chapter 29

Coupled linear processes

In this Chapter we deal with the coupling of linear irreversible processes, already shortly introduced
in § 28.4. The coupling of irreversible processes can give rise to some important effects, such as the
thermoelectric phenomena. In some cases, the coupling makes possible that in one of the processes
the entropy production be negative, provided the negative production be overcome by the positive
production in another process, coupled to the first one.
As it was shown in Chapter 28, the local entropy production can be expressed, for continuous
systems, by (28.52):

σ =
∑

k
JkFk , (29.1)

where Jk and Fk are fluxes and thermodynamical forces, respectively.
For purely resistive systems, in the linear approximation the relation between fluxes and thermo-
dynamical forces is given by (28.72):

Jk =
∑

i
LikFi , (29.2)

where the Lik factors are the kinetic coefficients, directed if i = k, coupling if i 6= k.
In this Chapter we will introduce some constraints imposed on the linear coefficients Lii(i 6= k) and
Lij by the Curie pronciple, that concerns the symmetry properties of physical systems (§ 29.1), by
the Onsager reciprocal relations (§ 29.2) and by the requirement that the overall entropy production
cannot be negative (§ 29.3). The demonstration of the Onsager reciprocal relations, based on the
microscopic symmetry of physical laws, is sketched in § 29.4.
The practical example of thermoelectric phenomena is treated in Chapter 28.4.

29.1 Curie principle and its consequences

A first constraint on the relations between fluxes and thermodynamical forces depends on the
symmetry properties of the physical systems.
The fluxes J and the thermodynamical forces F can be classified according to their different
character as

– scalars (rank 0 tensors); example: chemical reaction

– vectors (rank 1 tensors); example: transport phenomena

– tensors (rank 2 tensors); example: phenomena connected to viscosity

As in previous chapters, we treat here only scalar and vector fluxes and forces .

In principle, in (29.2) the sum index k can label the single cartesian components of vector forces
and fluxes, so that one could expect the possibility of whichever coupling between forces and fluxes,
independent of their scalar or vector character.
Actually, symmetry considerations expressed by the Curie principle imply that, at least for isotropic
systems, the coupling is possible only between forces and fluxes of the same tensor character

359
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(scalar with scalar, vectors with vectors). The local entropy production is thus better expressed
by separating the two types of forces and fluxes:

σ =
∑

i
Jsi Fsi +

∑
j
~Jvj · ~Fvj , (29.3)

where the apex s means scalar, the apex v means vector.
For isotropic systems, the phenomenological relations have to be separately expressed for scalar
and vector forces and fluxes:

Jsi =
∑
i

Lssi Fsi , ~Jvj =
∑
j

Lvvj ~Fvj , (29.4)

where the kinetic coefficients Lss are scalar quantities and the kinetic coefficients Lvv are diagonal
tensors of rank two, with equal diagonal elements

Lvv = LvvU , (29.5)

where Lvv is a scalar quant andity U is the unit tensor.

Demonstration

In 1894, the French physicist Pierre Curie proposed a principle, whose simples formulation is that
”the symmetries of the causes of a physical phenomenon must be present in the effects too”. In
our case, the causes are the thermodynamical forces, the effects are the fluxes.
To simplify the notation, let us consider only a scalar flux Js nd a vector flux ~Jv connected to a
scalar force Fs and to a vector force ~Fv.
Let us suppose that phenomena of different tensor rank (scalar and vector) could be in any case
coupled, so that the phenomenological relations should be

Js = Lss Fs + Lsvx Fvx + Lsvy Fvy + Lsvz Fvz

Jvx = Lvsx Fs + Lvvxx Fvx + Lvvxy Fvy + Lvvxz Fvz

Jvy = Lvsy Fs + Lvvyx Fvx + Lvvyy Fvy + Lvvyz Fvz

Jvz = Lvsz Fs + Lvvzx Fvx + Lvvzy Fvy + Lvvzz Fvz

(29.6)

where the coefficient Lss is a scalar quantity, the coefficients ~Lsv and ~Lvs are vectors, and the
coefficient Lvv is a tensor of rank two.

For an isotropic system, owing to symmetry (Curie principle), the kinetic coefficients must be
invariant with respect to the direction of the cartesian axes.
Polar vectors are not invariant with respect to axes inversions, so that the Curie principle is fulfilled
only if ~Lsv = ~Lvs = 0, that is the scalar-vector coupling coefficients are zero.
Concerning the vector-vector coupling, the invariance with respect to the axes rotations requires
that the Lvv tensor be diagonal, with equal diagonal elements.

29.2 Onsager reciprocal relations

A second constraint of the kinetic coefficients is represented by the Onsager relations.
Let the fluxes, both scalar and vector, be connected to the forces, both scalar and vector, by the
relations

Jk =
∑

i
Lik Fi , (29.7)

where the indices k, i span the cartesian components of fluxes and forces of the same tensor rank.
The reciprocal Onsager relations assert that
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– if no magnetic fields are present
Lik = Lki (29.8)

– if an external magnetic field ~H is present

Lik( ~H) = Lki(− ~H) (29.9)

The reciprocal Onsager relations can be demonstrated on the base of statistical considerations for
systems not too far from equilibrium (see below, § 29.4). They are experimentally verified for a
larger set of situations, so that one sometimes refers to them as a Fourth Law of Thermodynamics.

Example: thermal conduction

Let us consider the irreversible process of thermal conduction and study the coupling between the
different cartesian components of forces and fluxes. The linear relation between the thermodynam-
ical force (the temperature gradient) and the heat flux is

Ji =
∑

j
Lij

∂

∂xj

(
1

T

)
, (29.10)

where i, j = 1, 2, 3 label the three cartesian components of the gradient and flux vectors.

a) For an isotropic system, Lij = LU, where L is a scalar quantity and U is the unit tensor.
The flux has the same direction of the force.
The heat flux is connected to the temperature gradient by the relation Il flusso di calore è
legato al gradiente di temperatura dalla relazione ~J = −Kth

~∇T , where Kth is the thermal
conductivity. As a consequence

~J = L ~∇
(

1

T

)
= −L 1

T 2
~∇T = −Kth

~∇T , (29.11)

so that the kinetic coefficient is L = KthT
2.

b) If the system is non isotropic, the flux direction is not necessarily equal to the direction of
the thermodynamical force. The thermal conductivity is a now tensor Kij , instead of a scalar
quantity. The relation between cartesian components of fluxes and forces is

Ji =
∑

j
Lij

∂

∂xj

(
1

T

)
=
∑

j
−Lij

1

T 2

∂T

∂xj
=
∑

j
−Kij

∂T

∂xj
. (29.12)

The Onsager theorem asserts that Lij = Lji, so that also Kij = Kji for each pair of values ij.

29.3 Further constraints on the kinetic coefficients

A third constraint on the kinetic coefficients depends on the requirement that the local entropy
production be non negative.
Let us consider two coupled processes; for simplicity let us assume two fluxes and two forces in a
one-dimensional system: {

J1 = L11 F1 + L12 F2

J2 = L21 F1 + L22 F2
(29.13)

The local entropy production has to be globally positive for the two coupled processes:

σ =
∑

k
Jk Fk = L11 F2

1 + (L12 + L21)F1F2 + L22 F2
2 > 0 . (29.14)

The sum is thus a positive quadratic form. As a consequence:

– Since σ > 0 even if F1 = 0, then L22 > 0
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– Since σ > 0 even if F2 = 0, then L11 > 0

– The determinant of the quadratic form has to be positive, so that

L12 L21 < L11 L22 . (29.15)

Taking into account the Onsager relation L12 = L21, one has

L2
12 < L11 L22 (29.16)

(The coupling coefficients L12 e L21 can be positive or negative).

In the general case of more than two coupled processes, one has

Lii > 0 , det[Lij ] > 0 . (29.17)

29.4 Statistical demonstration of the Onsager relations

The statistical demonstration of the Onsager relations Lik = Lki is based on the symmetry of the
physical laws, at the microscopic level, with respect to time inversion.
We will first study the effect of time-inversion symmetry on the unavoidable microscopic fluctua-
tions of extensive quantities in a system in thermodynamical (macroscopic) equilibrium.
We will then liken the decay of a spontaneous fluctuation to an irreversible process in which the
thermodynamical forces and the fluxes of extensive quantities are connected by linear phenomeno-
logical relations.

29.4.1 Fluctuations and correlation

Let us consider an isolated thermodynamical system and focus our attention on two of its extensive
coordinates, Xj and Xk.
In a state of macroscopic equilibrium, fluctuations of the extensive coordinates Xj and Xk take
continuously place, caused by their fast transfers between sub-systems of the isolated system.
Let δXj and δXk be the instantaneous fluctuations in a given sub-system, that is the deviations
of the coordinates Xj and Xk with respect to their average values.
Th average values of the fluctuations are zero,

〈δXj〉 = 0 , 〈δXk〉 = 0 . (29.18)

The average values of the quadratic terms are instead non zero,

〈(δXj)
2〉 , 〈(δXk)2〉 , 〈δXj δXk〉 . (29.19)

In particular, let us focus our attention on the retarded correlation momenta

〈δXj δXk(τ)〉 , (29.20)

that measure the correlation between the fluctuation δXj at a given time and the fluctuation δXk

at a time retarded by τ .
The symmetry with respect to time inversion requires that

〈δXj δXk(τ)〉 = 〈δXj δXk(−τ)〉 , (29.21)

that is that
〈δXj δXk(τ)〉 = 〈δXj(τ) δXk〉 . (29.22)

By subtracting 〈δXjδXk〉 from both members of (29.22) and dividing the result by τ , one obtains〈
δXj

δXk(τ)− δXk

τ

〉
=

〈
δXj(τ)− δXj

τ
δXk

〉
. (29.23)
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For τ → 0, equation (29.23) becomes〈
δXj

d(δXk)

dt

〉
=

〈
d(δXj)

dt
δXk

〉
. (29.24)

According to (29.24), the moment of correlation between the fluctuation δXj and the velocity of
the fluctuation δXk is equal to the moment of correlation between the fluctuation δXk and the
velocity of the fluctution δXj .

29.4.2 Fluctuations and phenomenological laws

Let us now liken the decay of a fluctuation to an irreversible process described by a linear relation
between forces and fluxes, so that

d(δXk)

dt
=
∑

i
Lki Fi ,

d(δXj)

dt
=
∑

i
Lji Fi . (29.25)

By inserting equations (29.25) in (29.24) one obtains∑
i
Lki 〈δXj Fi〉 =

∑
i
Lij 〈Fi δXk〉 . (29.26)

The statistical fluctuation theory shows that (if magnetic fields are absent) the fluctuation of a
thermodynamical force is only correlated to the fluctuation of the conjugated extensive parameter,
according to

〈δXj Fi〉 = −kB δij . (29.27)

By inserting (29.27) into (29.26) one obtains the Onsager reciprocal relations.

Note: While the fluctuations of different extensive quantities can be correlated, the thermodynam-
ical forces can be correlated only to the conjugate fluctuations.

Demonstration of (29.27)

Let us consider an isolated system in thermodynamical equilibrium, so that

S0 = kB ln Ω0 . (29.28)

A fluctuation δXk of an extensive quantity Xk gives rise to an entropy reduction

∆S = S − S0 = kB ln
Ω

Ω0
< 0 . (29.29)

The probability of the fluctuation is

P(δXk) = C
Ω

Ω0
= C exp(∆S/kB) , (29.30)

where C is a normalisation constant.

1.
Let us consider the entropy variation ∆S due to simultaneous fluctuations of a number of extensive
quantities. If the fluctuations are not too large, the entropy variation ∆S can be expanded as

∆S =
∑
i

(
∂S

∂(δXi)

)
0

δXi +
1

2

∑
ij

(
∂2S

∂(δXi)∂(δXj)

)
0

δXi δXj + . . . (29.31)

The first term on the right of (29.31) is zero (equilibrium condition for isolated systems). Equation
(29.31) can thus be re-written, limited to the second order term, as

∆S = −
∑
ij

gij δXi δXj , where gij = −1

2

(
∂2S

∂(δXi)∂(δXj)

)
0

. (29.32)
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As a generalisation of (29.30), the probability density of the fluctuation δX1, δX2, . . . = {δXk} can
be expressed as

P({δXk}) = C exp

− 1

kB

∑
ij

gij δXi δXj

 . (29.33)

2.
The fluctuation δXi gives rise to a counteracting thermodynamical force

Fi =
∂∆S

∂(δXi)
= −

∑
j

gij δXj = kB
∂ lnP
∂(δXi)

=
kB
P

∂P
∂(δXi)

. (29.34)

3.
One can now calculate the average value of the left member of (29.27) by integrating, over the
space spanned by by all te fluctuations {δXn}, the product δXj Fi multiplied by the probability
density:

〈δXjFi〉 =

∫
· · ·
∫
δXj Fi P({δXn}) d({δXn}) . (29.35)

Let us substitute in (29.35) Fi as expressed by the last member of (29.34),

〈δXjFi〉 = kB

∫
· · ·
∫
δXj

∂P
∂(δXi)

d({δXn}) , (29.36)

and calculate by parts the integral with respect only to the variable δXj :∫
δXj

∂P
∂(δXi)

d(δXj) = | δXj P|+∞−∞ −
∫ +∞

−∞
P δXj

δXi
d(δXj)

= 0 − δij

∫ +∞

−∞
P d(δXj) . (29.37)

By re-inserting the integral in (29.36) one obtains

〈δXjFi〉 = −kB δij
∫
· · ·
∫
P({δXn}) d({δXn}) = −kB δij . (29.38)
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Chapter 30

Kinetic model of ideal gases

Ideal gases (the monatomic ideal gas and the bi- and many-atomic ideal gases) are particularly
interesting thermodynamical systems. All real gases, when their density decreases, approach the
same ideal behaviour, represented by the simple equation of state pV = nRT . It has already been
stressed (§ 2.3) that the ideal gas plays a fundamental role in thermometry.

In this chapter, after a short summary of the main thermodynamical properties of ideal gases
(§ 30.1), we will present the kinetic model, first introduced by J.K. Maxwell in the middle of the
XIX Century, that interprets the thermodynamical properties in terms of microscopic structure
at the molecular level. We will separately consider the monatomic ideal gas (§ 30.2) and the
many-atomic gases (§ 30.3). The distributions of energy and velocity of the gas molecules will be
considered in § 30.4. The chapter is concluded with a short account of the limits of the model
(§ 30.5)

A more complete statistical approach to the ideal gas Thermodynamics will be introduced in the
next Chapter 31.

30.1 Thermodynamical properties of the ideal gases

For gases, as for all simple substances, the three coordinates pressure p, volume V and temperature
T are connected by an equation of state, the thermal equation of state,(§ 2.4).

All real gases, when the pressure decreases and the temperature increases, approach the so-called
“ideal gas” behaviour and their thermodynamical coordinates are connected by the same equation
of state, called the ideal gas equation of state:

pV = nRT = NkT , (30.1)

where T is the absolute thermodynamical temperature introduced in Chapter 4. In the first equality
n is the number of moles, R ' 8.31 J K−1 mol−1 is the universal gas constnt. In the second equality,
N is the number of moleules, k ' 1.38× 10−23 J/K ' 8.6× 10−5 eV/K is the Boltzmann constant
(§ 13.3, § 15.3).

Note: When the ideal gas approximation is not sufficient, the thermodynamical state of real gases
is described by more complex equation of state, such as the Van der Waals eqution (24.29)
introduced in § 24.5.

30.1.1 Specific heats and internal energy of ideal gases

While the same equation of state (30.1) is valid for all gases, in the low pressure and/or high
temperature approximation, other properties can be different for different types of gas, depending
on the number of atoms that make up a molecule. It is thus necessary to distinguish the monatomic
ideal gas, the biatomic ideal gas, and so on.
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Specific heats

Specific heats are particularly important quantities (§ 9.1). For constant-volume and constant-
pressure transformations (isochore and isobare, respectively) the molar specific heats of ideal gases,
cv and cp, respectively, are largely independent of temperature and atomic species, but depend on
the number of atoms per molecule. In particular:

cv cp

Monatomic gas (noble gases, metal vapours ...) (3/2) R (5/2) R
Biatomic gases (O2, H2, N2, ...) (5/2) R (7/2) R

Internal energy

One can experimentally verify (for example by studying the free expansion) that the internal energy
of ideal gases only depends on temperature: U = U(T ). The transformations of ideal gases taking
place at constant temperature (isothermal) are thus iso-energetic.
Let us consider an isochoric transformation. Since the volume is constant, the work performed on
the system is null; therefore, according to the First Law,

dU = d̄Q = n cv dT ; ∆U = Q = n cv ∆T.

Since both the temperature T and the internal energy U are function of state, for whichever
transformation of an ideal gas

dU = n cv dT ; ∆U = n cv ∆T .

The variation of the internal energy is always connected to the temperature variations through the
constant-volume specific heat cv.

It is worth remembering that the actual form of the U(T ) function cannot be deduced by purely
thermodynamical considerations.

30.1.2 Thermodynamical transformations of ideal gases

Let us now summarise the characteristics of some transformations of ideal gases from an initial
state i to a final state f .

Reversible isochores (V=cost.)

The work made on the system is

W = −
∫ f

i

p dV = 0 .

According to the First Law the heat absorbed by the system is thus

Q = ∆U = n cv (Tf − Ti) =
cv
R
V (pf − pi) .

Reversible isobares (p=cost.)

The work made on the system is

W = −
∫ f

i

p dV = p (Vf − Vi) = nR (Tf − Ti) .

The heat absorbed by the system is

Q = n cp (Tf − Ti) .
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The variation of internal energy is

∆U = n cv (Tf − Ti) .

Since ∆U = Q+W , from the previous equations one can easily deduce that the following relation
between specific heats holds for ideal gases:

cp = cv + R .

Reversible isotherms (T=cost.)

The graph of a reversible isotherm of an ideal gas in the pV plane is an equilateral hyperbole
pV = nRT = cost.
The work made on the system is

W = −
∫ f

i

p dV = −nRT
∫ f

i

dV

V
= −nRT ln

Vf
Vi

= −nRT ln
pi
pf

.

The interna energy doesn’t vary, because ∆U = ncv∆T = 0.
As a consequence, the absorbed heat is Q = −W .

Reversible adiabats (Q=0)

The variation of internal energy is

∆U = n cv (Tf − Ti) .

According to the First Law, since Q = 0, the work made on the system is

W = ∆U = n cv (Tf − Ti) .

From the First Law,

dU − d̄W = 0 ⇒ n cv dT + p dV = 0 .

By using the equation of state pV = nRθ one can obtain the equation of the reversible adiabat in
the pV plane pV :

p V γ = cost. where γ =
cp
cv
.

For monatomic gases γ = 1.67.

For biatomic gases γ = 1.4.

Again, by using the equation of state on can verify that, for reversible adiabatic transformations,

θ V γ−1 = cost.; θ p(1−γ)/γ = const.

30.2 Kinetic model for the monatomic ideal gas

The kinetic model, introduced by J.K. Maxwell, allowed the interpretation of the pressure and
temperature of the ideal gases in terms of microscopic behaviour, that is of the behaviour at the
atomic level.
Let us first consider the model for the monatomic ideal gas. Let us assume, to simplify the calcu-
lations, that the gas is contained in a cubic vessel is side ` and vlume V = `3 (one can demonstrate
that this condition is actually not restrictive, and that the conclusions of the calculations hold si
for whichever shape of the vessel).
Besides, let the cube edges be parallel to the cartesian axes of the reference system Oxyz.

The hypotheses at the base of the model are the following

a) the atoms are punctiform, so that they cannot collide

b) the motion of atoms is continual and chaotic

c) there are no forces of interaction between the atoms

d) the collisions of atoms with the vessel walls are perfectly elastic
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qin

qot

Dq

x x

Figure 30.1: A sinistra: traiettoria di un atomo. A destra: variazione della quantità di moto di un
atomo a seguito dell’urto elastico con una parete del recipiente.

Pressure

The linear momentum of an atom and its projection along the x axis are, respectively,

~q = m~v ; qx = mvx . (30.2)

Due to the elastic collision with a wall of the vesses perpendicular to the x axis, the x component of
the linear momentum of an atom inverts its sign, ∆qx = −2mvx (Fig. 30.1), and the wall undergoes
an impulse of x component

Jx = −∆qx = 2mvx . (30.3)

The pressure of the gas on the wall is the ratio between the x component of the force Fx and the
surface A of the wall, p = Fx/A.
The kinetic model explains the pressure as due to the collisions of the atoms with the wall. Let
Jx,∆t be the total impulse exerted on the wall by the collisions in the time interval ∆t.

Let us suppose, for the moment, that all atoms have the same velocity vx. On can then express
the pressure as

p =
F

A
=

Jx,∆t
∆t A

=
Ncoll

Jx
∆t A . (30.4)

The number of collisions Ncoll in the time interval ∆t can be expressed as a function of the velocity
vx

Ncoll =
vx ∆t A

V

N

2
, (30.5)

where the first factor is the fraction of the total volume adjacent to the wall and of thickness vx ∆t,
the second factor N/2 is the number of atoms with velocity vx > 0.
By substituting Ncoll one can find

p =
F

A
=

N

V
mv2

x . (30.6)

Actually, the velocity is not the same for all atoms. The value v2
x has to be substituted with the

average value 〈v2
x〉. Since the three directions x, y, z are equivalent, one can calculate the average

value as 〈v2
x〉 = 〈v2

x〉+ 〈v2
y〉+ 〈v2

z〉 = 3v2
x, so that

p =
1

3

N

V
m 〈v2〉 =

2

3

N

V
〈Ek〉 (30.7)

where 〈Ek〉 = m 〈v2〉/2 is the average kinetic energy of atoms.

Temperature and average kinetic energy

Let us now compare the thermal equation of state for the ideal gas with the expression of the
pressure calculated aby the kinetic model:

pV = nRT = NkT ⇔ pV =
2

3
N 〈Ek〉 (30.8)
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There is a relation of direct proportionality between temperature and average kinetic energy:

〈Ek〉 =
3

2
kB T , (30.9)

where N is the number of atoms and kB is the Boltzmann constant.
Taking into account that the three directions xyz are equivalent, for each one of the directions one
has

〈Ek,x〉 =
1

3
〈Ek〉 =

1

2
kB T . (30.10)

This equation corresponds to the classical principle of equipartition of energy : the average energy
of a system is equally distributed among all the degrees of freedom. In the present case of the
monatomic ideal gas there are three degrees of freedom, corresponding to the three independent
quadratic terms that contribute to the total kinetic energy.

30.3 Non-monatomic ideal gases

For the monatomic ideal gas there is a relation of direct proportionality between temperature
and average kinetic energy. One could conclude that temperature and energy are two equivalent
quantities Actually, this equivalence holds only for the monatomic ideal gas, where the kinetic
energy is purely translational.
In non-monatomic gases, the energy can be stored also in rotational and vibrational degrees of
freedom of the molecules, and this fact is responsible for the difference of specific heats.
The connection between pressure and collisions on the walls of the vessel holds also for non-
monatomic gases. The velocities of the molecules are connected only to the kinetic energy of
translation, not to the total energy stored in the molecules.
In non-monatomic gases the temperature is thus proportional only to the translational component
of the kinetic energy of the molecules. In classical physics, the principle of equipartition of energy
is anyway valid: to each degree of freedom rotational or vibrational of molecules it corresponds an
average energy equal to kT/2.

30.4 Distribuzioni delle velocità e delle energie

The molecules of a gas in equilibrium at a given temperature and pressure have different velocities.
A fundamental result of the kinetic model for ideal gases is the derivation of the distributions of
the velocities and the kinetic energies of the center of mass of the molecules (that have been here
already calculated in § 16.4 through a more general statistical approach).
The Maxwell-Boltzmann distribution of the translational energies of the center of mass is given by
the probability density of (16.39)

fEk
(Ek) =

2π

(πkT )3/2

√
Ek e

−Ek/kT . (30.11)

The distribution of the energies of the center of mass doesn’t depend on the type of gas (Fig. 30.2,
center).
Let us stress two characteristics of the distribution:

a) when the temperature increases, also the average value 〈Ek〉 of the distribution increases,

b) when the temperature increases, the distribution broadens.

In addition to the distribution of energies fε(ε), it is interesting to consider also the distribution
of velocities (16.40):

fv(v) = 4π
( m

2πkT

)3/2

v2 e−mv
2/2kT . (30.12)

The distribution of velocities depends on the mass, that is on the type of gas (Fig. 30.2,right).



372 P. Fornasini: Lectures on Thermodynamics

0

5

10

15

20

0 0.1 0.2 0.3

f(ε)  [eV-1]

ε  [eV]

ε1/2

exp(-ε/kT)

ε1/2  exp(-ε/kT)

0

5

10

15

20

0 0.1 0.2 0.3

f(ε)   [eV-1]

ε  [eV]

T = 273  K

T = 500 K

0

0.001

0.002

0 1000 2000 3000

f(v)  [s/m]

v [m/s]

N2  273 K

N2  500 K

He  273 K

Figure 30.2: Ideal gases (same as Fig. 16.3). Left: comparison among the density of states ∝
√
ε,

the exponential factor exp(−βε) and their product. Center: Maxwell-Boltzmann distribution of
the energies for an ideal gas at two different temperatures. Right: Maxwell-Boltzmann distribution
of the velocities for different gases at different temperatures.

30.5 Limits of the kinetic model and of the classical ap-
proach

The kinetic model is based on a set of approximations, listed at the beginning of § 30.2, and on
the classical Mechanics.
In order to explain the behaviour of real gases, it is necessary to take into account the finite sizes
of atoms and the forces of interaction between atoms or molecules. The Van der Waals theory
(§ 24.5) was devised to this aim and leads to an equation of state more complex than the one of the
ideal gas. In particular, owing to the presence of interaction forces between atoms or molecules,
the pressure p inside the gas is larger the pressure exerted by the collisions on the walls of the
vessel.
The proportionality between the temperature T and the average kinetic energy of translation is
based on the thermal equation of state of the ideal gas, and leads to the idea that the temperature
is a measure of the thermal motion. The very meaning of temperature is actually more subtle and
is better clarified by the statistical theory considered in Part III and by the statistics of magnetic
systems considered in Part IV.
Lastly, one should stress the difficulties of the kinetic model in the interpretation of the behaviour
of non-monatomic gases, where the energy can be stored also in the rotational and vibrational
degrees of freedom of molecules, for whose treatment a quantum approach is necessary and the
classical equipartition of energy is not necessarily verified. The quantum approach is conveniently
taken into account by the statistical treatment, to which te next Chapter 31 is dedicated.



Chapter 31

Statistics of ideal gases

This chapter is dedicated to the statistics of ideal gases, already shortly introduced in Part III .
We will first consider the statistics of the monatomic ideal gas, in which the energy of the atoms is
purely kinetic (§ 31.1) and will give the statistical interpretation of the thermodynamical quantities
§ 31.2.
We will then, in § 31.3, consider the biatomic gases, in which the vibrational and rotational contri-
butions to the total energy of molecules are present ; the statistical approach will allow us to take
into account the quantum aspects of the rotational and vibrational contributions.

31.1 Ideal monatomic gas: statistics

The main characteristics of the monatomic ideal gas, relevant for the statistical approach, are the
following.

• The atoms of the monatomic gas are indistinguishable particles; however, the ideal gas ap-
proximation corresponds to a dilution sufficiently high that the occupation number of the
energy levels be much smaller than their degeneracy, ni/gi � 1; as a consequence, one
can resort to the classical limit (§ 16.3), corresponding to the Maxwell-Boltzmann statistics
(§ 16.4).

• The atoms of a highly diluted gas are weakly interacting; the connection between the molec-
ular partition function z and the partition function Z of the entire system is thus very simple
(§ 16.4); a residual weak interaction is anyway necessary to guarantee the achievement of
thermodynamical equilibrium.

• Only the kinetic energy of translation of the atoms has to be taken into account; at the
typical temperatures of present interest, the degrees of freedom internal to the atoms (such
as the electronic or nuclear ones) cannot be excited.

31.1.1 Quantisation of the kinetic energy

Even within the classical limit, it is convenient to start from the quantisation of the linear momen-
tum ~p = h̄~k and of the kinetic energy ε of the gas atoms. Let us consider, for simplicity, a cubic
vessel of side L. The components of the linear momentum ~p are quantised:

px = h̄kx =
h

2L
nx , py = h̄ky =

h

2L
ny , pz = h̄kz =

h

2L
nz , (31.1)

where nx, ny, nz are non-negative integer numbers. As a consequence, the kinetic energy ε is
quantised too:

εx =
p2
x

2m
=

h2

8mL2
n2
x ε =

p2

2m
=

h2

8mL2
(n2
x + n2

y + n2
z) . (31.2)
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Example: Let us consider one litre of helium, L = 0.1 m, m = 6.68 × 10−27 kg. From the kinetic
model of ideal gases one gets 〈εx〉 = kBT/2. For T = 300 K, εx ' 2×10−21 J ' 1.25×10−2 eV.
In correspondence of the average value 〈εx〉, the integer number nx ' 1.5×1018. For heavier
gases at the same temperature T , the integer number nx increases proportionally to

√
m.

The energy levels are very close. I livelli di energia sono estremamente vicini. For ∆nx=1, the
energy variation ∆εx � kBT for whichever temperature of practical interest.

31.1.2 Degeneracy of levels

The terns of integer values (nx, ny, nz) represent a lattice of points within the first octant of the
three-dimensional cartesian space.
To each energy interval εi±dεi there correspond the points (nx, ny, nz) included within the octant
of a spherical shell of radius Ri ± dRi. Since R2 = n2

x + n2
y + n2

z, the kinetic energy values can be
expressed as

εi =
h2

8mL2
R2
i . (31.3)

The number g′ of states whose energy is ε ≤ ε′ is given by the number of points (nx, ny, nz) enclosed
by the spherical surface in the positive octant:

g′ =
4πV (2mε′)3/2

3h3
. (31.4)

For a diluted gas, typically ni � gi.

Example: Let us again consider a litre of helium gas (L = 0.1 m, T = 300 K); the number of
levels whose energy is smaller than the average value〈ε〉 = 3〈εx〉 = 6×10−21 J ig′ ' 1027, to
be compared with the total number of atoms, N ' 1022.

31.1.3 Density of states

The energy levels εi are very close, so that it is convenient to approximate the distribution of
discrete values with a continuous distribution

ε =
h2

8mL2
R2 . (31.5)

Let us consider a spherical shell of radius R and thickness dR, corresponding to energy values
included between ε and ε+ dε, where

dε =
h2

8mL2
2RdR. (31.6)

The volume of the spherical shell, limited to the first octant, is

v =
1

8
4πR2 dR. (31.7)

The number of states included within the shell is equal to the shell volume and is proportional to
the thickness dε; it can be expressed as:

g(ε) dε =
1

8
4π R2 dR , (31.8)

where the quantity g(ε) is called density of states.
By substituting R2 = 8mL2ε/h2, dR =

√
2mLdε/h

√
ε, one obtains

g(ε) dε =
2π

h3
(2m)3/2 V

√
ε dε. (31.9)

The density of states g(ε) increases proportionally to the square root of the energy value ε. It is
worth noting the difference with the density o states of a macroscopic systems, that increases much
more rapidly when the energy increases (§ 15.1).
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31.1.4 Molecular partition function

Since ni � gi, one can resort to the Maxwell-Boltzmann statistics for indistinguishable particles
at the classical limit (§ 16.4). The energy levels are very close, so that the molecular partition
function of (16.23) can be expressed through an integral

z =
∑
i

gi e
−εi/kT → z =

∫ ∞
0

g(ε) e−ε/kT dε. (31.10)

By substituting the expression of g(ε) from (31.9) in (31.10), one obtains

z =
4πV (2m)3/2

h3

∫ ∞
0

√
ε e−ε/kT dε. (31.11)

By substituting y2 = ε/kT , so that ε = kTy2, dε = 2kTy dy and taking advantage of the known
value of the integral ∫ ∞

0

y2 e−y
2

dy =

√
π

4
(31.12)

one can obtain the final expression of the molecular partition function for the monatomic ideal gas:

z =
V (2πmkT )3/2

h3
. (31.13)

Example: For one litre of helium gas at T= 300 K: z ' 1027.

Since the atoms are weakly interacting, the partition function Z of the entire system can be
connected to the molecular partition function z La funzione di partizione Z del sistema, poiché
gli atomi sono debolmente interagenti, può essere collegata alla funzione di partizione molecolare
z (31.13) by the relation

Z =
∑
j

e−Ej/kT =
1

N !
zN , (31.14)

where the sum is now over all the states j (no more over the levels), so that the degeneracy factor
is absent

31.1.5 Energy and velocity distributions

Th distribution of atoms as a function of their kinetic energy is

dn

dε
=

N

z
e−ε/kT g(ε) dε =

2πN

(πkT )3/2

√
ε e−ε/kT . (31.15)

The probability density that the energy of an atoms be ε is

fε(ε) =
1

N

dn

dε
=

2π

(πkT )3/2

√
ε e−ε/kT . (31.16)

The energy distribution depends on temperature, but is independent of mass: actually, the factor
m3/2 of (31.9) is present in both the numerator, in the expression of g(ε), and in the denominator,
in the expression of z. One can easily verify that the average energy value is

〈ε〉 =

∫ ∞
0

ε fε(ε) dε =
3

2
kBT . (31.17)

The statistical theory for the monatomic ideal gas replicates the result of the kinetic model: the
average kinetic energy is proportional to the temperature; the proportionality constant is the same
too.
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The velocity distribution is easily obtained from the energy distribution, because

ε =
1

2
mv2 and

dn

dv
=

dn

dε

dε

dv
= mv

dn

dε
. (31.18)

By substituting (31.18) in (31.16) one obtains the probability density that the magnitude of the
velocity of an atom be v:

fv(v) =
1

N

dn

dv
= 4π

( m

2πkT

)3/2

v2 e−mv
2/2kT . (31.19)

The fv(v) distribution depends on both the temperature and the mass of toms.

The maximum of the distribution corresponds to the most probable velocity vmp:

dfv
dv

= 0 → vmp =

√
2kT

m
' 1.41

√
kT

m
. (31.20)

The average velocity 〈v〉 is easily obtained:

〈v〉 =

∫ ∞
0

v fv(v) dv → 〈v〉 =

√
8kT

πm
' 1.59

√
kT

m
. (31.21)

The mean square velocity
√
〈v2〉 is easily obtained too:

〈v2〉 =

∫ ∞
0

v2 fv(v) dv →
√
〈v2〉 =

√
3kT

m
' 1.73

√
kT

m
. (31.22)

Obviously

〈ε〉 =
1

2
m〈v2〉 =

3

2
kBT. (31.23)

Examples of energy and velocity distributions are shown in Fig. 30.2.

31.2 Ideal monatomic gas: thermodynamical quantities

Let us now see how the main thermodynamical quantities of the monatomic ideal gas can be
obtained from the statistical approach, according to the method introduced in Chapter 15.

Internal energy

From (15.36), with Z = zN/N !, one obtains the expression for the internal energy U :

U = kT 2

(
∂ lnZ

∂T

)
V

= NkT 2

(
∂ lnz

∂T

)
V

= NkT 2 ∂

∂T

(
3

2
lnT

)
V

=
3

2
NkT. (31.24)

Note: For the monatomic ideal gas only the translational kinetic energy, proportional to T , is taken
into account. As already mentioned above, the electronic contribution to the total energy is
here not considered since the electronic excitations are of the order of ∆ε ' 1 eV, that is much
larger than the value of kT at ambient temperature.

Heat capacity

The constant-volume heat capacity is

Cv =

(
∂U

∂T

)
v

=
3

2
Nk. (31.25)
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Entropy

For the entropy, it is convenient to start from the general expression (15.43) of S as a function of
the canonical partition function Z. Since Z = zN/N ! and making use of the Stirling approximation
ln(N !) ' N ln(N)−N , one obtains

S =
U

T
+ k lnZ =

U

T
+ Nk ln

z

N
+ kN. (31.26)

By substituting in (31.26) the value of U from (31.24) and of z from (31.13), one obtains

S = Nkln
V

N
+

3

2
Nk lnT +

3

2
Nk ln

2πmk

h3
+

5

2
Nk︸ ︷︷ ︸

indep. of V and T

(31.27)

Note: When the temperature is progressively reduced, say for T → 0, all gases become real, liquify
and possibly solidify. At low temperatures, the partition function Z cannot be approximated
by the value for the ideal gas; the expressions of S and U are different from the ones of the
ideal gas. In particular, the ideal gas expression (31.27) wouldn’t give S → 0 for T → 0.

Pressure and equation of state

From (15.50), substituting Z = zN/N and the value (31.13) of z, one obtains

p = kT

(
∂ lnZ

∂V

)
T

= NkT

(
∂ lnz

∂V

)
T

= NkT

(
∂ lnV

∂V

)
T

=
NkT

V
. (31.28)

The equation of state is thus

pV = NkT thatis pV = nRT. (31.29)

31.3 Ideal bi-atomic gases

Let us now consider bi-atomic gases, whose molecules contain two atoms (for example H2, O2, NO,
etc.).

Four are the possible contributions to the energy of each molecule (neglecting nuclear contribu-
tions): translational, rotational, vibrational and electronic. For each energy level, the energy value
is the sum of four contributions:

ε = εtr + εrot + εvib + εel (31.30)

and the degeneracy of each level is the product of four factors

g = gtr grot gvib gel. (31.31)

The typical spacings between the energy levels are

translational ∆εtra ' 0 (as for the monatomic gas)
rotational ∆εrot ' 10−3 eV
vibrational ∆εvib ' 0.1 eV
electronic ∆εel ≥ 1 eV

The translational contribution is treated in the same way as for the monatomic gas.

Again, as for the monatomic gas, the electronic contributions can be neglected, since they can be
activated only at temperatures higher than the ones of our interest here.
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31.3.1 Classical approach and its inadequacy

Rotational energy

A bi-atomic molecule can rotate around an axis containing its center of mass. The rotation can
be described by the angular momentum ~L = I~ω, where I is the moment of inertia and ~ω is the
angular velocity. The angular momentum ~L can be decomposed along two directions a and b
mutually perpendicular and perpendicular to the line joining the two atoms, so that L2 = L2

a +L2
b

(the component along the line joining the two atoms is negligible, since the corresponding moment
of inertia is practically null).
The rotational energy is purely kinetic and its value εrot = L2/2I can be decomposed as the sum
of two equivalent terms εrot = L2

a/2I + L2
b/2I.

There are thus two independent rotational degrees of freedom, to each one of whom it corresponds
a quadratic contribution to the total energy, L2

a/2I and L2
b/2I.

Vibrational energy

The vibration takes place along the direction joining the two atoms. Within the harmonic approxi-
mation, the energy is the sum of two terms, a kinetic one and a potential one: εvib = µv2/2+κx2/2,
where µ is the reduced mass, κ is the elastic constant and v is the relative velocity.
Also for vibrations there are thus two quadratic contributions to the energy, one kinetic and the
other potential.

Equipartition of energy

According to a fundamental theorem of classical statistics, the total energy of a system is equally
distributed among all its quadratic contributions.
For a bi-atomic molecule there are seven quadratic contributions to the energy, three translational,
two rotational and two vibrational

εtot = εtra + εrot + εvib =
mv2

x

2
+
mv2

y

2
+
mv2

z

2
+
L2
a

2I
+
L2
b

2I
+
µv2

2
+
κx2

2
(31.32)

According to the classical equipartition theorem, to each quadratic term of the energy it would
correspond a contribution to the internal energy NkT/2 = nRT/2, proportional to the temperature
(k is the Boltzmann constant, R is the gas constant, N is the number of molecules, n is the number
of moles). Actually, for a monatomic gas, where the translational kinetic energy contains three
quadratic terms, according to 31.24 the internal energy is U = 3NkT/2, in agreement with the
classical equipartition of energy.
One should thus expect that for a bi-atomic gas the internal energy U be the sum of seven terms
of equal extent, each one proportional to the temperature: U = 7NkT/2 = 7nRT/2.

Experimental specific heats

Direct experimental information on the internal energy of a system can be obtained by the mea-
surement of specific heats.
According to the classical equipartition theorem, one would expect that the molar specific heat of
a bi-atomic gas by cv = 7R/2.
However, for whichever bi-atomic gas, the experimental behaviour of the specific heat as a function
of temperature doesn’t agree with the classical equipartition theorem. As an example, Fig.31.1
shows the specific heat of molecular H2 as a function of the temperature.
Only for very high temperatures the value of the specific heat is the one expected according to the
equipartition theorem, that is cv = 7R/2. At low temperatures cv = 3R/2 and at intermediate
temperatures cv = 5R/2.
This behaviour is common to all bi-atomic gases, even if for different temperature intervals.
The discrepancy between the experimental values of the specific heats of bi-atomic gases and
the expectations of the equipartition theorem is due to the inadequacy of the classical statistical
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Idrogeno

Figure 31.1: Constant-volume specific heat, divided by R, of the molecular hydrogen H2 as a
function of the temperature. Notice the logarithmic scale of the temperature axis.

approach. The experimental behaviour of the temperature dependence of the specific heats of
bi-atomic gases (as well as of many-atomic gases and of crystals) could be satisfactorily explained
only after the advent of the quantum mechanics. Actually, the peculiar behaviour of the specific
heats is due to the quantisation of the rotational and vibrational energy levels, as is shown below.

31.3.2 Quantum approach

The gas molecules are indistinguishable particles. As already stated above, for an ideal gas one
can resort to the approximation for indistinguishable particles at the classical limit (§ 16.4).
The molecular partition function is the product of the partition functions corresponding to the
three contributions, translational, rotational and vibrational:

z = ztra zrot zvib =

(∑
i

gtra
i e−ε

tra
i /kT

) (∑
J

grot
J e−ε

rot
J /kT

) (∑
s

gvib
s e−ε

vib
s /kT

)
. (31.33)

One has seen above that, for the translational motion in a diluted gas, ni � gi. Even more so for
the rotational and vibrational contributions, so that ni � gtra grot gel.

Below we will deal with the rotational and vibrational contributions, for which the quantum ap-
proach is necessary. The translational contribution to the total energy and to the specific heat is
anyway shown, for comparison, in the left graphs of Fig. 31.3.

Rotational energy

Starting point is the expression of the rotational kinetic energy εrot = L2/2I, where L is the
magnitude of the angular momentum and I is the moment of inertia with respect to the rotation
axis.
The quantisation of the squared magnitude of the angular momentum, L2, entails the quantisation
of the rotational energy, according to the expression

εrot
J =

L2

2I
=

h̄2J(J + 1)

2I
= J(J + 1) θr k, (J = 0, 1, 2, . . .) (31.34)

where J is a non-negative integer number called azimuthal quantum number, k is the Boltzmann
constant and

θr =
h̄

2kI
(31.35)

is the characteristic rotational temperature, inversely proportional to the moment of inertia I.
The energy of the lowest level, corresponding to J = 0, is εrot

0 = 0. The distance between neigh-
bouring levels linearly increases when the quantum number J increases. The levels of rotational
energy for molecular hydrogen H2 and for molecular oxygen O2 are compared in Fig. 31.2. The
distance between neighbouring levels is much larger for hydrogen than for oxygen.
The rotational levels are degenerate; the degeneracy of the J-th level is

grot
J = 2J + 1. (31.36)
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Figure 31.2: Rotational energy levels for
the molecules of hydrogen (left) and oxygen
(right).
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Figure 31.3: Continuous lines: contributions to the reduced internal energy U/nR (top) and to
the reduced molar specific heat cv/R (bottom) of a bi-atomic molecule due to translation (left),
rotation (center) e vibrational (right). The particular case for which θr=85.5 K and θv= 6140 K
(as for molecular hydrogen) has been considered. The dashed lines correspond to U = nRT and
cv = nR. Notice the different scales of the axes.

The rotational partition function is thus

zrot =

∞∑
J=0

grot
J e−ε

rot
J /kT =

∞∑
J=0

(2J + 1) e−J(J+1)θr/T . (31.37)

The weight of the different terms of the sum is given by the ratio θr/T in the exponential factors. If
the temperature T is much lower than the rotation characteristic temperature θr, the value of the
exponentials is negligible for any value J > 0. When the temperature T increases, the rotational
levels are progressively populated, starting from the levels with the smallest J values. According
to the Maxwell-Boltzmann distribution (16.24), the population of the level with quantum number
J ,

nrot
J =

N

zrot
(2J + 1) exp

[
− h̄

2J(J + 1)

2IkT

]
=

N

zrot
(2J + 1) exp

[
−J(J + 1) θr

T

]
, (31.38)

increases when the temperature T increases.
To rotational contribution to the internal energy can be calculated from (16.41),

Urot = NkT 2 d

dT

(
lnzrot

)
, (31.39)

by introducing the values of the rotational partition function given by (31.37). The rotational
energy as a function of temperature for θr=85.5 K is shown in Fig. 31.3, top center: at low tem-
perature, the rotational levels are not populated and the rotational energy is smaller that the one
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expected from the classical equipartition theorem (dashed line). When the temperature increases,
the slope of the curve approaches the classical behaviour. Correspondingly, the molar specific heat
(Fig. 31.3, center bottom) attains the classical value cv = R only at sufficiently high temperatures.

The classical limit of the quantum behaviour at high temperatures can be explained as follows.
When T � θr (classical limit), an exceedingly large number of levels are occupied and the sum in
(31.37) extends to very large values of J , so that 2J + 1 ' 2J and J(J + 1) ' J2; the sum over
the J values can be approximated by the integral

zrot =

∫ ∞
J=0

2J e−θrJ
2/T dJ =

T

θr
. (31.40)

Within the approximation (31.40), the limit of the rotational energy is given by

Urot = NkT 2 d

dT

(
lnzrot

)
−→
T�θr

NkT . (31.41)

Examples: The characteristics rotational temperatures θr of some gases are: for H2, θr=85.5 K;
for CO, θr= 2.77 K; for O2, θr=2.09 K.
For CO and O2, the θr temperature is much lower than the ambient temperature, so that at the
ambient temperature the classical limit is verified, U rot = NkT , U = U rot + U tra = 5NkT/2
and cv/R = 5/2.
On the contrary, for hydrogen θr is of the same order of the ambient temperature 300 K:
therefore, at 300 K the behaviour of hydrogen is not classical, the rotational contributions to
the internal energy and to the specific heat is smaller than the one expected according to the
classical theory (Fig. 31.1).

Note: The behaviour shown in Fig. 31.3, center column, has been calculated from (31.38) and
(31.39) assuming θr=85.5 K, which is the rotational temperature of moleular hydrogen. Actu-
ally, the real behaviour of molecular hydrogen is slightly different, for the following reason. The
hydrogen molecule has two distinct forms, depending on the relative orientation of the nuclear
spins of the two atoms: 25% of the molecules are para-hydrogen (anti-parallel spins, singlet
state) and 75% are orto-hydrogen (parallel spins, triplet state). To fulfil the requirements of
wave-functions symmetry, in the sum (31.37) of the rotational partition function, only odd
values of j have to be considered for orto-hydrogen, only even values for para-hydrogen.

Vibrational energy

In the quantum mechanical approach, one cannot distinguish the kinetic and potential contribu-
tions to the vibrational energy, as a consequence of the uncertainty principle. Fro a harmonic
oscillator of angular frequency ω = 2πν the quantised vibrational energy is expressed as

εs =

(
s+

1

2

)
h̄ω =

(
s+

1

2

)
θvk (31.42)

where s is a non-negative integer number and

θv =
h̄ω

k
(31.43)

is the vibrational characteristic temperature.
The levels of vibrational energy are equally spaced and non degenerated.

The vibrational partition function is

zvib =

∞∑
s=0

e−(s+1/2)θv/T = e−θv/2T
∑
s

e−sθv/T =
e−θv/2T

1− e−θv/T
. (31.44)

(In the last equality one has taken into account that
∑
s x

s = 1/(1 − x), where here x =
exp(−θv/T ) < 1.)
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Figure 31.4: Schematic representation of the behaviour of the internal energy (left) and of the
specific heat (right) for an ideal bi-atomic gas.

According to the Maxwell-Boltzmann distribution (16.24), the population of the level with quantum
number s is

nvibs =
N

zvib
e−(s+1/2)θv/T =

N

zvib
e−(s+1/2)θv/T . (31.45)

The vibrational contribution to the internal energy is

Uvib = NkT 2 d

dT

(
lnzvib

)
= kNθv

[
1

2
+

1

eθv/T − 1

]
(31.46)

where the first term kNθv/2 is the zero point energy, that, being independent of temperaure,
doesn’t contribute to the specific heat (Fig. 31.3, right).
Because of the energy quantisation, the percent contribution of the vibrational energy to the total
internal energy progressively increases when the temperature increases.
Only at sufficiently high temperatures, that is for T � θv, the following approximation holds,

Uvib = kNθv

[
1

2
+
(
eθv/T − 1

)−1
]
' kNθv

[
1

2
+

(
1 +

θv
T

+
θ2
v

2T 2
− 1

)−1

)

]
(31.47)

' Nkθv

[
1

2
+
T

θv

(
1 +

θv
2T

)−1
]
' Nkθv

[
1

2
+
T

θv

(
1− θv

2T

)]
= NkT (31.48)

and the classical result of the equipartition theorem is recovered.

Examples: The characteritstics vibrational temperatures of some gases are: for H2, θv= 6140 K; for
Cl2, θv= 810 K; for Na2, θv= 230 K. The characteristics vibrational temperatures are generally
much higher than the ambient temperature, Le temperature caratteristiche di vibrazione sono
generalmente molto maggiori della temperatura ambiente, so the vibrational levels are not
excited at the ambient temperature and don’t contribute to the specific heat (Fig. 31.1).

31.3.3 Internal energy and specific heat of bi-atomic gases

The results obtained above are schematised in Fig. 31.4, where the three contributions, transla-
tional, rotational and vibrational to the total internal energy and to the specific heat are plotted
as a function of temperature.
At low temperatures, only the translational energy is relevant; at intermediate temperatures the
rotational contribution adds on; at high temperatures the vibrtional contribution adds on. A
bassa temperatura contribuisce solo l’energia traslazionale, a temperature intermedie si aggiunge
l’energia rotazionale, ad alte energie si aggiunge l’energia vibrazionale.
The direct proportionality between internal energy U and temperature T , that is verified for the
monatomic ideal gas, doesn’t hold for other gases and for other systems. Internal energy and
temperature are not equivalent thermodynamical quantities.
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Chapter 32

Tables

32.1 Greek alphabet

Table 32.1: The Greek alphabet

Name Lower-case Uppe-rcase Name Lower-case Uppe-rcase

Alfa α A Ni (nu) ν N
Beta β B Xi ξ Ξ
Gamma γ Γ Omicron o O
Delta δ ∆ Pi π Π
Epsilon ε, ε E Rho ρ P
Zeta ζ Z Sigma σ Σ
Eta η H Tau τ T
Theta θ, ϑ Θ Upsilon υ Υ
Iota ι I Phi φ Φ
Kappa κ K Chi χ X
Lambda λ Λ Psi ψ Ψ
Mi (mu) µ M Omega ω Ω

32.2 Constants of Physics

The fundamental constants of Physics are measure in different laboratories by different techniques.
An international committee, the CODATA (Committee on Data for Science and Technology),
periodically gathers and compares the results obtained by the different laboratories. The values
of some fundamental constants, taken from the CODATA compilation of 2018, are listed in Table
32.2.
The values of the first seven constants since May 2019 are assumed as exact and represent the
defining constants of the International System of units (SI). The uncertainties of the other constants
are expressed in a form particularly suited to very accurate measures. The significant digits that
represent the uncertainty δX (typically two digits) are contained in parentheses after the central
value; for example esempio,

me = 9.109 383 7015(28)×10−31 kg
means

me = (9.109 383 7015 ± 0.000 000 0028)× 10−31 kg.
The complete list of fundamental constants can be found in the website of NIST, at the address
https://pml.nist.gov/cuu/Constants/.

Approximate values of some quantities relevant for Thermodynamics are listed in Table 32.2 .

385
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Table 32.2: Values of some constants of Physics

Constant Symbol Value Unit

Frequency of the hyperfine d
133Cs transition ∆νCs 9 192 631 770 Hz

Velocity of light in vacuum c 299 792 458 m s−1

Planck constant h 6.626 070 15×10−34 J s
Elementary charge e 1.602 176 634×10−19 C
Boltzmann constant kB 1.380 649×10−23 J K−1

Avogadro constant NA 6.022 140 76×1023 mol−1

Luminous efficacy Kcd 683 lm W−1

Vacuum permeability µ0 4π·10−7 H m−1

Vacuum permittivity ε0 = 1/µ0c
2 8.854 187 817...·10−12 F m−1

Gravitational constant G 6.674 30(15)·10−11 m3kg−1s−2

Electron mass me 9.109 383 7015(28)·10−31 kg
Proton mass mp 1.672 621 923 69(51)·10−27 kg
Neutron mass mn 1.674 927 498 04(95)·10−27 kg
Atomic mass unit u 1.660 539 066 60(50)·10−27 kg

Fine structure constant α 7.297 352 5693(11)·10−3

Rydberg constant R∞ 10 973 731.568 160(21) m−1

Bohr radius a0 0.529 177 210 903(80)·10−10 m
Bohr magneton µB 9.274 010 0783(28)·10−24 J T−1

Nuclear magneton µN 5.050 783 17(20)·10−27 J T−1

Gas constant R = NA kB 8.314 462 618... J mol−1 K−1

Table 32.3: Approximate values of some quantities relevant for Thermodynamics

Quantity Symbol Value Unit

Elettronvolt eV 1.602 · 10−19 J

Planck constant h 6.626 · 10−34 J s
4.136 · 10−15 eV s

Reduced Planck constant h̄ = h/2π 1.055 · 10−34 J s
6.583 · 10−16 eV s

Atomic mass unit u 1.660·10−27 kg

Avogadro number NA 6.022·1023 mol−1

Gas constant R 8.314 J mol−1 K−1

Boltzmann constant kB 1.381·10−23 J K−1

8.617·10−5 eV K−1
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32.3 Temperature scales

Table 32.4: Most important temperature scales

Absolute zero Ice Water Notes
melting boiling
(at 1 bar) (at 1 bar)

Centigrade scales Celsius -273.15 0 100
Kelvin 0 273.15 373.15

Other scales Fahrenheit -459.67 32 212 (1)
Rankine 0 491.67 671.67 (2)
Réaumur -218.52 0 89 (3)

(1) The Fahrenheit scale, still in use in Anglo-Saxon countries, was first proposed in 1724 by the
physicist Gabriel Fahrenheit (Dantzig 1686 - the Hague 1736). Born in Poland, Fahrenheit
worked in U.K. and in Holland; in 1714 he built the first mercury thermometer.
The Fahrenheit scale (symbol ◦F) assigns the values 32 ◦F to the ice melting point at atmo-
spheric pressure and 212 ◦F to the water boiling point at atmospheric pressure. The interval
between the two values is thus 180 ◦F.

(2) The Rankine scale, proposed around 1860 by the Scottish physicist W.J. Rankine and no
longer in use, is an absolute scale referred to the Fahrenheit scale (as the absolute Kelvin is
referred to the Celsius scale).

(3) The Réaumur scale was proposed in 1732 by the French physicist R. A. Ferachault de
Réaumur.

Table 32.5: Conversions between different scales

Fahrenheit → Celsius T [◦C] = 5 T[◦F]/9 - 17.78
Fahrenheit → Kelvins T [K] = 5 T[◦F]/9 + 255.37
Celsius → Fahrenheit T [◦F] = 9 T[◦C]/5 + 32
Kelvin → Fahrenheit T [◦F] = 9 T[K]/5 - 459.6
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Amorphous semiconductors, 331
Atomic magnetism, 237
Average energy, 193
Average statistical energy, 191
Axiom I, 59
Axiom III, 62

Bohr magneton, 237
Boiling point, 305
Boltzmann H theorem, 181
Bose-Einstein, 209
Bose-Einstein distribution, 211
Bose-Einstein statistics, 218
Bosons, 206, 218
Brass, 326

Caloric equation of state, 20
Canonical

distribution, 183
statistical ensemble, 183

Canonical distribution, 186
Boltzmann-Planck method, 184
β parameter and temperature, 188
density of states, 189
probability of, 188
temperature, 197
the β parameter, 187

Canonical, statistical ensemble, 167
Cantinuous phase transitions, 288
Carnot cycle, 38, 130

magnetic, 233
Carnot theorem, 39
Chemical equilibrium, 103, 137

stability, 153
Chemical potential, 67, 86, 281

mixtures of ideal gases, 144
of ideal gas, 137
transport of matter, 145

Chemical reaction
affinity, 151
degree of advancement, 147
equilibrium condition, 149
evolution criterion, 148
heat of reaction, 150
scale factor, 147

Chemical reactions, 147
affinity, 348
coupled, 349
degree of advancement, 348
entropy production, 348
nomenclature, 147
reaction speed, 348

Chemical stability, 123
Chmical equilibrium, 70
Classification of phase transitions, 288
Classifications of Thermodynamics, 11
Clausius

inequality of, 49
Second Law statement, 37

Clausius inequality, 49
Clausius theorem, 42–44

proof, 45
Clausius–Clapeyron

equation, 285, 298
Closed, thermodynamic system, 4
Cloud chamber, 305, 306
Coefficient

of thermal expansion, 113
Coefficient of performance, heat pumps, 42
Coexistence curve

liquid–vapour, 297
Coexistence curves, 270, 285
Composite, systems, 59
Compressibiliies

liquids, 113
Compressibilities, 112

crystalline solids, 113
ideal gas, 112

Computation of microstates, 176
Condensation, 304
Condensation of the atmospheric vapour, 304
Conservation of energy, 21
Constraints, 59
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Continuity equation, 351
Coordinates, thermodynamic, 4
Coordinates, thermodynamical, 57
Copper

specific heat, 110
Copper–zinc alloy, 326
Coupled irreversible processes, 359
Coupling of irreversible processes, 349
Critical exponents, 289, 308
Critical transition and fluctuations, 308
Critical transition liquid–vapour, 306
Critical transition of fluids, 272
Cryogenic fluids, 253
Crystalline solids, 327
Crystals

specific heat, 110
Curie principle, 359

Degradation of energy, 51
Degree of advancement of a chemical reaction,

147
Density matrix, 161

statistical, 165
Dew point, 301
Dew temperature, 301
Diamagnetic materials, 227
Diamagnetic substances, 231–233
Diamond

specific heat, 110
Diathermal walls, 13
Diffraction of X-rays, 331
Distinguishability and indistinguishability, 205
Distribution

Bose-Einstein, 218
Bose-Einstein, 211
canonical, 186
classical limit for indistinguishable particles,

211
Fermi-Dirac, 211, 219
Maxwell-Boltzmann, 210, 212

Distributions
of single particle, 210

Ebullition, 304, 305
Efficency

of a heat engine, 36
Efficiency

maximum for heat engines, 41
maximum for refrigerator, 41
of the Carnot cycle, 39

Einstein crystal, 177, 214
Electrical polarisation, work of, 31
Electro-chemical potential, 347
Electron gas, 219
Energy

degradation, 51
local conservation, 351
paramagnetic system, 248

Energy balance, 71
Energy conservation, 6
Energy fluctuations, 192, 193
Energy representation, 62, 65, 71, 291
Engines, 35
Ensemble, statistical, 164
Enthalpy, 84, 95, 200

magnetic, 225
vaporisation, 298

Entropy, 42, 46, 61, 173, 194, 199, 202
and heat, 47
and reversible processes, 46
Boltzmann definition, 173
creation, 341, 342
flux, 341
law of increase of, 50
local production, 352, 353
local variation, 341
paramagnetic system, 247
production, 345
variations, 340

Entropy production
continuous systems, 350
discrete systems, 345

Entropy representation, 62, 65, 66, 291
Entropy variations, 66
Equation of state

caloric, 20
thermal, 16, 20

Equilibrium, 7
chemical, 8, 70
liquid–vapour, 297
mechanical, 7, 8, 69
solid-liquid-gas, 270
thermal, 8, 13, 68, 70
thermodynamical, 8, 59

Equilibrium condition, 71
for chemical reactions, 149

Equiprobability postulate, 171
Ergodic problem, 167
Espansione termica negativa, 115
Euler relations, 75, 85
Eutectic, 325
Evolution criteria, 10
Evolution criterion, 61, 341
Evolution of microstates, 180

Fermi-Dirac, 209
Fermi-Dirac statistics, 219
Fermi-Dirac distribution, 211
Fermions, 207, 219
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First Law, 19
local expression, 351

First order phase transitions, 288
Fluctuations, 8, 308

of energy, 192
Fluctuatuions, 362
Fluid mixtures, 292
Frigoriferi

macchine cicliche, 36
Fugacity, 139
Fundamental equation, 61, 71
Fundamental equations

alternative, 81
homogeneity, 75
magnetic, 224
properties, 74

Gas thermometer, 15
Gauss

theorem, 351
Generalised forces and fluxes

coupling coefficients, 357
Gibbs

regola delle fasi, 284
Gibbs free energy, 85, 102, 200, 281
Gibbs function, 85, 102, 120, 281

Magnetic, 225
Gibbs paradox, 142, 217
Gibbs phase rule, 319, 320
Gibbs space, 59
Gibbs theorem, 140
Gibbs-Duhem, relations, 75
Ginzburg–Landau theory, 293
Glass, 329

excess entropy, 336
Glass transition, 327, 329

interval, 334
phenomenology, 332
Thermodynamics, 334

Glasses, 275
metal, 330
oxide, 329
specific heat, 111

Grüneisen, function, 118
Grancanonical, statistical ensemble, 167
Grand-canonical potential, 85, 106

H Boltzmann theorem, 181
Heat, 19, 20, 195
Heat capacities, 107, 116, 118

magnetic systems, 228
Heat capacity, 193
Heat engine

efficiency, 36
Heat engines

cyclic, 35
maximum efficincy, 41

Heat of reaction, 150
Heat pumps, 36

coefficient of performance, 42
Helmholtz free energy, 84, 99, 199
Helmholtz function, 84, 99
Homogeneity of fundamental equations, 75, 85
Homogeneous, thermodynamic system, 4
Humidity, 301

Ideal gas, 15, 21, 77, 200
adiabatic compression, 129, 201
chemical potential, 78, 137, 139
compressibilities, 112
enthalpy, 138
entropy, 138, 200
fundamental equation, 78
internal energy, 138
Isothermal compression, 201
isothermal expansion, 128
mixtures, 139
specific heat, 108
state equations, 77
statistics, 214
thermal expansion, 114, 116

Ideal gases
equilibrium constant, 150
internal energy, 368
kinetic model, 367
specific heats, 368
thermodynamical properties, 367
thermodynamical transformations, 368

Identical particles
distinguishable, 206
indistinguishable with half-integer spin, 207
indistinguishable with integer spin, 206

Indistinguishable particles
classical limit, 210

Inhomogeneous, thermodynamic system, 4
Intensive coordinates, 65
Internal energy, 19, 20, 57, 90, 191, 193, 198

in Mechanics, 22
Inversion temperature, 135

maximum, 135
Irreversibilità, 38
Irreversibility, 9, 174
Irreversible processes, 70

coupled, 359
Irreversible transformations, 70
Isolated, thermodynamic system, 4
Isothermal compression, 127

Joule coefficient, 132
Joule effect: free expansion, 132
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Joule-Thomson coefficient, 134
Joule-Thomson effect, 133, 255

Kelvin, Second Law statement, 37
Kinetic model of ideal gases, 367

Latent heat, 283
condensation, 298
vaporisation, 298

Law of corresponding states, 314
Le Chatelier principle, 122
Legendre transforms, 81

in one dimension, 82
in several dimensions, 83
in Thermodynamics, 84

Lennard-Jones potenzial, 309
Liquid–gas equilibrium, 287
Local equilibrium, 341
Low temperatures, 253

Magnetic Carnot cycle, 233
Magnetic enthalpy, 225, 245, 266
Magnetic fundamental equations, 224
Magnetic Gibbs function, 225
Magnetic Maxwell relations, 225
Magnetic moment

of eletrons, 237
of nucleons, 238

Magnetic potential energy, 239
Magnetic response functions, 226
Magnetic susceptibilities, 226
Magnetic systems, 223

heat capacities, 228
statistics, 237
statistics and thermodynamics, 246
thermodynamics, 223

Magnetisation
adiabatic, 233, 250
isothermal, 231, 232, 250
two-levels system, 242

Magnetisation work, 223
Magnetisation, work of, 28
Magnetism

atomic, 237
Magnetoelastic effect, 235
Magneton

Bohr, 237
nuclear, 238

Magnetostrictive effect, 234
Many-component systems, 319

two-components fluid mixtures, 279
two-components solid alloys, 280

Massieu functions, 86
Master equation, 180
Mathematical identities, 88

Maxwell relations, 86
magnetic, 225

Maxwell-Boltzmann, 209
Maxwell-Boltzmann distribution, 210, 212
Mean field theory, 311
Mechanical equilibrium, 69
Mechanical stability, 122
Metastable phases, 274
MgO

specific heat, 110
Microcanonical, statistical ensemble, 166, 169
Microstate

evolution of, 180
Microstates, 159, 162, 169

computation, 176, 209
of a diluted gas, 176
of a two-level system, 178
of the Einstein crystal, 177
probability of, 170

Mixtures of ideal gases
chemical potential, 144

Mixtures of idel gases, 139
Molar quantities, 76

NaCl
adiabatic compression, 130
compressibilities, 113
compressibility, 113
Grüneisen function, 119
specific heat, 110
thermal expansion, 114, 129

Negative temperatures, 263
Nernst-Simon statement of Third Law, 259
non-crystalline materials, 275
Non-crystalline solids, 327
Non-equilibrium stationary states, 342, 354
Nuclear magneton, 238

One-component systems, 76
Onsager relations, 360

demonstration, 362
Open, thermodynamic system, 4
Order parameters, 289, 308
Oxide glasses, 329
Oxygen molecule

paramagnetism of, 240

Paramagnetic materials, 227
Paramagnetic salt, 240, 247
Paramagnetic substances, 232, 233
Paramagnetic system

energy, 248
entropy, 247
thermodynamical processes, 249

Particles
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identical distinguishable, 206
Partition function, 198

canonical, 212
molecular, 212
two-levels system, 241

Partition funtion, 187
Phase diagrams

carbon dioxide, 271
nitrogen, 271
temperature-pressure, 270
water, 272

Phase equilibria, 270, 281
Phase equilibrium, 105
Phase space, 159

density, 164
Phase transitions

classification, 288
continuous, 288, 293
ferroelectric, 278
ferromagnetic, 277
first order, 288, 293
order-disorder, 277
solid-liquid-gas, 272
stability, 290
superfluid, 276
superionic, 276

Phases
of solids, 273
phenomenology, 269

Phonons, 218, 219
Photons, 218, 219
Planck statement of Third Law, 260
Poly-amorphism, 274
Polymorphism, 273
Postulato II, 61
Potential energy

magnetic, 239
Pressure, 200
Probability of microstates, 170

Quasi-static transformation, 9

Reazioni chimiche, 104
Refrigerators

cyclic, 36
maximum efficiency, 41

Regola delle fasi di Gibbs, 284
Relaxation time, 14, 171
Representation

energy, 62, 291
entropy, 62, 291

Response functions, 107
and Gibbs function, 120
magnetic, 226
relations among, 116

Reversibility, 9, 174

Saturated vapour pressure, 297
Second Law, 35

Clausius statement, 37
Kelvin statement, 37

Silica
specific heat, 112

Solid phases, 273
carbon, 274
tin, 273
water, 273

Solid solutions, 322
Solid–liquid equilibrium, 287
Specific heat

biatomic ideal gas, 109
glasses, 111
metallic crystalline solids, 110
monatomic ideal gas, 108
NaCl, 117
non-metallic crystalline solids, 110
water, 111, 117

Specific heats, 107, 108
Speific heat

of solids, 262
Stability

of chemical equilibrium, 153
of phase transitions, 290
of thermodynamical equilibrium, 121

State equation
caloric, 77
thermal, 77

State equations, 74
Stationary states of non-equilibrium, 354
Statistical density matrix, 165
Statistical ensemble, 164, 166

canonical, 167, 183
grancanonical, 167
microcanonical, 166, 169

Statistical Thermodynamics, 157
Statistics

Bose-Einstein, 218
Fermi-Dirac, 219
Maxwell-Boltzmann, 212
of paramagnetic systems, 237
of thermodynamic systems, 191
of two-level systems, 241

Statistics of particles, 205
Sub-systems, 59
Superheated liquid, 305
Supersaturated vapour, 305
Surface tension, 301
Susceptibilities (magnetic), 226
Symmetry, 290
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Systems out of equilibrium, 274
Systems with two or more components, 279
Systems, Thermodynamic, 3

Temperature, 13, 202
absolute thermodynamic, 39
empirical, 15
of gas thermometer, 15

Thermal conduction, 361
Thermal equation of state, 20
Thermal equilibrium, 13, 68, 70, 73
Thermal expansion, 113

and entropy, 115
Grüneisen function, 118
ideal gas, 114
linear, 114
NaCl, 114
negative, 114
water, 114

Thermal stability, 122
Thermodunamical force, 341
Thermodynamic

coordinates, 4
systems, 3

Thermodynamic equilibrium
and intensive coordinates, 68

Thermodynamic potentials, 89
Thermodynamic system

closed, 4
isolated, 4
open, 4

Thermodynamic systems
dielectrics, 31
homogeneous, 4
inhomogeneous, 4
magnetic, 28

Thermodynamic temperature, 39
Thermodynamical coordinates, 57

extensive, 57
intensive, 65
magnetic, 224

Thermodynamical equilibrium, 59
stability, 121

Thermodynamical equilibrium condition, 68
Thermodynamical flux, 341, 350
Thermodynamical fluxes, 355
Thermodynamical force, 353
Thermodynamical forces, 355
Thermodynamical forces and fluxes

coupling, 356
conjugated, 356
equivalent systems, 356
phenomenological relations, 356

Thermodynamical operations, 60

Thermodynamical processes, 59, 127, 172
Thermodynamical system

composite, 59
Thermodynamical systems

closed, 345, 347
isolated, 345
non-isolated, 347
open, 146, 349

Thermodynamical transformations, 9
Thermodynamics

of irreversible processes, 339
two-level systems, 243

Thermometric properties, 15
Thermometric substances, 15
Third Law of Thermodynamics, 257
Time arrow, 53
Triple points, 270
Two level system

partition function, 244
Two-level magnetic system

heat capacity, 246
magnetic enthalpy, 245

Two-level system, 178
Two-levels magnetic system

entropy, 244
internal energy, 245
potential energy, 244

Two-levels magnetic systems, 241

Unattainability of absolute zero, 258

Van der Waals
forces, 309
mean field theory, 311
state equation, 309
statistical derivation, 310

Van der Waals gas
internal energy, 315
Joule effect, 132, 315
Joule-Thomson effect, 316
thermodynamical properties, 315

Van der Waals isotherms, 312
and Gibbs function, 313

Van der Waals theory, 309
corresponding states, 314
critical transition of fluids, 314

Vaporisation enthalpy, 298
Virtual thermodynamical processes, 67
Volume modulus, 112

Walls
non restrictive, 59
restrictive, 59

Water
adiabatic compression, 130
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compressibilities, 113
isothermal expansion, 128
liquid–vapour equilibrium, 299
specific heat, 111
thermal expansion, 114, 116

Work, 19, 24, 195
adiabatic, 19
compression, 24
generalised, 25
magnetisation, 28, 30, 223
of gravity field, 25
polarisation, 31

X-ray diffraction, 331

Zeroth Law, 13
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